Neutrino mixing and CP phase correlations

Ernest Ma, Alexander Natale *, Oleg Popov

Department of Physics and Astronomy, University of California, Riverside, CA 92521, USA

A special form of the 3×3 Majorana neutrino mass matrix first appeared in 2002 [1,2], i.e.

$$\mathcal{M}_\nu = \begin{pmatrix} A & C & C^* \\ C & D^* & B \\ C^* & B & D \end{pmatrix},$$

where A, B are real. It was shown that $\theta_{13} \neq 0$ and yet both θ_{23} and the CP nonconserving phase δ_{CP} are maximal, i.e. $\theta_{23} = \pi/4$ and $\delta_{CP} = \pm \pi/2$. Subsequently, this pattern was shown [3] to be protected by a symmetry, i.e. $e \leftrightarrow e$ and $\mu \leftrightarrow \tau$ exchange with CP conjugation. All three predictions are consistent with present experimental data. Recently, a radiative (scotogenic) model of inverse seesaw neutrino mass has been proposed [4] which naturally obtains

$$\mathcal{M}_\nu^0 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \lambda \end{pmatrix} \mathcal{M}_\nu \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \lambda \end{pmatrix},$$

where $\lambda = f_\tau/f_\mu$ is the ratio of two real Yukawa couplings.

This model has three real singlet scalars $s_{1,2,3}$ and one Dirac fermion doublet (E^0, E^-) and one Dirac fermion singlet N, all of which are odd under an exactly conserved (dark) Z_2 symmetry. As a result, the third one-loop radiative mechanism proposed in 1998 [5] for generating neutrino mass is realized, as shown in Fig. 1.

The mass matrix linking (\bar{N}_L, \bar{E}^0_L) to (N_R, E^0_R) is given by

$$\mathcal{M}_{N,E} = \begin{pmatrix} m_N \\ m_D \\ m_E \end{pmatrix},$$

where m_N, m_E are invariant mass terms, and m_D, m_F come from the Higgs vacuum expectation value $\langle \phi^0 \rangle = v/\sqrt{2}$. As a result, N and E^0 mix to form two Dirac fermions of masses $m_{1,2}$, with mixing angles

$$m_D m_E + m_T m_N = \sin \theta_L \cos \theta_L (m_1^2 - m_2^2),$$

$$m_D m_N + m_T m_E = \sin \theta_R \cos \theta_R (m_1^2 - m_2^2).$$

To connect the loop, Majorana mass terms $(m_L/2)N_L N_L$ and $(m_R/2)N_R N_R$ are assumed. Since both E and N may be defined to carry lepton number, these new terms violate lepton number softly and may be naturally small, thus realizing the mechanism of inverse seesaw [6–8] as explained in Ref. [4]. Using the Yukawa interaction $f_\nu \bar{E}^0_L \nu_L$, the one-loop Majorana neutrino mass is given by

$$m_\nu = f^2 m_R \sin^2 \theta_R \cos^2 \theta_R (m_1^2 - m_2^2)^2 \times \int \frac{d^4k}{(2\pi)^2} \frac{k^2}{(k^2 - m_1^2)(k^2 - m_2^2)(k^2 - m_T^2)^2} + f^2 m_L m_1^2 \sin^2 \theta_L \cos^2 \theta_L \int \frac{d^4k}{(2\pi)^2} \frac{1}{(k^2 - m_1^2)(k^2 - m_2^2)(k^2 - m_T^2)^2}$$
\[E_\alpha = \begin{pmatrix} e^{i\alpha_1} & 0 & 0 \\ 0 & e^{i\alpha_2} & 0 \\ 0 & 0 & e^{i\alpha_3} \end{pmatrix}, \quad E_\beta = \begin{pmatrix} e^{i\beta_1} & 0 & 0 \\ 0 & e^{i\beta_2} & 0 \\ 0 & 0 & e^{i\beta_3} \end{pmatrix}, \]

\[M_d = \begin{pmatrix} m_1 & 0 & 0 \\ 0 & m_2 & 0 \\ 0 & 0 & m_3 \end{pmatrix}. \]

Hence
\[M_{\nu} M_{\nu}^\dagger = E_\alpha U M^2_d U^\dagger E_\alpha^\dagger. \]

where
\[\Delta = U^\dagger \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & \lambda - 1 \end{pmatrix} U, \quad M^2_{\text{new}} = \begin{pmatrix} m_1^2 & 0 & 0 \\ 0 & m_2^2 & 0 \\ 0 & 0 & \lambda^2 m_3^2 \end{pmatrix}. \]

We now diagonalize numerically
\[[1 + \Delta] M^2_{\text{new}} [1 + \Delta^\dagger] = O M^2_{\text{new}} O^\dagger, \]
where \(O \) is an orthogonal matrix, and \(M^2_{\text{new}} \) is diagonal with mass eigenvalues equal to the squares of the physical neutrino masses. Let us define
\[A = (1 + \Delta)^{-1} O, \]
then
\[A M^2_{\text{new}} A^\dagger = M^2_d. \]

Since \(U \) is known with \(\theta_{23} = \pi/4 \) and \(\delta = \pm \pi/2 \), we know \(\Delta \) once \(\lambda \) is chosen. The orthogonal matrix \(O \) has three angles as parameters, so \(A \) has three parameters. In Eq. (14), since the three physical neutrino mass eigenvalues of \(M^2_{\text{new}} \) are given, the three off-diagonal entries of \(M_d \) are constrained to be zero, thus determining the three unknown parameters of \(O \). Once \(O \) is known, \(U O \) is the new neutrino mixing matrix, from which we can extract the correlation of \(\theta_{23} \) with \(\delta_{\text{CP}} \). There is of course an ambiguity in choosing the three physical neutrino masses, since only \(\Delta m_{32}^2 \) and \(\Delta m_{21}^2 \) are known. There are also the two different choices of \(m_1 < m_2 < m_3 \) (normal ordering) and \(m_3 < m_1 < m_2 \) (inverted ordering). We consider each case, and choose a value of either \(m_1 \) or \(m_3 \) starting from zero. We then obtain numerically the values of \(\sin^2(2\theta_{12}) \) and \(\delta_{\text{CP}} \) as functions of \(\lambda \neq 1 \). We need also to adjust the input values of \(\theta_{12} \) and \(\theta_{13} \), so that their output values for \(\lambda \neq 1 \) are the preferred experimental values.

We use the 2014 Particle Data Group values [9] of neutrino parameters:
\[\sin^2(2\theta_{12}) = 0.846 \pm 0.021 \]
\[\Delta m_{21}^2 = (7.53 \pm 0.18) \times 10^{-5} \text{ eV}^2 \]
\[\sin^2(2\theta_{13}) = 0.999 \left(\begin{array}{c} +0.001 \\ -0.018 \end{array} \right) \]
\[\Delta m_{32}^2 = (2.44 \pm 0.06) \times 10^{-3} \text{ eV}^2 \text{ (normal)}, \]
\[\sin^2(2\theta_{23}) = 1.000 \left(\begin{array}{c} +0.000 \\ -0.017 \end{array} \right), \]
\[\Delta m_{32}^2 = (2.52 \pm 0.07) \times 10^{-3} \text{ eV}^2 \text{ (inverted)}, \]
\[\sin^2(2\theta_{13}) = (9.3 \pm 0.8) \times 10^{-2}. \]

We consider first normal ordering, choosing the three representative values \(m_1 = 0.03, 0.06 \text{ eV} \). We then vary the value of \(\lambda > 1 \). [The case \(\lambda < 1 \) is equivalent to \(\lambda^{-1} > 1 \) with \(\mu-\tau \) exchange.] Following the algorithm already mentioned, we obtain numerically the values of \(\sin^2(2\theta_{23}) \) and \(\delta_{\text{CP}} \) as functions of \(\lambda \). Our solutions are fixed by the central values of \(\Delta m_{21}^2 \), \(\Delta m_{32}^2 \), \(\sin^2(2\theta_{12}) \), and \(\sin^2(2\theta_{13}) \). In Figs. 2 and 3 we plot \(\sin^2(2\theta_{23}) \) and \(\delta_{\text{CP}} \) respectively versus \(\lambda \). We see from Fig. 2 that \(\lambda < 1.15 \) is required for \(\sin^2(2\theta_{23}) > 0.98 \). We also see from Fig. 3 that \(\delta_{\text{CP}} \) is not sensitive to \(m_1 \). Note that our scheme does not distinguish \(\delta_{\text{CP}} \) from \(-\delta_{\text{CP}} \). In Fig. 4 we plot \(\sin^2(2\theta_{23}) \) versus \(\delta_{\text{CP}} \). We see that \(\delta_{\text{CP}}/(\pi/2) > 0.95 \) is required for \(\sin^2(2\theta_{23}) > 0.98 \).
We then consider inverted ordering, using m_3 instead of m_1. We plot in Figs. 5, 6, and 7 the corresponding results. Note that in our scheme, the effective neutrino mass m_{ee} measured in neutrinoless double beta decay is very close to m_1 in normal ordering and $m_3 + \sqrt{\Delta m^2_{32}}$ in inverted ordering. We see similar constraints on $\sin^2(2\theta_{23})$ and δ_{CP}. In other words, our scheme is insensitive to whether normal or inverted ordering is chosen. Finally, we have checked numerically that $\theta_{23} < \pi/4$ if $\lambda > 1$, and $\theta_{23} > \pi/4$ if $\lambda < 1$. As we already mentioned, the two solutions are related by the mapping $\lambda \to \lambda^{-1}$.

In conclusion, we have explored the possible deviation from the prediction of maximal θ_{23} and maximal δ_{CP} in a model of radiative inverse seesaw neutrino mass. We find that given the present 1σ bound of 0.98 on $\sin^2(2\theta_{23})$, $\delta_{CP}/(\pi/2)$ must be greater than about 0.95.

Acknowledgements

This work is supported in part by the U.S. Department of Energy under Grant No. DE-SC0008541.

References