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ABSTRACT

Motivation: Unsupervised class discovery in gene expression data
relies on the statistical signals in the data to exclusively drive
the results. It is often the case, however, that one is interested
in constraining the search space to respect certain biological
prior knowledge while still allowing a flexible search within these
boundaries.
Results: We develop an approach to semi-supervised class
discovery. One component of our approach uses clinical sample
information to constrain the search space and guide the class
discovery process to yield biologically relevant partitions. A second
component consists of using known biological annotation of
genes to drive the search, seeking partitions that manifest strong
differential expression in specific sets of genes. We develop efficient
algorithmics for these tasks, implementing both approaches and
combinations thereof. We show that our method is robust enough
to detect known clinical parameters in accordance with expected
clinical values. We also use our method to elucidate cardiovascular
disease (CVD) putative risk factors.
Availability: MonoClaD (Monotone Class Discovery). See http://
bioinfo.cs.technion.ac.il/people/zohar/MonoClad/
Supplementary information: Supplementary data is available
at http://bioinfo.cs.technion.ac.il/people/zohar/MonoClad/software.
html
Contact: zohar_yakhini@agilent.com

1 INTRODUCTION
Two cell types with dramatically different biological characteristics
are expected to yield very different gene expression profiles
(e.g. normal cells versus tumor cells from the same tissue
or endothelial cells from around blood vessel lesions versus
endothelial cells from normal arteries). Indeed, genomic studies,
specifically ones that are based on high-throughput molecular
profiling, often focus on comparing two or more sample sub-
populations included in the data. For example, Golub et al.
(1999) studied the differential gene expression as measured when
comparing acute myeloid leukemia (AML) to ALL samples. Bittner
et al. (2000) applied several clustering methods on expression
profiles of melanoma tumors. They discovered a classification
that was then further substantiated by ascertaining phenotypical
differences. Alizadeh et al. (2000) compared DLBCL cells to other
types of lymphoma and to healthy T-cells and B-cells. Applying
agglomerative clustering over genes they managed to find genes
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with similar behavior, across the different types of samples. From the
resulting hierarchy they manually selected specific subsets of genes.
Finally, by restricting to a particular subset of genes, they applied
clustering on the samples to discover a partition of the DLBCL
samples.

Such methodology of supervised class discovery suffers from
the need for manual human curation. This intervention is required
since typical clustering procedures, used in gene expression analysis,
attempt to find groups of samples such that the overall expression
profiles are similar within clusters and different between clusters. In
addition, it is important to realize that very often the majority of the
active cellular mRNA is not affected by biological differences, even
by very significant ones. That is, a dramatic biological difference
does have a gene expression level manifestation, but the set of
genes that is involved, representing specific biological processes,
can be rather small, as a fraction of the entire mRNA repertoire.
Such differences are ‘washed out’ by uniform measures of similarity
between samples (e.g. Pearson or Euclidean distance). For example,
the classification discovered by Alizadeh et al. (2000) is not apparent
when tissues are clustered using all the genes. In this particular case,
a set of relevant genes was identified based on other considerations
and prior hypotheses about potential sources of differences between
DLBCL subtypes.

The need to identify sub-classes in nominally uniform data has
led to the development of several unsupervised class discovery
methods (Ben-Dor et al., 2001b; von Heydebreck et al., 2001).
While these methods are totally unsupervised, the complexity of the
problem in question is exponential and discovery relies on heuristics.
More importantly, these methods are designed to find the strongest
statistical trend in the data. In practice, the resulting partition might
not be relevant to the research question and therefore is poorly
understood.

Disease related studies are usually accompanied with significant
clinical data that is missed in all aspects of expression profiling
mediated class discovery. In the current work we address the use
of external information to automatically drive the class discovery
processes, thus overcoming several of the shortcomings of the
aforementioned approaches. While clustering approaches are totally
un-supervised and while classification (that is—the discovery of
genes differentially expressed between two types of samples) is
totally supervised, our proposed approach is, in effect, a form of
clinically driven semi-supervised class discovery.

The process we develop in this article has two components:

(1) An optimized search process. In this work we introduce a
search procedure that is constrained to respect some external
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Fig. 1. Distribution of LDL levels in a cohort of 46 healthy people (see
Section 3.1 for details of the data). Marked in red lines are two thresholds,
t and u, that define the sample assignment to Class A and B. Where
Class A will consist of all samples with LDL levels below t and Class B
will consist of all samples with LDL levels above u. Once a partition is
defined, one can use any method to assess differential expression. Note that
methods that afford p-values will be better in handling the variance in class
sizes when considering different pairs of thresholds and possibly different
phenotypes.

quantitative measurement. For example, when LDL levels1

are available for the subjects of the sample set, we seek a
partition that defines high and low LDL. That is—we only allow
partitions that respect the order of the quantitative measurement
(Fig. 1).

(2) Figure of merit associated to putative partitions. We are
guided by the fact that biologically meaningful partitions
typically manifest either: (a) large (statistically meaningful)
overabundance of differentially expressed genes in the different
sample classes or (b) an enrichment of a meaningful subset
of genes, usually commonly related to a specific biological
process, amongst the differentially expressed genes. We use
efficient statistical methods to assess enrichment in a ranked
list without requiring a threshold to be set on the differentially
expressed genes (Eden et al., 2007).

A preliminary short abstract describing this approach appears in
Steinfeld et al. (2007).

We exemplify our approach through the analysis of data
comprising quantitative phenotypic measurements and expression
profiling from healthy individuals. To analyze the data we developed
a semi-supervised class discovery method, constraining the search
space to patterns that respect an order induced by the rich
quantitative annotations. We show that our method is robust enough
to detect known clinical parameters with accordance to expected
values. We also apply our method, using a community curated sets

1 LDL (low-density lipoprotein) are circulating particles of lipids,
phospholipids and proteins acting as transporters of cholesterol to the
peripheral body tissues. An excess of circulating LDL cholesterol is
responsible for increased cholesterol deposition in the artery walls leading
to atherosclerosis and cardiovascular diseases (myocardial infarction,
stroke, etc.).

of genes, to elucidate novel cardiovascular disease (CVD) putative
risk factors.

2 METHODS

2.1 Differential expression for quantitative phenotypes
One of the basic tasks in gene expression data analysis is finding differentially
expressed genes between two classes (such as tumor versus normal or
diabetics versus non-diabetics). A variety of methods were developed to
address this task, such as TNoM (Ben-Dor et al., 2001a), SAM (Tusher
et al., 2001) and others (see review of Cui and Churchill, 2003). In
common practice bioinformaticians typically use categorical information
on the samples to derive partitions. In this section, we assume that the
gene expression data is such that each sample is associated with various
clinical phenotypes. Some of these phenotypes are quantitative (numbers);
e.g. blood pressure, BMI and LDL. In this case, one could partition the data
using the quantitative information by either of the following approaches
(Fig. 1):

Parametric: Setting two values as thresholds (t and u)—all samples whose
chosen phenotype value is below t will be in Class A, and all samples whose
chosen phenotype value is above u will be in Class B. The rest of the samples
(between t and u) will be ignored.

Non-parametric: Setting two percentile values as thresholds.
Using the quantitative information to partition the samples maintains the

biological context of the analysis and enables the researcher to better interpret
the result. Furthermore, by enabling dual thresholds, we focus on extreme
biological states while ignoring samples (with mid-range values) that might
confound the analysis.

2.2 Evaluating partitions
As part of a class discovery process, one needs to assess the statistical
significance of any partition considered, and to compare between partitions.
In this article we consider two general approaches to evaluating the statistical
significance of a partition:

Overabundance analysis: Using a differential expression score that affords
an exact p-value and can be efficiently computed, one can estimate the
expected number of differentially expressed genes for any given partition.
By comparing the observed number of differentially expressed genes to the
expected number, under a null model, we can calculate the overabundance
of differentially expressed genes. This quantity can be used as a figure of
merit, indicating a more profound change in the cell state. This approach has
been described and used in Ben-Dor et al. (2001b), von Heydebreck et al.
(2001) and others.

Other effective measures for estimating the overabundance of differential
expression can include the number of genes that pass a Bonferroni correction,
or the number of genes at a given false discovery rate (FDR) (Benjamini and
Hochberg, 1995) level.

Set enrichment: Part of the semi-supervised approach of this article
involves the use of external information in driving the statistical assessment
of differential expression. Consider, for example, a universe gene set
G = {gi}i=1...N , and a set of genes all participating in the same biological
process, which we shall denote by T : G. Consider a candidate binary partition
Q = (A, B) of the mRNAexpression data and assume that for every transcript g
we computed a differential expression score, reflecting under/over expression
in A as compared to B, denoted d(g). Rank the transcripts according to
d(g), where the most significant transcripts are at the top of the list. We
will assign a statistical score to the enrichment of T at the top of this list.
This enrichment score, ϕ(Q, T , G), is a figure of merit that can be used to
find partitions where an activity of T is evident in the mRNA differential
expression. ϕ(Q, T , G) is computed using the minimal hyper geometric
(mHG) statistics (Eden et al., 2007, and Appendix A), as described in
Section 2.4.
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The enrichment procedure can be used with GO terms, TF cohorts,
KEGG classes, miRNA target sets (as inferred from databases such as
TARGETSCAN), genomic intervals and sets of genes derived from other
studies. Some of these approaches are exemplified in the Section 3.

2.3 Monotone class discovery
Typical class discovery in gene expression data (Ben-Dor et al., 2001b;
von Heydebreck et al., 2001) searches over all possible partitions of the
set of samples. As this collection is exponential in the number of samples,
L, heuristic methods, such as simulated annealing (Kirkpatrick et al., 1983)
are typically used.

When taking a semi-supervised approach we are seeking partitions that
respect (or are monotone with respect to) some independently measured
quantitative phenotype. In this case, we address a different biological
question and reduce the search space from �(3L) to �(L2) making the search
far more tractable.

A formal definition of monotone class discovery follows. Consider gene
expression data given as a matrix D. Rows are genes G = {gi}i=1...N and
columns are samples S = {sj}j=1...L . Assume that we also have a quantitative
phenotype measured for the set of samples. For each s∈S, we therefore
have a number q(s). Without loss of generality we further assume that
q(s1)�q(s2)� ···�q(sL). A monotone partition of S is a pair of disjoint
subsets A = {s1, s2, …, st} and B = {su, su+1, …, sL}, where t < u. Consider
a statistical figure of merit ϕ that can be computed for any partition of S.
Monotone class discovery seeks a monotone partition P for which ϕ(P) is
optimal. Examples are described in Section 2.2.

2.4 Search heuristics
The simplest, very naïve, approach to monotone class discovery, would
be to consider all possible pairs of thresholds t and u, evaluate ϕ for the
corresponding partition and return the optimum found. Considering we have
N genes and L samples, this search will require O(N*L2) time complexity.
For large datasets this can be prohibitive and we are interested in developing
a more efficient method. For the case of the semi-supervised class discovery
with set-enrichment as a figure of merit, we present the following heuristic
approaches. This section can be skipped for general understanding of the
article. It is specific to the faster search heuristic.

Following the description in Section 2.2, consider a gene universe
G = {gi}i=1...N , and a gene set of interest, T :G. For any candidate binary
partition Q = (A, B), and a fixed n, representing the top Q-differentially
expressed genes, consider the hypergeometric tail distribution as a figure
of merit to score Q. Namely, ϕ(Q, T , G) = HGT(N , B, n, b) (see Appendix),
where N = |G|, B = |T | and b is the number of elements in T that occur
in the top n Q-differentially expressed genes, which we also denote by
bn(Q, T , G); this latter notation emphasizes b’s dependence on the universe G.
Since N , B, and the threshold, n, are all fixed, the HGT score is monotone with
b = bn(Q, T , G). Therefore, during an exhaustive search over all partitions,
we maintain the maximum b so far, bmax, and trace it back to the partition
where it was obtained, at the end of the search. A simple pseudo-code for
the algorithm BP-HGTall (Best-Partition-HGTall) is presented:

The main idea of our heuristic approach is to avoid the repeated calculation
of differential expression scores of all genes, which is needed in Line 3, for
every partition. By working with a carefully selected reduced universe we
only compute differential expression scores when the currently considered

partition stands a chance of exceeding bmax. A full description of the
algorithm is described in the following pseudo-code:

Claim. BP-HGTjump(T, G) = BP-HGTall(T, G)

Proof. Assume to the contrary that

(1) BP-HGTjump(T , G) < BP-HGTall(T , G).

Let Q∗ be the partition for which BP-HGTall attains maximum enrichment.
Let b∗ = bn(Q∗, T , G). Our assumption (1) implies that when considering
Q∗, BP-HGTjump did not reach Line 7, for which b is computed exhaustively
on all genes and b∗ would have been found and replaced the then current
bmax.It follows that there exists a set R for which bn(Q∗, T , GR) (computed
in Line 5) < bmax < b∗. For this to happen, in the reduced universe GR there
need to be strictly more than (n− b∗) genes not from T that are in the top n Q∗-
differentially expressed genes. Since T ⊂GR ⊂G, in G there are strictly more
than (n − b∗) genes not in T amongst the top n Q∗-differentially expressed
genes (there can be new genes in this list, but not from T ). This in turn means
that bn(Q∗, T , G) < b∗. A contradiction. �

Our selection of R is based on the assumption that similar partitions result
in similar differential expression patterns. Following this assumption, R is
consistently updated to be the top r differentially expressed genes, each time
we calculate differential expression for all genes. We ran empirical tests to
investigate optimal values for r. See Section 3.2 for details.

The above heuristic still requires calculating differential expression on
O(|GR|) genes for each partition. For any selection of R our algorithm
complexity would be �(N + (r+ B)*L2). The only definite upper bound we
can provide is equivalent to the naïve exhaustive approach. However, in
typical cases we can select r << N that still enables avoiding, for most
partitions, the calculation of differential expression for all of G. Thus, we do
get significant acceleration in practice, as described in Section 3.2.

Also, in practice we are usually only interested in partitions that yield a p
that is better than a fixed threshold. bmax can, therefore, be initialized to be the
minimum b for when HGT(N , B, n, b) < p. We also found that improvement
in running time is achieved by initializing R (Line 1) with the r genes that
are most correlated with the quantitative phenotype.

For adaptation of BP-HGTjump to the mHGT statistics, see Appendix A1.4.

2.5 GO enrichment and visualization
GO enrichment analyses were performed using GOrilla (http://cbl-
gorilla.cs.technion.ac.il).

All gene expression heatmap visualizations were generated using Mayday
software (Dietzschet al., 2006).

2.6 Samples and microarrays
Enrolled subjects were all offspring of participants in the Barilla study cohort,
a longitudinal survey started in 1981 to investigate the impact of classical and
novel risk factors on CVD development (Zavaroni et al., 1989, 1999). All
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volunteers were young adults [median age of 35 years, Inter-Quartile Range
(IQR) = 7], without clinically relevant diseases or chronic medications. In
addition, all subjects had a low CVD risk profile and major risk factors were
within the normal range for most of the population.

Peripheral blood mononuclear cells (PBMCs) were isolated from fresh
blood drawn in fasting conditions and DNA-free total RNA extracted with
standard techniques. Hybridization to 44K oligonucleotide arrays by Agilent
Technologies (Santa Clara, CA, USA) was performed according to standard
protocols.

2.7 Description of available software (MonoClaD)
A program which performs this class discovery is available along with
the Supplementary Material at the MultiKnowledge Project’s website:
http://bioinfo.cs.technion.ac.il/people/zohar/MonoClad/

The input to the program is:

• Gene expression matrix.

• Quantitative phenotype vector (one value for each sample and the order
should be consistent with the order of the columns in the expression
data matrix).

• Optional: a set of genes to drive enrichment-based class discovery.

The program performs monotone class discovery (using either over-
abundance or set enrichment). It returns the thresholds of the quantitative
phenotype for which differential expression is maximized and the list of
genes ranked by their differential expression. GO enrichment can then be
performed on this list by using the output file as input into GOrilla (http://cbl-
gorilla.cs.technion.ac.il). To perform this either RefSeq or UniProt names
should be used in the input files. A more detailed manual for running this
software package can be found in the above URL.

3 RESULTS

3.1 CVD data
We applied our method to PBMCs gene expression profiling data,
collected from 46 healthy subjects (see Section 2). PBMCs are a
sub-population of circulating white blood cells highly involved in
the inflammatory processes responsible for atherosclerosis and CVD
(Libby et al., 2002). Recent evidence suggests that PBMCs may act
as ‘biosensors’ of systemic diseases and their response to CVD risk
factors, assessed by gene expression profiling, provides a biological
signature of atherosclerosis (Ardigo et al., 2007).

Clinical, laboratory measurement and CVD prognostic indicators
were also collected, adding more than 160 phenotypic quantitative
parameters for each subject. Each one of the phenotypes can be used
as a basis for computing the associated differential expression, as
reflected in the subject’s PBMCs, as well as for semi-supervised
class discovery.

3.2 Tests of the algorithmic efficiency
In Section 2.2, we presented the set enrichment class discovery
partition scoring method. Namely, for a given threshold n, the set
enrichment method seeks the best partition, Q, which maximizes the
enrichment of a gene set, T , in the top n Q-differentially expressed
genes. Our set enrichment heuristic class discovery (see Section 2.4)
is strongly relying on the ability to work with a reduced universe
set of genes, GR, for most partitions tested. The reduction of the
universe is done by focusing on the genes in T and on the top r
differentially expressed genes, for the current Q.

To investigate the optimal size of r we ran empirical tests on
various values of n and B (=|T |, the size of the set driving the search).

Fig. 2. The improvement in running time as a function of B and r (see text).
In all tests the threshold, n, is fixed to 300. Note that we get strong efficiency
factors when B is fairly small, sae is true for small n’s (Supplementary
Table A).

Table 1. Diffreent functions F(n,B) for estimating an optional r (see text)

F(n, B) Correlation to r∗(n, B)

sqrt(B∗n) 0.9
sqrt(B∗n)/log(B) 0.95
sqrt(B∗n)/log(n) 0.83
sqrt(B∗n)/log(n∗B) 0.90
B+n 0.92
B+n 0.85
(B+n)/log(B) 0.95
(B+n)/log(n) 0.84

For each pair of values for n and B the optimal value of r, r∗ (n,B), was calculated
empirically (Supplementary Table B). The Pearson correlation coefficient between
r∗(n,B) and F(n,B) is presented. The correlation was computed for data spanning n=1
[100, 300, 500] and B=[77, 111, 217, 347, 450, 534]. The highest correlation is obtained
for F(n,B)= (B+n)/log(B).

For each size n and gene set, of size B, we run the naïve approach
as well as the heuristic approach with multiple choices of r (Fig. 2).
For each instance of r we profiled the time efficiency over 10
randomly selected quantitative sample annotations vectors from the
data described in Section 3.1.

In addition to Figure 2 we describe more tests of n and B in
Supplementary Table A. In practice, when analyzing a set T of size
B using a threshold n, the user can infer an optimal r =r∗(n, B)
from the test results (Supplementary Table A). We also tried to fit
a function F(n, B) to the empirically computed values of r∗(n, B).
Correlation values of r∗(n, B) and various functions are presented
in Table 1.

3.3 Recapturing known quantitative traits
Our dataset, described in Section 3.1, is composed of 26 females and
20 males. To test our methods, we used available quantitative sample
annotations that are known to have different value distributions
for the two gender sub-populations. The quantitative annotations
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A

B

Fig. 3. Best partitions resulting from analyzing two quantitative sample
annotations related to the subject’s gender. Samples are ordered according to
their quantitative values and are presented as a function of the sample subject
gender (F – female, M – male). (A) Using the uric acid levels in the blood
and seeking the highest overabundance of differentially expressed genes.
(B) Using haemoglobin levels in the blood and seeking the partition that is
most enriched with heterosome genes. In the partition attained we observe
enrichment at mHG p < 10−32(corrected by 46 choose 2, for multiple testing)
of heterosomes in the top differentially expressed genes.

selected are the hemoglobin and uric acid levels measured in
peripheral blood of the subjects. Our data shows a perfect separation
of the sub-populations by the hemoglobin sample annotation (TNoM
p < 10−11), and also a significant separation by the Uric acid sample
annotation (TNoM p < 10−7).

We used two methods for scoring partitions: overabundance
of differentially expressed genes and gene set enrichment (see
Section 2).

Figure 3A illustrates the monotone partition with the highest
overabundance of differentially expressed genes, when using the
uric acid quantitative sample annotation. The separation between
males and females strongly agrees with the discovered partition.
The partition induces the differential expression depicted in
Supplementary Figure A. It is important to note that the separation
of the two sub-populations was obtained solely by comparing their
transcriptional profiles while respecting monotonicity.

The use of overabundance of differentially expressed genes to
score partitions is very useful when such high differences are
available and expected. In some cases, though, it is possible that
quantitative phenotypic differences will yield a change only on
a single biological process. In this case we would not expect
an overabundance of differentially expressed genes, but only
differential expression of a particular set of genes, representing the
biological process we are interested in. To handle such cases we
developed the set driven partition scoring (see Section). We first
characterized the set of genes that are expected to differ between
the gender sub-populations. A total of 2034 genes residing in
either one of the sex chromosomes X or Y (Maglott et al., 2005),
were collected. On the expression profiling microarray 557 of the
heterosome genes were found to be present, and therefore represent
the set of heterosome genes to be used in the enrichment analysis.

Fig. 4. Heatmap of 30 genes that are top differentially expressed in the
optimal partition inferred by IMT_all_max quantitative sample annotation.
Each line represents a gene and each column represents a sample. The
scoring scheme, used for the partition search, was overabundance analysis
(see Section 2). The nine samples on the right have high IMT level (�0.92).
The 30 samples on the left have low IMT level (�0.9). The partition of the
IMT levels closely agrees with the known levels in the literature.

Figure 3B illustrates the partition for which the heterosome genes
are most enriched (mHG p < 10−32, corrected for multiple testing)
in the deferentially expressed genes, when using the hemoglobin
sample annotation.

Again we see that by using pre-existing biological knowledge,
of expected differentially expressed genes, we manage to drive the
partition search and find the optimal partition that is inherent by the
quantitative sample annotation.

3.4 Finding novel risk factors for CVD
In addition to clinical parameters that are risk factors for CVD, a
few non-invasive tests can be used to assess the presence of vascular
atherosclerosis at a preclinical stage—i.e. before the disease leads
to major clinical manifestations such as myocardial infarction of
stroke. Carotid intima-media thickness (IMT) is an ultrasound-based
measurement of thickness of the inner layer of the carotid artery
and provides information on the infiltration of LDL cholesterol and
inflammatory cells in the artery wall. IMT is a powerful predictor
of future CVD events (Hurst et al., 2007) and has been imposing
as surrogate end-point in short term clinical trials to assess the
efficacy of a treatment in preventing atherosclerosis progression
(Bots, 2006). Although at present no clear cut-off level of normality
has been established for IMT (as it varies as a function of age,
gender and BMI), an intima-media layer thicker than 1 mm should
be considered as a pathological value at any age (Touboul, 2007).

Using semi-supervised class discovery based on overabundance
and respecting monotonicity of the IMT values we received IMT
threshold levels that are in close agreement with the known
prognosis values (IMT levels below 0.9 in Class A versus IMT levels
above 0.92 in Class B). The differentially expressed genes in this
partition (Fig. 4) were enriched with GO terms related to vesicle-
mediated transport (p < 10−8) and glycolysis (p < 10−6), giving
mechanistic insights to the difference between the two cell states.

We observed even more interesting finding by applying the set
enrichment partition scoring to drive the partition search. In this
approach we used 300 genes that have a community established
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Fig. 5. Optimal partition obtained using set driven class discovery (see
Section 2). A total of 300 genes related to CVD were collected and used to
drive the partition search. Amongst the ∼160 available quantitative sample
annotations, the annotation that received the highest enrichment was an IMT
related one, previously shown to be correlated to CVD development (Lorenz
et al., 2007) (mHG p < 10−4, after correction for the multiple partitions and
quantitative annotation tested).

association with CVD (UCL web site—http://www.ucl.ac.uk/
medicine/cardiovascular-genetics/geneontology.html). Searching
over all available parameters (∼160, see Section 3.1), a particular
IMT parameter gave highly informative partition regarding the
CVD genes (Fig. 5). The 300 CVD-related genes were enriched at
mHG p < 10−9, which translate to p < 10−4 after correction for the
multiple partitions and quantitative annotation tested. We further
ran 100 random sets of size 300 through the same analysis, using
the real quantitative annotations and data. The best result obtained
was mHG p∼10−7,which translates to a corrected p∼10−2, as
expected.

This result is interesting since (1) an IMT parameter shows
the highest correlation with the expression pattern of CVD-related
genes. (2) Among the multiple parameters that are measured during
an IMT test, the one showing the most informative correlation to
gene expression is also the one considered to have the highest
correlation with CVD events prediction (Lorenz et al., 2007). (3)
The identified IMT threshold values indicate that the expression
of CVD-related genes begins at a lower than expected IMT value.
(4) GO enrichment analysis of the differentially expressed genes
in the depicted partition (Fig. 4) can provide mechanistic insights
in the progression of the disease. We see a general activation
of the immune response (Table 2), which is in line with the
inflammatory hypothesis of atherosclerosis (Packard and Libby,
2008); moreover—we observe the regulation of IL6 biosynthesis
that was previously associated with CVD.

We further note that in taking a simplistic approach and ranking
the genes according to their Pearson correlation to any of the
quantitative sample annotations (including the IMT annotations),
no enrichment of the CVD genes was found (data not shown). This
underscores the utility of methods based on differential expression.

3.5 Additional example
To assess the applicability of our methods in a broader biological
context we analyzed several additional published datasets. As an

Table 2. List of GO terms enriched in the differentially expressed genes
induced by the optimal partition constrained by IMT value and searched by
CVD related genes set class discover

GO Name P-value Enrichment (N,B,n,b)

Response to other organism 4.10E-07 2.73 (9825, 447, 354, 44)
Inflammatory response 5.00E-07 3.99 (9825, 174, 354, 25)
Response to pest, pathogen or parasite 2.10E-06 2.19 (9825, 442, 608, 60)
Cellular defense response 1.10E-05 3.85 (9825, 84, 608, 20)
Response to wounding 1.90E-05 2.35 (9825, 310, 608, 45)
Immune response 2.30E-05 2.18 (9825, 676 360, 54)
Response to external stimulus 3.90E-05 2.54 (9825, 400, 367, 38)
Positive regulation of immune response7.80 E-05 5.99 (9825, 52, 347, 11)
Interleukin-6 biosynthesis 8.20E-05 21.20 (9825, 6, 309, 4)
Macrophage activation 8.20E-05 21.20 (9825, 6, 309, 4)

GO enrichment was computed using GOrilla (http://cbl-gorilla.cs.technion.ac.il).

example, we present the results obtained from van’t Veer et al.
(2002). The data consists of 117 primary breast tumor expression
profiles. The authors report a gene expression signature that is
strongly predictive of short interval to distant metastases. Many
of the signature genes partake in processes such as cell cycle,
invasion and metastasis. We used the GO term cell cycle process
(GO: 0022402) to drive semi-supervised class discovery, with the
length (in months) of the interval to metastasis as the constraining
quantitative annotation of the samples. Using a single threshold the
resulting partition was up to 61 months in Class A and more than 62
months in Class B, with an enrichment of p < 10−17. This result is
interesting as it is similar to the partition used in the article and to the
common clinical use (<5 years and >5 years). More interestingly,
using two thresholds (excluding samples with median values) we
receive a partition of up to 18 months and more than 124 months
with an enrichment of p < 10−34.

4 DISCUSSION
In this article we introduce fast algorithmics for semi-supervised
class discovery, where the search is constrained by clinical quan-
titative information. We show data-driven analysis of expression
data and describe results that shed more light on the driving clinical
parameters as well as on the associated expression profiles. We
demonstrate gained biological insight by pointing out IMT values at
which a CVD pathogenesis process might be on going, as evidenced
by expression profiles that are more similar to disease profiles than
to normal ones.

In the scope of this article we do not address the case of
clinical data information represented as discrete classes rather
than as numerical quantities. Our monotone class discovery (see
Section 2.3) can be adapted to this scenario by exhaustively
searching all possible trinary assignments. Namely—each original
sample class can be fully assigned to either class of the partition or
not assigned at all. This search is exponential in K (3K − 2K+1+ 1),
the number of original classes. Furthermore, in our study the
monotone class discovery was driven by a single quantitative
sample annotation. This method can be further extended to
take under consideration multiple quantitative sample annotations
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(e.g. considering age and height, young and high subjects will be
compared to old and short subjects). To add robustness, with respect
to the noise in clinical data, it is useful to extend the methods
to address less strict monotonicity conditions, by allowing a few
exceptions (not all samples in one class need to have lower IMT
than in the other, only most of them do).

In Section 3.4 we show how a predefined CVD related set of
genes, assembled and characterized by the scientific community,
can help in driving the analysis of gene expression data. The use
of predefined sets of biologically related genes is very common
in analyzing high-throughput genomic and genetic data. Gene
Ontology (Harris et al., 2004) is a good example of the scientific
community predefining biologically related sets of genes. Many
other classifications are also frequently used (Kanehisa, 2002;
Subramanian et al., 2005). Our method of set driven class discovery
(Section 2.2) can be easily extended to handle a collection of
multiple sets. In this case a partition will be scored according to the
most enriched set amongst the collection of sets under consideration.
We believe it to be of particular interest as these ensembles of sets
are more often used to assess results rather than as a driving force in
such analyses. Proper statistical corrections need to be applied for
such an approach.

It is important to note that a predefined set of related genes is
not limited to the available ensembles described earlier. In fact, in
the set-driven class discovery, the results from a different study can
be used to drive the analysis. For example, the set of differentially
expressed genes between tumor and normal samples in one study
can drive the analysis in a study evaluating a quantitative measure
to test cancer progression.

It is often the case that the results of a differential expression
study are represented as a ranked list of genes rather than as a fixed
set of genes (Eden et al., 2007). An extension of our methods would
score a putative partition, Q, according to the agreement between
the differential expression ranks for a known condition and that
implied by Q.
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APPENDIX A

A1 THE mHG STATISTICS

A1.1 HG: the hypergeometric distribution
Consider the following scenario. A closet contains two drawers,
together containing N socks. One drawer contains n socks and the
other (N −n). Exactly B of the socks are black and the remaining
(N −B) are white. A question that can be asked is: Does the first
drawer contain significantly more black socks than the second? In
other words, are the black socks enriched in the first drawer? Under
a uniform distribution over all configurations of socks in the drawers
the probability of finding exactly b black socks in the first drawer is

i96

 at N
ew

 Y
ork U

niversity on June 12, 2015
http://bioinform

atics.oxfordjournals.org/
D

ow
nloaded from

 

http://bioinformatics.oxfordjournals.org/


[19:19 8/8/03 Bioinformatics-btn279.tex] Page: i97 i90–i97

Semi-supervised class discovery in gene expression data

described by the hypergeometric function:

HG(N,B,n,b)=

(
n
b

)(
N −n
B−b

)
(

N
B

)

The tail probability of finding b or more black socks in the first
drawer is:

HGT(N,B,n,b)=
min(n,B)∑

i=b

HG(N,B,n,i)

A1.2 mHG
In many scenarios a fixed partition of the set (e.g. first versus second
drawer) is not known. If some ranking of the elements is given
then we can consider all partitions that respect the given ranking—
dividing the entire set of elements into a subset of high-ranking
elements and a subset of low-ranking elements. We want to discover
such partitions for which either of the subset is enriched with
some attribute. Formally, consider a set of measurement values for
elements S = {s1, …, sN }, where si < si+1 and some binary labeling
of the elements λ = λ1, …, λN ∈{0, 1}N . The binary labels represent
the attribute—say 1 for membership in a GO term and 0 otherwise.
We define the mHG score as:

mHG
(
λ
)= min

1�n�N

(
HGT

(
N,B,n,bn

(
λ
)))

where bn
(
λ
)=

n∑
i=1

λi.

In addition to the mHG score itself, it is also useful to note the
rank n* at which the minimal HGT was attained.

A variant of the mHG score is obtained when we limit the set
of considered threshold to 1 < n < nmax, where in practical uses
nmax � N .

A1.3 mHG p-values
It is important to note that the mHG score is not a p-value.
To enable an accurate interpretation of the mHG score significance
we employ an efficient dynamic programming procedure to fully
characterize the distribution of mHG including exact p-values.
We also employ effective bounds that can accelerate calculations.
For details on the computational aspects and for applications
to identifying transcription factor binding sites see Eden et al.
(2007).

A1.4 Jump mHG heuristic
Subsequent to the description in Section 2.4 the following pseudo-
code describes the naïve approach of finding the most enriched

partition using mHGT:

Where pn(Q, T , G) stands for the minimum HGT score over all
possible thresholds up to n (= nmax the largest threshold under
consideration).

mHG(λ)= min
i�n�N

(HGT(N,B,n,bn(λ))

The jump heuristic for mHGT is adjusted accordingly:

Notice that in the reduce universe GR, λ is padded with 0’s:

λR = λ1, …, λ|R|, δ1, .., δN−|R|where λi ∈ {0, 1} and δi = 0.

Claim. BP-mHGTjump(T, G) = BP-mHGTall(T, G)

Proof. Assume to the contrary that

(2) BP-mHGTjump(T , G) > BP-mHGTall(T , G).

Let Q∗ be the partition for which BP-mHGTall attains its maximum
enrichment. Let p∗ = pn(Q∗, T , G, N) and n∗ be the threshold in
which this enrichment was attained. Our assumption (2) implies
that when considering Q∗, BP-mHGTjump did not reach Line 7, for
which p is computed using G and p∗ would have been found and
replaced the then current pmin.

It follows that there exists a set R for which pn(Q∗, T , GR)
(computed in Line 5) > pmin > p∗. => bn∗(Q∗, T , GR) <

bn∗(Q∗, T , G) = b∗, in particular.
For this to happen, in the reduced universe GR there need to be

strictly more than (n∗−b∗) genes not from T that are in the top
n∗Q∗-differentially expressed genes. Since T ⊂GR ⊂G, in G there
are strictly more than (n∗−b∗) genes not in T amongst the top
n∗Q∗-differentially expressed genes (there can be new genes in this
list, but not from T ). This in turn means that bn∗(Q∗, T , G) < b∗. A
contradiction. �
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