
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.DOI

Solving the Pattern Formation by Mobile
Robots with Chirality
SERAFINO CICERONE1, GABRIELE DI STEFANO1, and ALFREDO NAVARRA.2
1Department of Information Engineering, Computer Science and Mathematics, University of L’Aquila, Via Vetoio, I–67100, L’Aquila, Italy
2Department of Mathematics and Computer Science, University of Perugia, Via Vanvitelli 1, I–06123, Perugia, Italy.

Corresponding author: Alfredo Navarra (e-mail: alfredo.navarra@unipg.it).

This work was supported in part by ICT-AGRI-FOOD and MIPAAF under Grant CUP-J99C20000820003, through the project
“HALYomorpha halys IDentification” (HALY-ID), and in part by the Italian National Group for Scientific Computation GNCS-INdAM,
through the project “Traveling Salesman 2.0”–Fondo di ricerca 2020.

ABSTRACT Among fundamental problems in the context of distributed computing by mobile robots,
the Pattern Formation (PF) is certainly the most representative. Given a multi-set F of points in the
Euclidean plane and a set R of robots such that |R| = |F |, PF asks for a distributed algorithm that moves
robots so as to reach a configuration similar to F . Similarity means that robots must be disposed as F
regardless of translations, rotations, reflections, uniform scalings. In [Fujinaga et al. SIAM J. Comput.,
2015], PF has been approached by assuming asynchronous robots endowed with chirality, i.e. a common
handedness. The proposed algorithm along with its correctness proof turned out to be flawed.
In this paper, we propose a new algorithm on the basis of a recent methodology studied for approaching
problems in the context of distributed computing by mobile robots. According to this methodology, the
correctness proof results to be well-structured and less prone to faulty arguments. We then ultimately
characterize PF when chirality is assumed.

INDEX TERMS Distributed Algorithms; Mobile Robots; Asynchrony; Pattern Formation.

I. INTRODUCTION

One of the basic problems studied in distributed computing
is certainly the Pattern Formation (PF) which is strictly
related to Leader Election (see, e.g. [6], [13]).

Given a multi-set F of points in the Euclidean plane
with respect to an ideal coordinate system, and a set
R of mutually visible robots such that |R| = |F |, the
Pattern Formation (PF) problem asks for a distributed and
deterministic algorithm that moves robots so as to form F .
As the global coordinate system might be unknown to the
robots, a pattern is declared formed as soon as robots are
disposed similarly to the input pattern, that is, regardless of
translations, rotations, reflections, uniform scalings.

The PF problem has been largely investigated in the
last years under different assumptions. Here we refer to
the standard Look-Compute-Move model, where robots
alternate between Active and Inactive states and, when
active, a robot operates in cycles. In one cycle, a robot takes
a snapshot of the current global configuration (Look) in
terms of robots’ positions according to its own coordinate
system. Successively, in the Compute phase it decides
whether to move toward a specific target or not, and in the

positive case it moves (Move).
Different characterizations of the environment consider

whether robots are fully-synchronous, semi-synchronous
(cf. [25], [27], [28]), semi-asynchronous (cf. [5], [9]) or
asynchronous (cf. [1], [3], [7], [15], [18], [19], [22]):

• Fully-synchronous (FSYNC): Robots are always Active
and the execution of their Look-Compute-Move cycles
can be logically divided into global rounds. In each
round, all the robots perceive the same configuration,
compute and perform their move.

• Semi-synchronous (SSYNC): It coincides with the
FSYNC model, with the only difference that some
robots might be Inactive during a round.

• Semi-asynchronous (SASYNC): robots still maintain a
sort of synchronous behavior as each phase lasts the
same amount of time, but robots can start their LCM
cycles at different times. It follows that while a robot
is performing a Look phase, other Active robots might
be performing the Compute or the Move phases.

• Asynchronous (ASYNC): The robots are activated in-
dependently, and the duration of each phase is finite
but unpredictable. As a result, robots do not have a

VOLUME xxxx, 2016 1

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

L C M L C M L C M L C M L C M

L C M L C M L C M L C ML C M

L C M L C M L C M L C M L C M

L C M

L C M L C M

L C M

L C M

L C M

L C M

L C M L C M

L C M

time

L MC

L

L

L L

LLL

C

C C C

CCC

M

M MM

M MM

L C M L C M

L C M

L C M

L C ML C M L C M

L C M L C M

L C MSASYNC

r1

r2

r3

SSYNC

r1

r2

r3

ASYNC

r2

r3

r1

FSYNC

r1

r2

r3

FIGURE 1: The execution model of computational cycles
for each of FSYNC, SSYNC, SASYNC and ASYNC robots.
The Inactive state is implicitly represented by empty time
periods.

common notion of time. Moreover, they can be seen
while moving, and computations can be made based
on obsolete information about positions.

Figure 1 compares the four schedulers proposed in the
literature.

Clearly, the four synchronization schedulers induce the
following hierarchy (see, e.g. [5], [14], [16]): FSYNC robots
are more powerful (i.e. they can solve more tasks) than
SSYNC robots, that in turn are more powerful than SASYNC
robots, that in turn are more powerful than ASYNC robots.
This simply follows by observing that an ideal adversary
can control more parameters in ASYNC than in SASYNC,
and it controls more parameters in SASYNC than in SSYNC
and FSYNC. In other words, protocols designed for ASYNC
robots also work for SASYNC, SSYNC and FSYNC robots.
Contrary, any impossibility result stated for FSYNC robots
also holds for SSYNC, SASYNC and ASYNC robots.

Robot’s capabilities are usually maintained as weak as
possible so as to understand what is the limit for the
feasibility of the problems. Moreover, the less assumptions
are made, the more a resolution algorithm is robust with
respect to possible disruptions.

To this respect, one of the minimal settings studied
in [19], [25], considers robots to be:

• Autonomous: no centralized control;
• Dimensionless: modeled as geometric points in the

plane;
• Anonymous: no unique identifiers;
• Oblivious: no memory of past events;
• Homogeneous: they all execute the same deterministic

algorithm;
• Silent: no means of direct communication;

• Non-rigid: robots are not guaranteed to reach a desti-
nation within one move.

For SSYNC (and hence also for FSYNC) robots, in [25] a
full characterization for PF has been provided when robots
are assumed to be:
• Almost Disoriented: no common coordinate system but

chirality, i.e. a common handedness.
The very same result but for ASYNC robots was claimed

in [19]. Unfortunately, it comes out that the proposed
algorithm is flawed, see [6]. Moreover, attempts by the same
authors for fixing the problems were also not totally con-
vincing [20]. By personnel communications (M. Yamashita,
2018), the authors admit they give up in trying publishing
their erratum.

A. CONTRIBUTION
In this paper, we aim at studying PF when ASYNC robots
endowed with chirality are considered. In particular, we
exploit our experience in the field of distributed computing,
and in particular our methodology [8] recently proposed for
the designing of distributed algorithms along with the corre-
sponding correctness proofs. We are in fact able to propose
a new resolution algorithm for the considered variant of
PF that along with the impossibility result provided in [25]
determine a full characterization of the problem. This closes
a long-standing question about the computability issue of
ASYNC robots with respect to SSYNC and FSYNC, since
we basically prove that in the context of PF with chirality
the synchronization scheduler is irrelevant.

B. OUTLINE
The paper is organized as follows. The next section provides
basic concepts necessary to formally define the addressed PF
problem. Section III introduces all the basic definitions and
notation. Section IV first provides a high-level description
of our resolution algorithm, and then along with the sub-
sequent Section V, formalize all the required details in a
gradual way. Section V is in fact intended to explain how
the proposed algorithm works by means of an extended
example. Section VI concerns the correctness proof of the
proposed algorithm. Finally, Section VII concludes the paper
by highlighting some final remarks.

II. THE ROBOT MODEL
In this section, we first provide more details in order to com-
plete the description of the adopted robot model and then
introduce notation and properties about robot configurations.

A. ROBOTS’ BEHAVIOR AND CAPABILITIES
Each robot in the system has sensory capabilities allowing
it to determine the location of other robots in the plane, rel-
ative to its own location. Each robot refers in fact to a Local
Coordinate System (LCS) that might be different from robot
to robot. The robots also have computational capabilities
which allow them to compute the location where to move

2 VOLUME xxxx, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

along with the whole trajectory to trace. Each robot follows
an identical algorithm that is preprogrammed into the robot.
Robots alternate between Active and Inactive states. When
Active, the behavior of a robot can be described according to
the sequence of three phases: Look, Compute, and Move.
Such phases form a computational cycle (or briefly a cycle)
of a robot. The operations performed by each robot r in
each phase will be now described in more details.

1) Look. The robot observes the world by activating its
sensors which will return a snapshot of the positions
of all other robots with respect to its LCS. Each robot
is viewed as a point. Hence, the result of the snapshot
(i.e., of the observation) is just a set of coordinates in
its LCS.

2) Compute. The robot performs a local computation
according to a deterministic algorithm A (we also say
that the robot executes A). The algorithm is the same
for all robots, and the result of the Compute phase is
a destination point along with a trajectory τ to reach
it.

3) Move. If the destination point is the current location
of r, then r performs a nil movement (i.e., it does
not move); otherwise it moves toward the computed
destination along the computed trajectory τ .

During the Look phase, robots can perceive multiplic-
ities, that is whether a same point is occupied by more
than one robot. As in [19], we assume the so-called global-
strong multiplicity detection, that is robots can detect all
multiplicities and also perceive the exact number of robots
composing each multiplicity.

About movements, a strong assumption is about the so-
called rigid movements where robots are always guaranteed
to reach the destination within one LCM cycle. A weaker
assumption is what we consider, that is about non-rigid
movements: the distance traveled within a move is neither
infinite nor infinitesimally small. More precisely, we can
assume an adversary that has the power to stop a moving
robot before it reaches its destination. However, there exists
an unknown constant ν > 0 such that if the destination
point is closer than ν, the robot will reach it, otherwise the
robot will be closer to it of at least ν. Note that, without
this restriction on ν, an adversary would make it impossible
for any robot to ever reach its destination.

We assume that cycles are performed according to the
weakest Asynchronous scheduler (ASYNC): the robots are
activated independently, and the duration of each phase is
finite but unpredictable (the activation of each robot can be
thought as decided by the adversary). As a result, robots do
not have a common notion of time. Moreover, according to
the definition of the Look phase, a robot does not perceive
whether other robots are moving or not. Hence, robots
may move based on outdated perceptions. In fact, due to
asynchrony, by the time a robot takes a snapshot of the
configuration, this might have drastically changed once the
robot starts moving.

B. ROBOT CONFIGURATIONS
We consider a system composed by a set of n mobile robots.
Let R be the set of real numbers, at any time the multiset
R = {r1, r2, . . . , rn}, with ri ∈ R2, contains the positions
of all the robots. By abusing notation, we often refer to
r ∈ R as a robot instead of a robot position.

We arbitrarily fix an x-y coordinate system Z0 and call
it the global coordinate system. A robot, however, does not
have access to it. It is used only for the purpose of descrip-
tion, including for specifying the input. All actions taken
by a robot are done in terms of its local (and current) x-y
coordinate system, whose origin always indicates its current
position. Let ri(t) ∈ R2 be the location of robot ri (in Z0)
at time t. Then a multiset R(t) = {r1(t), r2(t), . . . , rn(t)}
is called the configuration of R at time t, and we simply
write R instead of R(t) when we are not interested in any
specific time.

Regardless of the adversary, the activations of the robots
determine specific ordered time instants. Let R(t) be the
configuration observed by some robots at time t during
their Look phase. It follows that an execution of an al-
gorithm A from an initial configuration R is a sequence
of configurations E : R(t0), R(t1), . . ., where R(t0) ≡ R,
ti+1 > ti, and R(ti+1) is obtained from R(ti) by moving
some robots according to the result of the Compute phase
as implemented by A. Moreover, given an algorithm A in
ASYNC or SSYNC, there exist many executions from R(t0)
depending on the activation of the robots, controlled by the
adversary. It is worth to remark that initially robots are
inactive, but once the execution of an algorithm A starts
- unless differently specified - there is no instruction to stop
it, i.e., to prevent robots to enter their LCM cycles. Then,
the termination property for A can be stated as follows:
once robots have reached the required goal by means of A,
from there on robots can perform only the nil movement.
Sometimes termination is not even required as robots might
be asked to execute infinite computations (e.g., perpetual
exploration [2], [21] and patrolling [4], [12], [23]).

We now provide some definitions concerning special
kinds of configurations obtainable during any execution.

Definition II.1 (Stationary robot). A robot is said to be
stationary in a configuration R(t) if at time t it is:

• inactive, or
• active, and during its current LCM cycle:

-- it has not taken the snapshot yet;
-- it has taken snapshot R(t′) = R(t), t′ ≤ t;
-- it has taken snapshot R(t′), t′ ≤ t, which leads

to a nil movement.

It is worth remarking that Definition II.1 is a refinement of
the one provided in [19] that did not catch all the possible
scenarios.

Definition II.2 (Stationary configuration). A configuration
R is said to be stationary if all robots are stationary in R.

VOLUME xxxx, 2016 3

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

Note that, according to Definition II.1, a robot r is non-
stationary in a configuration R(t), if at time t robot r is
Active, has taken a snapshot R(t′) 6= R(t), t′ < t, and
is planning to move or is moving with a non-nil trajectory
(i.e., r may give rise to what later will be better specified
as a pending move).

1) Symmetric configurations
In the Euclidean plane, a map ϕ : R2 → R2 is called
isometry or distance preserving if for any a, b ∈ R2 one
has d(ϕ(a), ϕ(b)) = d(a, b), where d() denotes the standard
Euclidean distance function. Examples of isometries in the
plane are translations, rotations and reflections. An isometry
ϕ is a translation if there exists no point x such that
ϕ(x) = x; it is a rotation if there exists a unique point
x such that ϕ(x) = x (and x is called center of rotation);
it is a reflection if there exists a line ` such that ϕ(x) = x
for each point x ∈ ` (and ` is called axis of symmetry).

Given an isometry ϕ different from the identity, the cyclic
subgroup of order p generated by ϕ is given by {ϕ0, ϕ1 =
ϕ◦ϕ0, ϕ2 = ϕ◦ϕ1, . . . , ϕp−1 = ϕ◦ϕp−2}, where ϕ0 is the
identity automorphism, ϕi 6= ϕ0 for each 0 < i < p, and
ϕp = ϕ0. A reflection always generates a cyclic subgroup
of order p = 2. Whereas, the cyclic subgroup generated by
a rotation can be of any finite order p > 1.

An automorphism of a configuration R is an isometry
in the plane that maps robots into robots (i.e., points of
R into R). The set of all automorphisms of R forms a
group with respect to the composition denoted by Aut(R)
and called automorphism group of R. In general (i.e., for
robots completely disoriented), the isometries in Aut(R)
are the identity, rotations, reflections and their compositions
(translations are not possible as R contains a finite number
of elements). If |Aut(R)| = 1, that is R admits only the
identity automorphism, then R is said to be asymmetric,
otherwise it is said to be symmetric (i.e., R admits rotations
or reflections).

If a configuration R is symmetric due to an automorphism
ϕ, two robots r, r′ ∈ R are equivalent if r′ = ϕ(r). As
a consequence, no algorithm can distinguish between two
equivalent robots, and then it cannot avoid that the two
ASYNC robots start the computational cycle simultaneously.
In such a case, there might be a so called pending move, that
is one of the two robots performs its entire computational
cycle while the other has not started or not yet finished its
Move phase, i.e. its move is pending. Clearly, any other
robot is not aware whether there is a pending move, that
is it cannot deduce such an information from the snapshot
acquired in the Look phase. This fact greatly increases the
difficulty to devise algorithms for symmetric configurations.

2) Robots’ view
According to the capabilities of the robots, by opportunely
elaborating the configuration perceived with respect to its
own LCS, a robot obtains what will be later called the
view of a robot. Actually, sometimes a robot is asked to

evaluate what would be the view of other robots, hence
it is convenient that the view does not depend on the
current LCS, as this might be completely different from
cycle to cycle and from robot to robot. Hence, unless
further knowledge is provided to the robots, the view should
exploit only the information that all robots can equally
perceive, like those concerning relative distances and angles
among robots’ positions. It follows that in general, in a
symmetric configuration there are robots with the same
view. For instance, by considering a configuration with a
multiplicity, then the view cannot discriminate among the
robots composing the multiplicity, i.e. a configuration with
a multiplicity is always perceived as symmetric. Instead, in
a symmetric configuration R without multiplicities, in the
stronger model with robots aware of Z0, R can be perceived
as asymmetric by the robots as the view may exploit the
coordinates of the robots to discriminate among all of them
(as if they had unique identifiers).

III. PRELIMINARY CONCEPTS AND NOTATION
In this section we formalize the PF problem and provide all
the notation, definitions and concepts that will be exploited
later for designing our new resolution algorithm for solving
the problem “PF with chirality”.

A. THE PATTERN FORMATION PROBLEM
A configuration R is said initial if it is stationary and all
elements in R are distinct, that is, no multiplicity occurs.
The set of initial configurations is denoted by I.1

Let P1 and P2 be two multisets of points: if P2 can
be obtained from P1 by uniform scaling, possibly with
additional translation, rotation and reflection, then P2 is
similar to P1. Given a pattern F expressed as a multiset
Z0(F), we say that an algorithm A forms F from an initial
configuration R if for each possible execution E : R ≡
R(t0), R(t1), R(t2), . . ., there exists a time instant ti > 0
such that R(ti) is similar to F and no robots move after ti,
i.e., R(t) = R(ti) holds for each time t ≥ ti.

The Pattern Formation (PF) problem can be formulated
as follows:
• Given any initial configuration R formed by n robots

and any pattern F (i.e., a multiset of n elements) devise
an algorithm A, if any, able to form F from R.

Considering the PF variant approached in [19], ASYNC
robots are endowed with global strong multiplicity detection
and with chirality, that is they share a common handedness.
This of course changes their perception during the Look
phase, as now the view can also exploit the chirality. For in-
stance, by looking at the leftmost configuration in Figure 2,
it is evident the only disposal of the robots induces a vertical
axis of reflection passing through the five aligned robots.

1Throughout this paper, we assume that any initial configuration in I
contains no multiplicity. This is a typical assumption since, for instance, it
is impossible to ensure that robots composing a multiplicity reach different
locations as all the robots execute the same algorithm.

4 VOLUME xxxx, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

However, when chirality is assumed, the specular robots at
the two sides of the axis can be associated with different
views, as chirality discriminates among left and right. In
particular, robots share a common clockwise direction. As
a consequence, from now one we restrict the set Aut(R) of
all automorphisms for any configuration R to contain only
the identity and possible rotations, as reflections are resolved
by chirality.

Generalizing [19], we relax the requirement that the LCS
specific of a single robot remains the same among different
LCM cycles.

B. NOTATION
Given two distinct points u and v in the Euclidean plane,
let line(u, v) denote the straight line passing through these
points, and let (u, v) ([u, v], resp.) denote the open (closed,
resp.) segment containing all points in line(u, v) that lie
between u and v. The half-line starting at point u (but
excluding the point u) and passing through v is denoted by
hline(u, v). We denote by ^(u, c, v) the angle centered in c
obtained by rotating clockwise hline(c, u) until overlapping
hline(c, v). The angle ^(u, c, v) is measured from u to v
in clockwise direction and the measure is always meant as
positive.

Given an arbitrary multiset P of points in R2, mult(p, P)
denotes the number of occurrences of p in P , while C(P)
and c(P) denote the smallest enclosing circle of P and its
center, respectively. Let C be any circle concentric to C(P).
We say that a point p ∈ P is on C if and only if p is on the
circumference of C; ∂C denotes all the points of P that are
on C. We say that a point p ∈ P is inside C if and only if p
is in the area enclosed by C but not in ∂C; int(C) denotes
all the points inside C. The radius of C is denoted by δ(C).
The smallest enclosing circle C(P) is unique and can be
computed in linear time [24]. A useful characterization of
C(P) is expressed by the following property.

Property III.1. [26] C(P) passes either through two of
the points of P that are on the same diameter (antipodal
points), or through at least three points. C(P) does not
change by eliminating or adding points to int(C(P)). C(P)
does not change by adding points to ∂C(P). However, it
may be possible that C(P) changes by either eliminating
or changing positions of points in ∂C(P).

Given a multiset P , we say that a point p ∈ P is critical
if C(P) 6= C(P \ {p}).2 It easily follows that if p ∈ P is a
critical point, then p ∈ ∂C(P).

Property III.2. [11] If |∂C(P)| ≥ 4 then there exists at
least one point in ∂C(P) which is not critical.

Given a multiset P , consider all the concentric circles that
are centered in c(P) and with at least one point of P on
them: Ci↑(P) denotes the i-th of such circles, and they are
ordered so that by definition C1

↑(P) is the first one (which

2Note that in this work we use operations on multisets.

coincides with c(P) when c(P) ∈ P), C(P) is the last one,
and the radius of Ci↑(P) is greater than the radius of Cj↑(P)

if and only if i > j. Additionally, Ci↓(P) denotes one of the
same concentric circles, but now they are ordered in the
opposite direction: C1

↓(P) = C(P) is the first one, c(P) is
the last one when c(P) ∈ P , and the radius of Ci↓(P) is
greater than the radius of Cj↓(P) if and only if i < j.

Finally, we provide some additional notation and termi-
nology referred to a given configuration R and a given
pattern F . The following definitions assume that C(R) ≡
C(F) (cf. Figure 2):

• CT the parking circle at top level, that is the median
circle between C(F) and C2

↓(F) if int(C(F)) 6= ∅,
otherwise the median circle between C(F) and c(F);

• CB the parking circle at bottom level; it cor-
responds to the median circle between c(R)
and min{δ(C2

↑(R)), δ(C1
↑(F))} when c(F) 6∈

F , or the median circle between c(R) and
min{δ(C2

↑(R)), δ(C2
↑(F))} when c(F) ∈ F ;

• Ann denotes the interior of the annulus comprised by
C(R) and CT (hence, both the boundary circles C(R)
and CT are excluded from Ann);

• given a robot r ∈ ∂C(R), `r denotes the line segment
[c(R), r]; `r is called robot-ray;

• given a point f ∈ ∂C(F), the line segment `f =
[c(R), f] is called pattern-ray;

• Rob(·) is a function that takes a region of the plane
(e.g., annulus, sector, ray, ...) as input and returns
all robots lying in the given region (e.g., Rob(Ann)
contains all robots in the annulus).

C. SYMMETRICITY
The PF with chirality problem was first introduced in [25]
where a full characterization of the class of formable pat-
terns for SSYNC (and for FSYNC as well) robots has been
provided. The characterization makes use of the following
notion of symmetricity.

Given a set of points P , consider a partition of P into k
regular m-gons with common center c(P), where k = n/m.
Such a partition is called regular. The symmetricity ρ(P) of
P is the maximum m such that there is a regular partition of
P into k regular m-gons. Notice that m points at c(P) forms
a regular m-gon,3 any pair {p, q} of points is a regular 2-
gon with center the median point of the line segment [p, q],
and any point is a regular 1-gon with an arbitrary center.
Since any P can be always partitioned into n regular 1-
gons, the symmetricity ρ(P) is well defined. Examples of ρ
are depicted in Figure 3.(a)-(d). To this respect, notice the
case in Figure 3.(c), where ρ(P) = 1 while P appears to be
symmetric. This particular case means that whenever c(P) ∈
P , the robot on c(P) can transform P into an asymmetric
configuration P ′ with ρ(P ′) = 1 by leaving c(P).

3A multiplicity of m points, all at c(P), is considered as a regular m-
gon with radius zero.

VOLUME xxxx, 2016 5

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

C(F)
C(R)

(3)

C(R) ≡ C(F)

CT

CB

FIGURE 2: An example of input for the PF problem perceived by a generic robot according to its LCS, and related notation:
on the left, an initial configuration R composed of 9 robots; on the middle, the pattern F , numbers close to points refer to
multiplicities; on the right, the embedding of C(F) on C(R) and the parking circles CT and CB (robots located in points
of F are represented as black points). Notice that in this example just one robot is located inside Ann .

(d)(b)(a) (c)

FIGURE 3: Examples of symmetricity of a set of points P . In (a), ρ(P) = 2; in (b), ρ(P) = 4; in (c), ρ(P) = 1; in (d), ρ(P) = 1.

We can now recall the characterization about formable
patterns according to the notion of symmetricity.

Theorem III.3. [25] Let R be an initial configuration of
n ≥ 3 robots and F be a pattern. F is formable from R by
FSYNC or SSYNC robots with chirality if and only if ρ(R)
divides ρ(F).

This result states that PF highly depends on the sym-
metricity of both R and F , even for FSYNC robots;
moreover, when robots have chirality the symmetricity is
entirely represented by the parameter ρ. On the contrary,
Figure 3.(d) shows that ρ is not useful when robots have no
chirality since it does not take into consideration reflection
symmetries. An interesting characterization about the sym-
metricity of points in the 3-dimensional space can be found
in [28].

Notice that, the above theorem implies that, for PF, the set
of unsolvable configurations, denoted as U(F), contains at
least all configurations R such that ρ(R) does not divide
ρ(F). Formally, U(F) ⊇ {R : ρ(R) does not divide
ρ(F)}. Actually, as we will prove in Section VI by means of
Theorem VI.12, U(F) ∩ I = {R : ρ(R) does not divide
ρ(F)}. Concerning unsolvable configurations that are not
initial, U(F) certainly contains those with a multiplicity
composed by a number of robots greater than the number

of robots composing the biggest multiplicity of F , as the
adversary can always prevent to break multiplicities (i.e. to
break such kind of symmetries).

Related to the symmetricity, we need to introduce one
further parameter that will be exploited by our resolution
algorithm.

Definition III.4. Let C be any circle concentric to C(R).
M(C) denotes the set containing all the maximum cardinal-
ity subsets M ⊆ ∂C such that all the following conditions
hold:

1) robots in M form a regular |M |-gon;
2) |M | divides ρ(F);
3) |M | > 1.

Moreover, M′(C) =
⋃
M∈M(C)M , i.e., M′(C) is set of

robots belonging to elements of M(C).

By referring to Figure 2, the initial configuration R (on
the left) has symmetricity ρ(R) = 1 and the set M(C(R))
contains two elements of three robots each, since the pattern
F (on the middle) has symmetricity ρ(F) = 3.

The next lemma makes a relationship between ρ(R) and
the size of any element of M(C), being C any circle
centered in c(R) and with robots in ∂C.

6 VOLUME xxxx, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

Lemma III.5. Let F be a pattern, R be a configuration such
that ρ(R) divides ρ(F), and M ∈M(C) with C = Ci↓(R),
i ≥ 1. Then ρ(R) divides |M |.

Proof. Let r be a robot in M and let ϕ ∈ Aut(R) be a
rotation such that ϕi(r) are distinct robots belonging to C,
for each i = 0, 1, . . ., ρ(R) − 1, with r = ϕρ(R)(r). If
ϕ(r) = r′ belongs to M , then all the robots ϕi(r) belong
to M and this implies the claim.

We show by contradiction that the above case is the only
possible one. In fact, if r′ 6∈ M , by the equivalence of r′

with r, also r′ and any other robot in {ϕ(r) | r ∈M} must
be part of a regular |M |-gon M ′, different from M . It comes
out, in general, that {ϕi(r) | r ∈M, i = 0, 1, . . . , ρ(R)−1}
form a regular lcm(ρ(R), |M |)-gon, where lcm(a, b) denotes
the least common multiple of a and b. Since by hypothesis
ρ(R) divides ρ(F) and, by definition of M(C), also |M |
divides ρ(F), then lcm(ρ(R), |M |) divides ρ(F) as well. If
ρ(R) does not divide |M |, then lcm(ρ(R), |M |) > |M | but
this contradicts the maximality of |M |.

D. VIEW OF ROBOTS
We now formalize the concept of view of a point in the
Euclidean plane according to our needs (cf. Section II-B2).
Let P be a generic multiset of points not including c =
c(P). For p ∈ P , we denote by V (p) the view of P
computed from p. This is a sequence of couples (angle,
distance) defined as follows: first (0, d(c, p)) then, in order
from the farthest to the closest point to c, all couples
(0, d(c, p′)) for any p′ 6= p in hline(c, p), and successively
all couples (^(p, c, p′), d(c, p′)) arising from all other rays
processed in clockwise order and points p′ from the farthest
to the closest ones to c, for each ray. If p = c(P) then
p is said the point in P of minimum view, otherwise any
p = argmin{V (p′) : p′ ∈ P} is said of minimum view in
P .

These definitions naturally extend to any configuration R
of robots and to a pattern F as well. In particular, as we are
dealing with robots endowed with chirality, the clockwise
direction used in the definition of the view is well-defined.

As already observed in Section II-B2, if each robot can
be associated with a unique view, then the configuration
is perceived as asymmetric. For instance, in Figure 3,
configurations (a), (b) and (c) are all perceived as symmetric,
whereas (d) is not as the clockwise direction produces
different views to the potentially specular robots. In practice,
the effect of assuming chirality results in breaking all
reflection axes by means of the view. It comes out that
if a robot views a configurations as symmetric, the only
type of symmetry it can perceive is the rotation. In an
asymmetric configuration, instead, each robot is associated
with a different view and in particular there is only one
robot associated with the minimum view. However, when
there is a single robot r occupying c(R) as in Figure 3.(c),
then r is the only robot of minimum view by definition.
This property can be exploited to break a possible rotation,

if required. It follows that when ρ(R) = 1 then R is either
perceived as asymmetric or there is a single robot in c(R).

IV. ALGORITHM FOR PF: PRELIMINARIES
In this section, we present our algorithm for solving PF
by ASYNC robots endowed with chirality. The algorithm
and its correctness have been designed according to the
methodology proposed in [8]. In the following, we describe
how that methodology allowed us to break down the general
problem into a set of well-defined tasks where each task can
be performed by robots.

In general, a single robot has rather weak capabilities with
respect to the general problem it is asked to solve along with
other robots (we recall that robots have no direct means of
communication). For this reason, any resolution algorithm
should be based on a preliminary decomposition approach:
the problem should be divided into a set of sub-problems
so that each sub-problem is simple enough to be thought of
as a “task” to be performed by (a subset of) robots. This
subdivision could require several steps before obtaining the
definition of such simple tasks, thus generating a sort of
hierarchical structure.

Before presenting the algorithm, we recall that any initial
configuration R does not contain multiplicities. Concerning
the number of robots n, we assume n ≥ 3, since for n = 1
the PF problem is trivial and for n = 2, either PF is trivial
or unsolvable depending whether F is composed of two or
one point [10], respectively. Concerning the pattern F to
form, it might contain multiplicities. Moreover, according
to Theorem III.3, we assume that ρ(R) is a divisor of ρ(F)
(otherwise R ∈ U(F), that is R is unsolvable).

In the remainder, we first provide a high-level description
of our strategy for the decomposition of the PF problem into
tasks (cf. Section IV-A), then we summarize all the defined
tasks (cf. Section IV-B), and finally we present all the details
of our algorithm (cf. Section IV-C). Notice that in Section V
we provide an explanatory example about the behavior of
the proposed algorithm, and there we provide some missing
details about moves.

A. SUBDIVISION INTO TASKS
As suggested by the methodology proposed in [8], here
we describe a hierarchical decomposition of PF into sub-
problems so that each sub-problem is simple enough to be
formalized as a task realizable by (a subset of) robots.

The problem is initially divided into six sub-problems
denoted as Symmetry Breaking (SB), Reference System (RS),
Partial Pattern Formation (PPF), Finalization (Fin), Special
Cases (SC), and Termination (Term). Some of these sub-
problems are further refined until the corresponding tasks
can be easily formalized. These initial six sub-problems
are described by assuming an initial configuration R to be
transformed into a pattern F .

Symmetry Breaking (SB). Consider the case in which the
initial configuration admits a rotation due to an automor-
phism ϕ whose order p is not a divisor of ρ(F). In this

VOLUME xxxx, 2016 7

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

situation, by [25], ρ(R) must be necessarily equal to one
as otherwise the problem would be unsolvable. It follows
that by the definition of symmetricity, there must be a
robot occupying c(R). It is mandatory for each solving
algorithm to break this symmetry. In fact, without breaking
the symmetry, any pair of symmetric robots may perform the
same kind of movements and this may prevent the formation
of the desired pattern.

In our strategy, a single task T1 is used to address the
problem SB. This task requires to carefully move the robot
away from the center until to obtain a stationary asymmetric
configuration. The main difficulties for SB are: (1) to avoid
the formation of other symmetries that could prevent the
pattern formation and (2) to correctly face the situation in
which multiple steps are necessary to reach the target. In
the latter case, the algorithm must detect whether there is a
possible robot moving that has not yet reached a designed
target.

Notice that we consider SB as a task of the Reference
System sub-problem that we are going to describe in the
next paragraphs.

Reference System (RS) - (How to embed F on R). This
sub-problem concerns one of the main difficulties arising
when the pattern formation problem is addressed: the lack
of a unique embedding of F on R that allows each robot
to uniquely identify its target (the final destination point to
form the pattern). In particular, RS can be described as the
problem of moving or matching some (minimal number of)
robots into specific positions such that they can be used
by any other robot as a common reference system. Such
a reference system should imply a unique mapping from
robots to targets, and should be maintained along all the
movements of robots.

As preliminary embedding of F on R, it is assumed C(F)
matches with C(R). Then, RS is solved by leaving on (or
moving to) C(R) a number m ≥ 2 of robots so that m
divides ρ(F).4 Successively, if required, the m robots left
on C(R) are rotated so as to form a regular m-gon. In doing
so, the full embedding of F on R can be easily determined
by matching the m robots on C(R) with m points on C(F):
if there are exactly m points in ∂C(F) the embedding is
unique, if there are k ·m points, with k ≥ 2, the m robots
on C(R) are matched with the m points in ∂C(F) having
minimum view. As long as no further robots are moved
to C(R) and the m robots on C(R) are not moved, the
embedding of F on R remains well-defined. Finally, in order
to guarantee stationarity before changing task, we require
not only the formation of the regular m-gon but also that
Ann - i.e., the annulus between C(R) and CT - does not
contain robots.

Since RS is a complex problem, it is further divided
into six sub-problems. As already pointed out, the first sub-

4Our strategy requires to solve RS only when ρ(F) > 1 and δ(F) > 0.
This will be explained at the end of Section IV-B.

problem is SB, then we need to specify RS1, RS2, . . ., RS5.
They are detailed as follows:
• RS1 is responsible for opportunely moving toward CT

all robots in Ann , that is robots residing in the area
between C(R) and CT - this problem is associated to
task T2.

• RS2 is responsible for removing robots from C(R)
when too many robots reside there. Since such a
removal can be performed in two different ways, this
problem is further subdivided:

-- RS2.1 considers configurations whereM(C(R)) 6=
∅, that is configurations having regular m-gons on
C(R) such that m > 1 and m divides ρ(F). This
task removes robots from C(R) until exactly one
maximal regular m-gon of M(C(R)) remains -
this problem is associated to task T3;

-- RS2.2 considers configurations whereM(C(R)) =
∅, that is configurations without regular m-gons
on C(R) such that m > 1 and m divides ρ(F).
Since such configurations are asymmetric, this
task removes one non-critical robot at a time from
C(R) until exactly m robots remain, with m being
the minimal prime factor of ρ(F) or m = 3 (and
subsequently two antipodal robots must be created
by task T6 in order to remove a non-critical robot
from C(R)) - this problem is associated to task
T4.

• RS3 is responsible for moving robots to C(R) when
there are too few robots on C(R) with respect to ρ(F).
In particular, this task is responsible for moving robots
from the interior toward C(R) so as to obtain on C(R)
a number m of robots equal to the minimal prime factor
of ρ(F) - this problem is associated to task T5.

• RS4 is responsible for creating two antipodal robots on
C(R); it could be necessary as a next task of T4 when
three robots are on C(R) but three is not a divisor of
ρ(F) - this problem is associated to task T6.

• RS5 is responsible for forming a uniform circle on
C(R) when the number m of robots on it is equal
to the minimal prime factor of ρ(F) - this problem is
associated to task T7.

Partial Pattern Formation (PPF). The main difficulties in
this task are to preserve the reference system and to avoid
collisions during the movements. The task concerns moving
all robots inside C(R) so as to form a preliminary pattern
F ′ defined from F as follows. Pattern F ′ differs from F
only for those possible points on C(F) different from the
m ones already matched by the resolution of problem RS -
notice that PPF is addressed only once RS is solved. Such
points, if any, are instead radially projected to CT in F ′.
In our strategy, task T8 is designed to solve this problem.
For addressing this task we consider the area delimited by
C(R) as divided into m sectors. Within each sector we
can guarantee that at most one robot per time is chosen
to be moved toward its target: it is the one not on a target,

8 VOLUME xxxx, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

closest to an unoccupied target, and of minimum view in
case of tie. We are ensured that always one single robot r
per sector will be selected since the maximum symmetricity
that the configuration can assume is m (we recall that, due
to the solution provided for the RS problem, the robots on
∂C(R) form a regular m-gon). For each sector, the selected
robot is then moved toward one of the closest targets
until it reaches such a point if it resides inside the same
sector, or it reaches the successive (clockwise) sector. All
moves must be performed so as to avoid the occurrence of
collisions; hence, it follows that sometimes the movements
are not straightforward toward the target point. To this
end we exploit a kind of Manhattan distance (called here
Sectorial distance) where moving between two points in
the area delimited by C(R) is constrained by rotating along
concentric circles centered at c(R) and moving along rays
starting from c(R).

In order to solve PPF, we make use of a procedure called
Distmin() designed ad-hoc for computing the required
trajectories according to the Sectorial distance. Once F ′ is
formed, either F ′ coincides with F or it only remains to
radially move robots from CT to C(R). To this aim problem
Fin is addressed.

Finalization (FIN). It refers to the so-called finalization task.
It occurs when the only robots not well positioned according
to F are those on CT . By guaranteeing radial movements
of such robots toward C(R), the formation of pattern F is
completed. In our strategy, task T9 is designed to solve this
problem. It is worth to mention that while moving robots
from CT to C(R), the common reference system might
be loss. However, we are able to guarantee that robots can
always detect they are solving Fin.

Special Cases (SC). This concerns the resolution of some
easily identifiable sub-cases that have been already solved
in the literature and hence can be treated apart by known
algorithms. For the sake of convenience, in our strategy the
resolution of the special case in which F is composed of
one point with multiplicity |R| (a.k.a. Gath) is delegated to
the gathering algorithm provided in [10]. Similarly, when
ρ(F) = 1 then the algorithm provided in [6] is applied as
a subroutine. In both cases, the identification of the sub-
problem is determined simply by looking at F , that is it
does not depend on the robot movements. For such cases,
our strategy considers a specific task T10.

Termination (TERM). It refers to the requirement of letting
robots recognize the pattern has been formed, hence no
more movements are required. In our strategy, a task T11
is designed to address this problem. Clearly, only nil
movements are allowed, hence if the task is started from a
stationary configuration, then it won’t be possible to switch
to any other task.

B. THE DESIGNED TASKS
By summarizing the above analysis and according to the
proposed methodology, we can say that our strategy parti-

tions the PF problem into the following eleven tasks T1, T2,
. . ., T11:
• RS: Create a common reference system. General sub-

problem further divided into SB, RS1, RS2, . . ., RS5:
-- SB - Ensure c(R) empty: task T1.
-- RS1 - Make Ann empty to ensure stationarity:

task T2.
-- RS2: Sub-problem concerning the removal of

robots from C(R) until |∂C(R)| divides ρ(F). It
is further divided into two tasks according to the
cardinality of M(C(R)):
∗ RS2.1 - Case M(C(R) 6= ∅: remove robots

from C(R) until exactly one maximal regular
m-gon of M(C(R)) remains: task T3;

∗ RS2.2 - Case M(C(R)) = ∅: remove robots
from C(R) until exactly m robots remain, with
m being either the minimal prime factor of
ρ(F), or m = 3: task T4.

-- RS3 - Bring robots to C(R) until |∂C(R)| divides
ρ(F): task T5.

-- RS4 - Create two antipodal robots on C(R): task
T6.

-- RS5 - Create a regular m-gon on C(R): task T7.
• PPF - Make a partial pattern formation: task T8.
• Fin - Finalize the pattern formation: task T9.
• SC - Solve PF by means of other algorithms when
F is composed of one point with multiplicity |R| or
ρ(F) = 1: task T10.

• Term - Identify that F is formed and hence maintain
each robot without moving: task T11.

We remark that task T10 uses known algorithms to address
the cases in which (1) ρ(F) = 1 or (2) F is composed
of one point with multiplicity |R| (that is, δ(C(F)) = 0).
As a consequence, in each task different from T10, our
strategy can assume the following conditions: ρ(F) > 1
and δ(C(F)) > 0.

Summarizing, our strategy will be based on the next
properties maintained valid in each task different from T10:
• points in ∂C(F) form regular m-gons with m ≥ 2;
• C(F) ≡ C(R);
• robots movements never change the radius and the

center of C(R).

C. CHARACTERIZING TASKS AND MOVES
According to the LCM model and the robot obliviousness,
during the Compute phase, each robot must be able to
recognize the task to be performed just according to the
configuration perceived during the Look phase and the input
pattern F . This recognition can be performed by providing
the algorithm with a logical predicate Pi for each task Ti.
Given the perceived configuration and the input pattern F ,
the predicate Pi that results to be true reveals to robots
that the corresponding task Ti is the task to be performed.
This approach requires that the designed predicates must
guarantee some properties (cf. [8]):

VOLUME xxxx, 2016 9

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

Prop1:given the pattern F , each Pi must be computable
on the configuration R perceived in each Look
phase;

Prop2:Pi ∧ Pj = false, for each i 6= j; this property
ensures that at most one predicate is true;

Prop3:given the pattern F , for each possible perceived
configuration R there must exist a predicate Pi
evaluated as true. This property, along with Prop2,
allow robots to exactly recognize the task to be
performed;

If we guarantee that all these properties hold, then during the
Compute phase a robot can apply the following approach:

– if predicate Pi is detected as true, then perform
move mi associated with task Ti.

Concerning how to define the predicates, each task can be
accomplished only when some pre-conditions are fulfilled.
Hence, to define the predicates in general we need:
• basic variables that capture metric / topological /

numerical / ordinal aspects of the input configuration
which are relevant for the used strategy and that can
be evaluated by each robot on the basis of its view;

• composed variables that express the pre-conditions of
each task Ti.

All the needed basic variables useful for our algorithm are
shown in Table 1. In particular, such variables capture all
aspects that are relevant for our strategy.

Assuming prei as the pre-conditions necessary to enter
task Ti, for each 1 ≤ i ≤ 10, then we propose to define
predicate Pi as follows:

Pi = prei ∧ ¬(prei+1 ∨ prei+2 ∨ . . . ∨ pre11) (1)

This definition leads to the following remarks:

Remark IV.1. During the Compute phase each robot
evaluates – with respect to the perceived configuration R
and the pattern F to be formed – the predicates start-
ing from P11 and proceeding in the reverse order until
a true pre-condition is found. In case all pre-conditions
pre11, pre10, . . . , pre2 are evaluated as false, then task T1
is performed. As such predicates are composed by the simple
variables described in Table 1 which in turn are defined on
the basis of rather simple properties easily observable by
the robots, then predicates Pi fulfill Property Prop1.

Remark IV.2. Predicates Pi fulfill Property Prop2. This is
directly implied by Equation 1.

We now provide the details about the moves associated
with the tasks, along with the potential tasks that are
reachable after a move.

Table 2 summarizes all the ingredients necessary to define
and analyze our algorithm: the first two (general) columns
recall the hierarchical decomposition described in the previ-
ous section, the third column associates tasks names to sub-
problems, and the fourth column defines precondition prei

for each task Ti. These preconditions must be considered
according to Equation 1. As a consequence, such predicates
are intended to be used in the Compute phase of each robot
as described above.

The fifth column of Table 2 contains the names of the
moves used in each task (we simply denote as mi the move
used in task Ti), and the specification of each move is
provided in Table 3. Notice that in Table 3 some moves
are directly specified, while a few of them are defined by
means of specific procedures (namely, GoToCT, Distmin,
CircleForm, Gathering, and Leader - formally defined
in the next section). Moreover, all the trajectories defined
in the moves are always straight lines, or arcs of circles
centered in c(R), or compositions of both in order to
guarantee stationarity and to avoid collisions. More details
that specify all target points and trajectories will be provided
in Section VI.

Remark IV.3. The defined algorithm fulfills Property
Prop3. This is simply implied by pre-condition pre1 and
the way predicates Pi have been defined according to
Equation 1.

The last column of Table 2 reports the possible transitions
for each task. For instance, while performing task T1 our
algorithm may generate configurations belonging to the
classes associated to tasks T1, T2, . . . , T6, and during task
T9 only configurations belonging to the classes T9 and T11
may be generated.

The transitions might be classified according to different
properties holding in the reachable configurations. From [8],
we recall the classification of the transitions that can help
in proving the correctness of the algorithm. To this aim, we
first need to recall some types of configurations (beside the
stationary ones defined in Section II-B):

Definition IV.4 (Almost-stationary configuration). A con-
figuration R is said to be almost-stationary if each robot in
R is either stationary or non-stationary, but in such a case
the remaining part of the trajectory it has not yet traced
is included into τ , where τ is the trajectory that r would
compute from R.

Definition IV.5 (Robust configuration). A configuration R
belonging to a task Ti is said to be robust if each robot r in
R is either stationary or non-stationary, but in such a case
as long as r has not terminated its current LCM cycle the
configuration still belongs to Ti.

From the above definitions, it follows that each stationary
configuration is also almost-stationary, and each almost-
stationary configuration is also robust.

Definition IV.6 (Types of transitions). Let Tj → Ti be
a transition. Then such a transition is stationary (almost-
stationary, robust, resp.) if each R ∈ Ti produced from
any R′ ∈ Tj by applying move mj is stationary (almost-
stationary, robust, resp.).

10 VOLUME xxxx, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

TABLE 1: The basic Boolean variables used to define all the tasks’ preconditions.

var definition

d1 |∂C(R)| is not a divisor of ρ(F)

d2 |∂C(R)| is not the minimal prime factor of ρ(F)

f |∂C(R)| is smaller than the minimal prime factor of ρ(F)

t |∂C(R)| = 3 and 2 is a divisor of ρ(F)

u Robots in ∂C(R) form a regular m-gon

c ∂C1
↑(R) = {r} and d(r, c(R)) < δ(CB)

a Rob(Ann) is empty

m M(C(R)) is empty

p F can be obtained by projecting radially on C(R) all robots in Ann ∪ CT

g ρ(F) = 1 or F contains only one element with multiplicity |R|
w R is similar to F

TABLE 2: Algorithm for PF.

problem sub-problem task precondition move transitions

PF

RS

SB T1 true m1 T1, T2, T3, T4, T5, T6

RS1 T2 ¬c m2 T2, T3, T4, T6, T7, T8

RS2
RS2.1 T3 a ∧ ¬c m3 T2, T3, T8

RS2.2 T4 a ∧ ¬c ∧ m m4 T2, T4, T6, T7

RS3 T5 ¬c ∧ f m5 T2, T5, T7

RS4 T6 a ∧ ¬c ∧ m ∧ t m6 T3, T6, T9

RS5 T7 a ∧ ¬d2 ∧ ¬u m7 T7, T8, T9, T11

PPF T8 a ∧ ¬d1 ∧ u m8 T8, T9, T11

FIN T9 ¬m ∧ p m9 T9, T11

SC T10 g m10 T10, T11

TERM T11 w nil T11

Note that, the types of transition form a hierarchy: each
stationary transition is also almost-stationary, and each
almost-stationary transition is also robust.

Remark IV.7. Each time the creation of configuration R(t),
t > 0, determines a transition from a task Tj to task Ti
(possibly i = j) and such a transition is stationary, almost-
stationary or robust, then the analysis of the behavior
of an algorithm A during the execution of task Ti is
greatly simplified since possible movements due to past
moves do not affect A. In other words, when a transition
is stationary/almost-stationary/robust, the complexity of the
correctness analysis is somehow comparable to that occur-
ring in case of FSYNC / SSYNC robots.

It is worth noting that, when designing an algorithm, it
is not so obvious that all the transitions can be classified
according to the above defined types. For the sake of
completeness, any other possible type of transition is called
unclassified.

All the transitions reported in last column of Table 2 are
summarized in the transition graph shown in Figure 4, along
with the specification of the type of transitions.

Finally, in order to accomplish the designed tasks, it is
possible that a resolution algorithm A generates (and hence
must handle) configurations that are not initial, in particular
not in I. The set containing all the configurations taken
as input or generated by A is denoted as IA. Note that
by definition I \ U(D) ⊆ IA. Moreover, for the sake of
correctness, IA ∩ U(F) = ∅ must hold (i.e., no unsolvable
configurations must be generated by A).

V. ALGORITHM FOR PF: MOVES’ DETAILS VIA AN
EXPLANATORY EXAMPLE
In this section, we provide an explanatory example about
the behavior of the proposed algorithm for the PF problem.
We take advantage of this example to provide the missing
details about moves. In particular, we provide the pseudo-
code of procedures GoToCT, Distmin, and CircleForm,

VOLUME xxxx, 2016 11

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

TABLE 3: Moves associated to tasks.

move definition

m1 Robot r ∈ ∂C1
↑(R) moves radially to CB

m2 Let C = Ci↑(R) be the circle contained in Ann and with minimum index i. If ∂C \M′(C) 6= ∅ then let R2 be the set
of robots in ∂C \M′(C) of minimal view else let R2 be the set of robots on C of minimal view – call GoToCT(R2)

m3 If ∂C(R) \M′(C(R)) 6= ∅ then let R3 be the set of robots in ∂C(R) \M′(C(R)) of minimal view else let R3 be
the set of robots on C(R) of minimal view – call GoToCT(R3)

m4 Let r be the non-critical robot in ∂C(R) of minimal view and let R4 = {r} – call GoToCT(R4)

m5 A point p ∈ C(R) is said forbidden for C(R) if it forms an angle of 2π
n
· k degrees in c(R) with any robot on C(R),

for k = 0, 1, . . . , n (with n being the number of robots); Let r be the robot in ∂C1
↓(R) having minimum view; r moves

toward C(R) avoiding forbidden points
m6 The three robots on C(R) form a triangle with angles α1 ≥ α2 ≥ α3 and let r1, r2 and r3 be the three corresponding

robots. For equal angles, the role of the robot is selected according to the view, i.e. if α1 = α2 then the view of r1 is
smaller than that of r2. Robot r2 rotates toward the point t such that α1 becomes of 90◦

m7 Call CircleForm(α), where α = 2π/|∂C(R)|
m8 Call Distmin()
m9 All robots in Ann ∪ CT radially move toward C(R)

m10 If F is composed of one point with multiplicity |R| then call Gathering();
If ρ(F) = 1 then call Leader()

(b)

T3

T4

T2T6

T5

T7

T1

T8

T10

T11

RS

T9

RS

(a)

FIGURE 4: For sake of presentation, the transition graph is divided into two parts: (a) transitions among tasks in RS, and
(b) transitions among RS and the tasks associated to sub-problems PPF, FIN, SC, TERM. The transitions represented by
bold arrows (from/to T2 to/from T3) are unclassified, the one represented by the dashed arrow (from T4 to T2) is robust, all
the others are stationary. The types of the self-loops - omitted from each task - will be discussed in the correctness proof in
Section VI. Notice that apart for the self-loops, the only simple cycles are: (T2, T3), (T2, T4), (T2, T6, T3), (T2, T4, T6, T3).

along with their correctness. We also briefly discuss how
algorithms Gathering from [10] and Leader from [6] are
exploited. Finally, we formally prove some properties about
these procedures.

The example is based on the input defined in Figure 5.
Notice that both the configuration R and the pattern F
defined in the example are symmetric but ρ(R) = 1 and
ρ(F) = 4. In the next subsections, we analyze each task
separately, according to the order dictated by a possible
execution of the algorithm.

A. TASK T1

This task is associated to the sub-problem SB. As already
remarked, this sub-problem is thought for breaking possible

symmetries by moving a robot r from c(R) (i.e., when
ρ(R) = 1).

Concerning the current example, we now show that
configuration R in Figure 5 belongs to task T1. Each
robot can detect this situation by evaluating the predicates
characterizing each task. First, notice that variable c holds in
R, and this immediately implies that the configuration does
not belong to any of tasks T2, . . ., T6 (in fact, from Table 2
it follows that variable c is negated in each precondition
of these tasks). Since there are five robots on C(R) and
ρ(F) = 4, then each robot deduces that both d1 and d2 are
true in R: this implies that R does not belong to T7 nor
to T8. Variable p is false in R since F cannot be obtained
by radially projecting on C(R) all robots in Ann ∪CT (to

12 VOLUME xxxx, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

(2)

(4)
(2)

(2)

(2)

FIGURE 5: The input for the PF problem that we use as running example throughout Section V. Notice that the initial
configuration R is composed of 16 robots and ρ(R) = 1, while the pattern F has symmetricity ρ(F) = 4 (numbers close
to points refer to multiplicities).

observe Ann and CT refer to Figure 6). According to the
value of p, R 6∈ T9. Variable g is false as ρ(F) = 4, hence
R 6∈ T10. Finally, w is false as R is not similar to F and
hence R 6∈ T11. By concluding this analysis, it follows that
R does not belong to any of tasks T2, . . ., T11 and according
to the precondition of T1 and to definition of predicate P1

– cf. Equation 1, it follows that R ∈ T1.
Since R ∈ T1 then move m1 is applied by the algorithm

(cf. Figure 6, left side). Robot r located on c(R) is moved
radially along any direction to reach the parking circle CB

in order to guarantee stationarity.5 It is worth remarking
that, even when the initial configuration does not admit
any symmetry but there is a robot at a distance from c(R)
smaller than δ(CB), then it is moved to the parking circle
CB before starting any other task.

Once the robot in c(R) has reached the specified target
(possibly within multiple LCM-cycles), configuration in
Figure 6, right side, is obtained. The obtained configuration
is stationary and belongs to task T2.

B. TASK T2

This task is responsible for the correct removal of the
robots from Ann , and their movement toward the parking
circle CT without generating unsolvable configurations.
This removal is done in order to guarantee stationarity when
later the algorithm starts removing robots from C(R), when
needed. Notice that there might be a number of robots equal
to ρ(R) that can move concurrently according to m2 (this
occurs when the processed configuration is symmetric).

To perform this task, all robots in Ann eventually move
according to the trajectory computed by Procedure GoToCT

specified in Algorithm 1 and used by move m2.
When Procedure GoToCT is executed by a robot r, such

robot is required to move toward a point of an arc of CT

denoted as A′r. In particular, r is required to reach the
leftmost endpoint (denoted as ar) of A′r or the middle point
of A′r according whether ar is a “forbidden point for CT ” or

5For the sake of completeness the exact direction toward which the robot
moves will be specified in Section VI.

not. Informally, a point of CT is forbidden if it may form
a regular n-gon along with the points occupied by some
robots already located on CT . The rationale underlying
this definition is that when r reaches CT all robots on
such a circle are non-equivalent; this helps to ensure that
no unsolvable configurations are created. Concerning the
formal definition of A′r, it depends on r and various other
parameters (for a visualization of the most of them, refer to
Figure 7). In what follows we formalize all such parameters.
To this aim, assume that GoToCT takes as input a set of
robots Rx ⊆ Rob(Ann ∪ C(R)):
• Let r ∈ Rx and h = hline(c(R), r);
• Let r− be the robot on C(R) such that h− =

hline(c(R), r−) overlaps h by the minimal clockwise
rotation;

• Let r+ be a robot in Ann ∪C(R) such that h overlaps
h+ = hline(c(R), r+) by the minimal clockwise
rotation;

• Let α be the size of the smallest angle greater than
^(r−, c(R), r), formed in c(F) between two consecu-
tive targets on C(F);

• Let h′ be the half-line obtained by rotating clockwise
h− of α degrees;

• Let Ar be the portion of CT delimited by h and the
closest half-line between h′ and h+. Let ar and br
the end points of Ar, such that br follows ar in the
clockwise order;

• A point p ∈ CT is said forbidden for CT if it forms
an angle of 2π

n · k degrees in c(R) with any robot on
CT , for k = 0, 1, . . . , n (we recall the reader that n
denotes the number of robots);

• Let A′r be the sub-arc of Ar starting from ar and
ending at the closest point between br and the first
forbidden point for CT different from ar met in the
clockwise order along Ar, if any.

By considering again our running example, we have
configuration at Figure 6, right side, as input for the current
task T2. As done for the analysis of task T1, we now
formally show that such a configuration belongs to T2.

As analyzed for task T1 we have the same values for

VOLUME xxxx, 2016 13

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

CT

CB

FIGURE 6: Task T1: Ensure c(R) empty. Notice the parking circles CT and CB .

h

h+

h
h+ h′

h+
A′r

h′

h−

h
h−

h′

h−

FIGURE 7: Task T2: Make Ann (the light-gray corona) empty to ensure stationarity (notice that only the trajectories of the
first three moving robots are shown). Small black dots represent forbidden points for CT .

Algorithm 1 GoToCT(Rx)

1: if r ∈ Rx then
2: if ar is not forbidden for CT then
3: r straightly moves toward ar
4: else
5: Let q be the middle point of arc A′r;
6: r straightly moves toward q until reaching CT on the

closest intersection point of CT and [r, q].

variables w, g, p, d1, d2, so the configuration is not in T7,
T8, T9, T10, and T11. Variable a is false since Ann contains
robots. Hence the configuration is not in T6, T4, and T3.
About T5, we have that f is false as there are too many
robots on C(R) with respect to ρ(F). Since variable c is
now false, then the configuration belongs to T2.

By applying move m2, all robots in Ann eventually
move toward CT . In particular, since all robots in Ann
reside on a single circle (say C) and M(C) = ∅ (on
C there are no regular m-gons such that m > 1 and m
divides ρ(F) = 4), then m2 calls GoToCT(R2) with R2

containing all robots on C. The trajectories performed by
some robots in C are illustrated in Figure 7 (notice that, for
sake of presentation, we assume that in such an example

the asynchronous scheduler makes active one robot in C
at a time - cf. Figure 7 where the first three executions of
GoToCT are illustrated). Once all robots in Ann reach CT ,
as we will show the obtained configuration (cf. Figure 8,
left side) belongs to task T4.

The next lemma gives important properties of Procedure
GoToCT when applied to an initial configuration belonging
to T2.

Lemma V.1. Let R = R(t0) be an initial configuration at
time t0 belonging to T2, and S(t0) be the set of robots to
move according to m2. There exists a time tk > t0 where
the reached configuration R′ = R(tk) differs from R only
for robots in S(t0) that are all on CT in R′, such that the
following properties hold:

1) R(ti) belongs to T2 for each t0 < ti < tk;
2) ρ(R(ti)) divides ρ(F) for each t0 < ti ≤ tk;
3) R′ is stationary;
4) R(ti), t0 ≤ ti ≤ tk, has no multiplicities.

Proof. We now prove the existence of R′ and each property
at items 1–4 in the statement.

• About the existence of R′ and property at Item 1.
Let Ci↑(R) be the circle in Ann closest to CT . Then

14 VOLUME xxxx, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

S(t0) ⊆ Rob(Ci↑(R)) according to move m2. The call
GoToCT(S(t0)) aims to move all robots in S(t0) toward
CT . Let R̄ = R(ti), t0 < ti < tk, and assume that
some robots in S(t0) are not on CT in R̄. We now
show that R̄ is still in T2.
Clearly R̄ does not belong to T11 as there are robots
in Ann . It does not belong to T10 because of g that
only depends on F . In order to show it does not
belong to T9, it is sufficient to remind the area within
a robot r is moving according to Procedure GoToCT. In
fact, this ensures that p remains false because of the
limit established by angle α. Such a limit guarantees
that along all its movement r cannot be in a position
corresponding to the projection of a point from C(F)
to CT . R̄ is not in T8, T7, T6, T4 and T3 because
a = false. It is not in T5 because from pre2∧¬pre5
we deduce that f = false in R and since no robots
are moved from C(R) then f remains false. Then R̄ is
in T2 because the value of c has not changed.
Being R̄ in T2, again Procedure GoToCT is applied.
Note that, the input provided to the successive calls of
Procedure GoToCT is constituted by a subset S(ti) ⊆
S(t0). In fact, it involves robots lying on the current
circle Cj↑(R) in Ann closest to CT , whose radius is
certainly not greater than that of the initial Ci↑(R)
from where robots in S(t0) were selected. By applying
the arguments above, we can state that by repeatedly
applying GoToCT, the algorithm will lead all robots in
S(ti) to reach CT . This implies there exists a time
where the portion of Ann delimited by Ci↑(R) and
CT , and excluding such circles, will not contain robots,
eventually. At this time, either all robots contained in
S(t0) have reached CT or some of them are still on
Ci↑(R). In the latter case, move m2 ensures to call
GoToCT providing as input only the robots originally
contained in S(t0).
By reconsidering the above analysis, we conclude that
all configurations generated while robots in S(t0) are
moved toward CT belong to T2. Once all such robots
reach CT , say at time tk > t0, then the requested
configuration R′ is obtained.

• About property at Item 2. Consider two different cases
for R = R(t0): Rob(CT) = ∅ and Rob(CT) 6= ∅.
If Rob(CT) = ∅, let us first analyze the case when
∂Ci↑(R) \ M′(Ci↑(R)) = ∅. When m2 is applied to
configuration R = R(t0), at most S(t0) robots will
move at the same time. If more than one robot moves,
this is because they are of minimal view and, by
Lemma III.5, if one of them belongs to an element
M ∈ M(Ci↑(R)), then all the other robots belong to
the same regular |M |-gon. The robots move radially
toward CT , as so far there is no forbidden point
for CT . The robots that trace concurrently the same
distance could form a regular |M ′|-gon, but in this
case, |M ′| ≤ |M | and |M ′| divides ρ(R). Then the

symmetricity of the whole configuration divides ρ(R),
which in turn divides ρ(F). Possibly, some robots reach
CT whereas some other are stopped before by the
adversary or they do not start moving yet. In such cases,
the trajectories of the robots might change in order to
reach CT by avoiding the forbidden points generated
by robots arrived on CT . Then, each configuration
obtained while the remaining robots move toward CT

cannot have a symmetricity larger than ρ(R) (this could
be obtained only if the robots reach the forbidden
points for CT). Moreover the symmetricity of any
of these configurations has to divide ρ(R) because,
otherwise, there is an automorphism ϕ such that one
robot r of the first arrived on CT should be equivalent
to a robot r′ = ϕ(r), but this violates the requirement
for r′ to avoid forbidden points for CT .
As the above property holds for each generated con-
figuration R̄, when robots reach CT by successive
calls of Procedure GoToCT, then we conclude R̄ is
such that ρ(R̄) divides ρ(R) and then ρ(F). The same
considerations hold for ρ(R′).
Let us now analyze the case when Rob(CT) = ∅ and
∂Ci↑(R) \ M′(Ci↑(R)) 6= ∅. Let M′(Ci↑(R)) 6= ∅.
Similarly as above, Procedure GoToCT is called until all
the robots in S(t0) are moved from Ci↑(R) to CT . By
Lemma III.5, the symmetricity of each generated con-
figuration R̄ as well as R′ divide |M |. Then both ρ(R̄)
and ρ(R′) divide ρ(F). If instead M′(Ci↑(R)) = ∅,
then |S(t0)| = 1, the configuration is asymmetric and
it is maintained as such by means of Procedure GoToCT

because the only moved robot cannot be equivalent to
any other until it reaches CT . Then for each generated
configuration R̄, ρ(R̄) = ρ(R′) = 1 that obviously
divide ρ(F).

Finally, consider the case when Rob(CT) 6= ∅ in
R(t0). The analysis is basically the same as above, with
the only difference that now there are already some
forbidden points for CT and hence the trajectories
of robots in S(t0) initially are not necessarily radial
toward CT .

• About property at Item 3. As shown above, starting
from R, all calls of Procedure GoToCT only involve
robots originally contained in S(t0). Any other robot
does not move, that is it is stationary. Once all the
robots in S(t0) reach CT , R(tk) = R′ is obtained
which is then stationary.

• About property at Item 4. According to Procedure
GoToCT, configuration R′ has no multiplicities since
each robot r moves toward CT in a region of Ann
confined by: CT , the rays from c(R) passing through r
itself, and the next robot r+ in the clockwise direction
on Ann ∪ C(R). In this region there are no robots
and no other robots enter such a region. Moreover, the
destination point on CT cannot be occupied by a robot,
as otherwise by definition it would be a forbidden point

VOLUME xxxx, 2016 15

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

for CT .

C. TASK T4

In order to solve the sub-problem RS, that is the creation of
a common reference system, task T4 is meant to manage
the cases in which there are too many robots on C(R)
with respect to ρ(F). In particular, task T4 is specialized to
manage the casesM(C(R)) = ∅. We recall thatM(C(R))
denotes the set containing all the maximum cardinality
subsets M ⊆ ∂C(R) such that |M | > 1, robots in M form
a regular |M |-gon, and |M | divides ρ(F). Since the input
configuration R and the pattern to form must guarantee that
ρ(R) divides ρ(F), then M(C(R)) = ∅ implies that R is
asymmetric. This allows the algorithm to remove one robot
at a time from C(R) until exactly m robots remain, with m
being the minimal prime factor of ρ(F) or m = 3.

Clearly, the removal of robots must be done very carefully
so as to guarantee that C(R) does not change (hence, each
time the moving robot must be non-critical). Moreover, if
ρ(F) is even and hence only two robots must remain in
C(R), then it is possible that T4 must terminate with three
robots on C(R) instead on two (it is possible that each of
the three remaining robots is critical). In this case, task T6
is required before the removal of the last robot from C(R),
that is two antipodal robots must be created on C(R) as
otherwise the smallest enclosing circle of the robots would
change with respect to the initial one.

For this task, again Procedure GoToCT is used. According
to move m4, it is performed by the non-critical robot in
∂C(R) of minimal view. In this way, the moving robot will
reach CT by also ensuring that the new configuration still
guarantees that ρ(R) divides ρ(F). It is worth to remark
that in case the moving robot is stopped by the adversary
before reaching the parking circle, then task T2 is applied
again to make Ann empty (in other words, T2 collaborates
with T4 to correctly transfer robots from C(R) to CT).

Concerning the running example, Figure 8 (left side)
shows the configuration belonging to task T4. This member-
ship can be verified as follows. As analyzed for tasks T1 and
T2 we have the same values for variables w, g, p, d1, d2, so
the configuration is not in T7, T8, T9, T10, and T11. Variables
t and f are both false, so the configuration is not in T6 nor
in T5. Since the precondition pre4 = a ∧ ¬c ∧ m holds (in
fact, here a = true, c = false, and m = true), then
the predicate P4 holds and hence the current configuration
belongs to T4.

Figure 8 (right side) shows the stationary configuration
obtained after two consecutive applications of task T4.
Since this configuration contains three robots on C(R) and
ρ(F) = 4, then it must be processed by T6 in order to
guarantee two antipodal robots on C(R) before leaving two
robots on C(R).

D. TASK T6

This task is performed when there are exactly three robots
on C(R), 3 does not divide ρ(F), and ρ(F) is even. In
such a case, one of the three robots, chosen so as to not
modify C(R), rotates until it becomes antipodal with respect
to one of the other two robots. Once this happens, variable
m becomes false since a regular 2-gon is created on C(R).

Consider the running example of Figure 9 (left side). This
configuration belongs to T6. In fact, as analyzed in previous
tasks we have the same values for variables w, g, p, d1, d2,
so the configuration is not in T7, T8, T9, T10, and T11.
Instead, now a = true (i.e., there are no robots in Ann),
c = false (i.e., there are no robots in the interior of CB),
m = true (i.e., there are no regular 2-gons in C(R)), and
t = true (i.e., |∂C(R)| = 3 and 2 is a divisor of ρ(F)).
Hence the predicate defining T6 is true.

The three robots on C(R) form a triangle with angles
α1 ≥ α2 ≥ α3 where r1, r2 and r3 are the three corre-
sponding robots. The move planned for this task (cf. move
m6) rotates r2 along C(R) so as to obtain a configuration
with two antipodal robots on C(R). Once this happens
(and, as usual, it may require multiple LCM cycles), the
configuration belongs to T3 as there is a regular 2-gon on
C(R), with 2 being a divisor of ρ(F) but with a third
robot that must be moved from C(R) toward CT . Such a
movement initiated by T3 might be continued via task T2 if
the robot does not conclude its movement within one LCM
cycle.

E. TASK T3

Together with task T4, this task is meant to manage the cases
in which there are too many robots on C(R) with respect
to ρ(F). In particular, task T3 is specialized to manage the
case in which M(C(R)) 6= ∅.

The move planned for this task is m3 and it carefully
moves robots from C(R) toward the parking circle CT

by means of Procedure GoToCT. According to its spec-
ification, we observe that it considers two cases: (1) if
∂C(R)\M′(C(R)) 6= ∅ then all robots of minimal view in
∂C(R) \M′(C(R)) are moved, otherwise (2) all robots on
C(R) of minimal view are moved. Notice that it is possible
that even though R might be symmetric, its symmetricity is
(or becomes) smaller than ρ(F). However, by Lemma III.5
we are ensured that ρ(R) remains a divisor of ρ(F) as long
as T3 is applied. Moreover, even in the possible case where
ρ(R) > 1, due to the ASYNC model not all robots belonging
to a same regular m-gon (say M) are necessarily active, and
hence after some LCM cycles some of such robots may be
in Ann while some other may still stay on C(R). Any robot
in Ann is then moved by T2, and once T2 has completely
removed robots from Ann , then the remaining robots of M
left on C(R) are later processed again by T3 since they
result to be in ∂C(R) \M′(C(R)).

It is worth to remark that, as soon as a robot leaves C(R),
variable a becomes false, and task T2 might be invoked.

16 VOLUME xxxx, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

FIGURE 8: Task T4: Case M(C(R)) = ∅, removing robots from C(R) until exactly m robots remain, with m being the
minimal prime factor of ρ(F) or m = 3. The configuration on the left side is obtained from Figure 7 after all robots in
Ann reached the parking circle CT .

FIGURE 9: Task T6: Create two antipodal robots on C(R).

FIGURE 10: Task T3: Case M(C(R)) 6= ∅, removing robots from C(R) until exactly one maximal regular m-gon of M
remains.

Consider the running example of Figure 10 (left side).
This configuration belong to T3. In fact, as analyzed in
previous tasks we have the same values for variables w,
g, p, d1, d2, so the configuration is not in T7, T8, T9,
T10, and T11. Variable m = false (there is one regular
2-gon in C(R) and ρ(F) is even), so the configuration is
not in T6 or T4; variable f = false (|∂C(R)| = 3 and
ρ(F) = 4), hence it does not belong T5. In conclusion, since
precondition pre3 = a∧¬c = true, then the configuration
belongs to T3.

Move m3, possibly interleaved by move m2, will lead to
obtain the configuration shown in Figure 10 (right side). In
this configuration the problem RS is solved, and hence the
subsequent sub-problem PPF can be addressed by perform-
ing the planned task T8.

F. TASK T8

This task is responsible for solving the PPF sub-problem.
In particular, it moves all robots that are inside or on CT

toward the targets computed with respect to the embedding

VOLUME xxxx, 2016 17

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

of the modified pattern F ′. As described in Section IV-A
(cf. description of PPF), pattern F ′ differs from F only for
those possible targets on C(F) different from the m ones
already matched by the resolution of sub-problem RS (i.e.,
the embedding of F on R and hence the embedding of F ′ on
R are well-defined, cf. description of RS). Such additional
points on C(F), if any, are instead radially projected to CT

in F ′. In our strategy, task T8 is designed to solve the pattern
formation problem with respect to F ′.

Concerning the running example, Figure 11 shows how
each robot views the embedding of F ′ in the current
configuration. It is worth to note that, during this task, (1)
no robots on C(R) move, and (2) no robots are moved out
of CT (i.e., no robot enters in Ann); this implies that the
embedding of F ′ remains the same during the whole task
T8.

To solve PPF, at any time, each robot inside CT must
determine (1) whether it is already on its target or not (i.e.,
whether it is matched or not), (2) if it is not matched, which
is its target, and (3) whether it is its turn to move or not. To
this aim, and to formally define Procedure Distmin that is
used to solve task T8, we need some further definitions and
properties (cf. Figure 12).

Let P be a multiset of points and let p, q ∈ P . We denote
by Cp and Cq the circles centered in c(P) and with radii
d(c(P), p) and d(c(P), q), respectively. Points p′ and q′

correspond to Cq ∩ hline(c(P), p) and Cp ∩ hline(c(P), q),
respectively (cf. Figure 12.(a)). Symbol AS (p, q) is used
to denote the annulus sector given by the area enclosed
by circles Cp and Cq , and by segments [p, p′] and [q′, q],
subtending ^(p, c(R), q) (cf. Figure 12.(b)). Notice that
when ^(p, c(R), q) = π, by definition AS (p, q) corresponds
to the annulus sector spanned by hline(c(P), p) to overlap
hline(c(P), q) by means of a clockwise rotation. We say
that AS (p, q) is degenerate when it reduces to a point (i.e.,
when p = q) or to a segment/arc (i.e., when p and q lie on
the same ray/circle).

Definition V.2 (Sectorial path and sectorial distance). Let
P be a multiset of points in the plane. Given p, q ∈ P ,
the sectorial path between p and q is given by either
the arc

>
pq’ composed with the segment [q′, q], or the

segment [p, p′] composed with the arc
>
p’q (cf. Figure 12.(a)).

The sectorial distance between p and q is denoted by
dist(p, q) and if δ(C(P)) = 0 then dist(p, q) = 0,
else dist(p, q) = |d(p, c(P)) − d(q, c(P))|/δ(C(P)) +
min{^(p, c(P), q),^(q, c(P), p)}/π.

Informally, the sectorial distance is a sort of Manhattan
distance where moving between two points is constrained
by rotating along concentric circles centered at c(P) and
moving along rays starting from c(P). It is easy to verify
that function dist() is in fact a distance function.

Property V.3. Let P be a multiset of points in the plane,
and let p, q ∈ P . For each point s ∈ AS (p, q) it follows
that dist(p, q) = dist(p, s) + dist(s, q).

According to this property, the sectorial distance implies
the existence of infinitely many shortest paths (composed of
one or more sectorial paths) connecting two distinct points
(cf. Figure 12.(c)).

The above notation and definitions will be applied to
what was before informally called a “sector”. The following
definition formalizes such a concept.

Definition V.4 (Sector). Let ` and `′ be two consecutive
(clockwise) robot-rays. A sector S is the area confined by
`, `′, and CT . Concerning the boundary, ` belongs to S,
`′ does not belong to S, the portion on CT delimiting S
belongs to S, and c(R) does not belong to S. Sector(R)
denotes the set containing all the sectors of a configuration
R.

We now exploit the sectorial distance to determine the
trajectories used by robots to move toward the targets.

Definition V.5 (Safe trajectory). Given a configuration R
and a sector S ∈ Sector(R), a robot r ∈ Rob(S) is said to
admit a safe trajectory toward a target point t ∈ S ∪ c(R)
if there exists a shortest path between r and t according to
dist() that does not pass through any other robot.

The next statements (see Lemma V.6 and Proposition V.7)
will play a central role for the definition of Distmin.

Lemma V.6. Given a configuration R and a sector S ∈
Sector(R), let r ∈ Rob(S) and t ∈ S be a target point. If
AS (r, t) is not degenerate, then r admits a safe trajectory
toward t.

Proof. The claim simply follows from Proposition V.3 that
implies the existence of infinitely many shortest paths be-
tween r and t, and by observing that R is finite.

Property V.7. For each sector S, the sub-configuration
given by ∂C(R) ∪Rob(S) is asymmetric.

The above statements can be combined as follows: the
former ensures that when a robot r moves toward a target
t and AS (r, t) is not degenerate, then r admits a safe
trajectory toward t; the latter says that inside a sector S
it is always possible to elect a leader r ∈ Rob(S). By
combining them we get that inside a sector S we can always
elect a robot r to move toward a target t, and if AS (r, t)
is not degenerate then r can move along a shortest path
without creating collisions. Given a sector S, the following
additional notation allow us to formalize such an approach:
• Rm(S) = Rob(S) ∩ F ′ denotes the matched robots;
• Fm(S) = F ′ ∩Rm(S) denotes the matched targets;
• R¬m(S) = Rob(S) \ Rm(S) denotes the unmatched

robots;
• F¬m(S) = (F ′ ∩ S) \ Fm(S) denotes the unmatched

targets;
• Rsafe(S) = {r ∈ R¬m(S) : ∃ a safe trajectory from
r to t, t ∈ F¬m(S)} denotes the subset of R¬m(S)
containing only robots having a safe trajectory toward
at least one target in F¬m(S);

18 VOLUME xxxx, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

(4)

(2)

(2)

(2)

(2)

(2)

(4)

(2)

(2)

(2)

FIGURE 11: Task T8. Make a partial pattern formation: embedding of F and F ′. The light-gray corona is the Ann; gray
circles represent robots; white circles represent points of F ; On the left, arrows represent how F must be rotated according
to the embedding defined in Section IV-A. On the right, black circles represent robots matched with points of F after the
embedding; finally, the two black dots on CT represent points of F ′ obtained as radial projections of unmatched points of
F on C(R).

q qsp′

c(P)

p

c(P)

p q′

q

(a) (b) (c)

c(P)

p q′

FIGURE 12: A representation of: (a) the sectorial paths between points p and q; (b) the annulus sector AS (p, q) (the gray
region); (c) two shortest paths from p to q (one passing through s and composed by two sectorial paths).

If in S both R¬m(S) 6= ∅ and F¬m(S) 6= ∅ then:
• r∗(S) denotes the unmatched robot in S that has

to move toward an unmatched target still in S. If
Rsafe(S) 6= ∅ then r∗(S) is the robot of minimum view
satisfying arg minr∈Rsafe(S){dist(r, t) : t ∈ F¬m(S)}
else r∗(S) is selected from R¬m(S) according to the
minimum view (cf. Proposition V.7).

Consider now the case in which there are more robots than
targets within a sector S. Our approach will move one robot
at a time in S (always identified as r∗(S)) toward a target in
F¬m(S) until all targets become matched. At that time, we
will get R¬m(S) 6= ∅ and F¬m(S) = ∅. Then, our strategy
will move the remaining robots in R¬m(S) toward points
on the robot-ray belonging to S′, where S′ is the next sector
with respect to S according to the clockwise direction. We
then extend the previous notation as follows:
• Rsafe(S, S′) = {r ∈ R¬m(S) : r is lying on a circle
Ci↓ and it can rotate along Ci↓ until reaching S′ without
collisions} denotes the set containing any robot that can
reach S′ by means of a simple rotation along the circle
Ci↓ where it lies;

• r∗(S, S′) denotes the unmatched robot in S that has
to move toward S′. If Rsafe(S, S′) 6= ∅ then r∗(S) =

arg minr∈Rsafe(S,S′){dist(r, t) : t ∈ S′} else r∗(S) is
selected from R¬m(S) according to the minimum view.

Procedure Distmin is given in Algorithm 2. Its description
can be found in the corresponding correctness proof pro-
vided in Lemma V.8. Figure 13 provides a partial illustration
of how Distmin determines the pairs robot-target within
one sector of the running example.

Lemma V.8. Given a configuration R belonging to T8 ∩
(I \U(F)), by repeatedly applying Procedure Distmin the
pattern F ′ can be formed.

Proof. According to Proposition V.7, two robots with the
same view cannot belong to a same sector S ∈ Sector(R).
Hence, all moves allowed by Procedure Distmin involve
at most one robot per sector as ties are always broken by
means of the minimum view.

Lines 1-3 consider the cases when the current multiplicity
in the center c(R) is less than that required in c(F). Notice
that ρ(F) > 1 by hypothesis, and this implies that in c(F)
there is a number of points which is multiple of ρ(F). Since
ρ(R) divides ρ(F), then the number of robots in each circle
Ci↓(R) divides ρ(F), and hence the number of robots to be
moved toward the center is always correctly determined by

VOLUME xxxx, 2016 19

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

5

(0,4)

(0,2)

(0,2)

(0,2)

(1,1)

(0,1)

(0,1)

(1,1)

(0,2)

3

2

1

4

(4,4)

(0,2)

(0,2)

(1,1)

(0,1)

(0,1)

(1,1)

(0,2)

2

3

4

(0,2)

1

FIGURE 13: Task T8. Any pair of integers close to points of F represents multiplicities of robots and of targets, respectively.
(left) Preliminary phase, the right multiplicity is formed on c(F) (cf. Lines 1-3 of Algorithm 2). The numbers close to the
arrows show the order in which robots move. (right) Order of robots’ movements toward targets within one sector. Notice
that the gray arrows only show robot-target pairs and not trajectories: we recall that Algorithm 2 uses sectorial paths as
robots’ trajectories.

Algorithm 2 Distmin

1: if mult(c(R), R) < mult(c(F), F) then
2: if d(r, c(R)) is minimum among all robots in R, and r is

of minimum view in case of ties then
3: r moves toward c(R)
4: else
5: if ∃ sector S s.t. R¬m(S) 6= ∅ and F¬m(S) 6= ∅ then
6: if Rsafe(S) 6= ∅ then
7: r∗(S) moves toward its target f ∈ F¬m(S) along a

safe trajectory
8: else
9: if r∗(S) and its target f belong to a circle Ci↓(R)

then
10: r∗(S) moves radially at half distance from

Ci−1
↓ (R) if this exists or from c(R)

11: else
12: r∗(S) rotates clockwise at half distance from the

closest robot-ray or from the closest robot if there
is one on the way

13: else
14: if ∃ sector S s.t. R¬m(S) 6= ∅ then
15: Let S′ be the next sector in clockwise order;
16: if Rsafe(S, S′) 6= ∅ then
17: r∗(S, S′) rotates toward the robot-ray of S′

18: else
19: Let Ci↓(R) be the circle to which r∗(S, S′) belongs

to
20: r∗(S, S′) moves radially at half distance from

Ci−1
↓ (R) if this exists or from c(R)

21: else
22: Let r be the robot on c(R): r radially moves along the

segment connecting c(R) with the unique point left
in F¬m(S) for some sector S, until distance δ(CB);

the procedure: this is ρ(R) which divides ρ(F) that in turn
divides the number of robots in c(F).

Lines 5-22 consider the cases when the multiplicity in
the center (if any) is already correctly formed. In particular,
lines 5-12 are executed when there exists a sector S in which
there are both unmatched robots and unmatched targets.
According to our definitions, the robot r∗(S) elected to

move follows a safe trajectory if it exists. Once this robot
starts moving, it will be moved until reaching its target,
possibly within multiple LCM cycles. In fact, (1) robots
admitting safe trajectories move before robots not admitting
safe trajectories, and (2) the moves along safe trajectories
assure to decrease the distances to the target; hence, in case
of multiple LCM cycles, the moving robot r∗(S), for each
sector S, will be again chosen to reach its target. In case
there is not a safe trajectory from r∗(S) to the target, then
the robot is slightly deviated (see moves at Lines 10 and 12)
to avoid collisions. Then, by Lemma V.6, the deviated robots
admit safe trajectories and will be chosen again by the
algorithm to be moved.

Once each sector contains only unmatched robots or only
unmatched targets, then unmatched robots in any sector
S are moved toward a point on the boundary of the next
sector S′ in clockwise order (cf. Lines 14-20). As before,
robots moved are first those elected that admit a safe
trajectory toward the next (clockwise) sector, and then the
remaining ones (which are deviated as before in order to
avoid collisions). Notice that, as soon as the moved robot
reaches the boundary, it enters into the next sector S′. As a
consequence, the procedure processes this robot when it will
be elected in S′ to be moved either toward an unmatched
target in the same sector, or toward the boundary of the
successive (clockwise) sector.

The last line (Line-22) consider the cases when a robot
must be moved from the center c(R) whereas any other
robot is matched. This case is processed at the end because,
by definition, the center c(R) does not belong to any
sector. The robot is moved toward the last unmatched target
in F ′ until reaching the circle CB (by definition, along
the trajectory there are no targets and hence no robots).
Regardless whether it is stopped or not by the adversary,
once it becomes active again, it will be processed as an
unmatched robot by Lines 5-12.

20 VOLUME xxxx, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

G. TASK T9

This task is devoted to finalize the pattern formation. It is
characterized by the precondition pre9 = ¬m ∧ p, which
means: there is a subset of m ≥ 2 robots on C(R) that form
a regular m-gon, with m divisor of ρ(F); the unmatched
robots with respect to F are only those in Ann or on CT ;
F can be obtained by radial movements of the unmatched
robots toward C(R).

Move m9 makes such robots moving radially toward
C(R). As described in Section IV-A (cf. description of Fin),
while robots move from CT to C(R), the common reference
system might be lost as soon as some robots reaches C(R).
However, robots can always detect whether the configuration
obtained by a radial projection of all robots in Ann ∪ CT
to C(R) produces F or not as both Ann and CT can
be determined just on the basis of F . This is the way to
establish the value of variable p. Trivially, once all robots
finish their movements, w becomes true, that is F is formed.
Figure 14 provides an illustration of this task when it is
applied to the running example.

H. TASK T11

This is actually not a real task. It is identified by variable
w which means F is formed, hence robot must not move
anymore. It guarantees the obtained configuration does not
change anymore.

I. TASK T5

This task is complementary with respect to T3 and T4 as
it is invoked when the number m of robots on C(R) is
too small with respect to ρ(F), that is m is smaller than the
minimal prime factor of ρ(F). In this case, the configuration
is necessarily asymmetric and, consequently, one robot
per time is moved from C2

↓(R) toward C1
↓(R) = C(R)

by means of move m5. Robots are moved toward C(R)
avoiding forbidden points for C(R). These forbidden points
are similar to those introduced in the description of Task T2:
a point of C(R) is forbidden if it may form a regular n-
gon along with the points occupied by some robots already
located on C(R). Again, avoiding forbidden points ensures
that when a robot reaches C(R) all robots in such a circle
are non-equivalent; this helps to ensure that no unsolvable
configurations are created.

An example of application of m5 can be seen in Fig-
ure 15. There ρ(R) = 1 whereas ρ(F) = 5. Moreover,
|∂C(R)| = 2 is smaller than the minimal prime factor of
ρ(F), which is five. So, f = true, whereas c = false.
The configuration is then in T5 as it can be easily checked:
w, g, p are false, that is the configuration does not belong
to T11, T10, T9, respectively; d1 and d2 are true, hence R
is not in T8 nor in T7; t = false since 2 is not a divisor
of ρ(F), hence R is not in T6.

Once three robots, one per time, are moved to C(R) by
means of m5, the configuration in Figure 16, right side, is
obtained. It belongs to T7 as a regular 5-gon must be formed
on C(R) since d1 and d2 are now false as well as u.

J. TASK T7

This task is meant to create a regular m-gon on C(R). It is a
sort of generalization of T6 as it is used when m = |∂C(R)|
is the minimal prime factor of ρ(F), that is d1 and d2 are
both false. By means of move m7 the m robots on C(R) are
opportunely rotated so as to obtain a regular m-gon. Once
this happens, m becomes false and u becomes true. Actually,
Procedure CircleForm() applies the same movements of
the algorithm proposed in [17] where the problem was to
uniformly distribute robots along a ring. The only difference
is that here the ring is the circumference of C(R), hence
to guarantee the correctness of the algorithm we need to
guarantee that C(R) does never change.

Algorithm 3 CircleForm(α)

1: Let r′, r and r′′ be three consecutive (clockwise) robots on
C(R);

2: Let p be the antipodal point of r′;
3: Let q be the point on C(R) preceding r′′ wrt the clockwise

direction such that ^(q, c(R), r′′) = α;
4: if ^(r, c(R), r′′) > α then
5: r rotates clockwise toward the closest point among p and

q;

Given a configuration R, with |R| ≥ 3, let α =
2π/|∂C(R)|, and let r′, r and r′′ be three consecutive
(clockwise) robots on C(R). The following lemma can be
stated.

Lemma V.9. Let p and q be the two points calculated by a
robot r when running algorithm CircleForm(α). If r has to
move, it will reach q, within a finite number of LCM cycles.

Proof. If p is not in between r and q then the statement
clearly holds as all moving robots follow the clockwise
direction, and hence within different LCM cycles the target
to reach either is unchanged or it is further (clockwise) than
q with respect to the starting position of r, that is r reaches
(and possibly overpasses) q.

When p is in between r and q then r must stop at p,
and eventually r reaches p. In this case, since |R| ≥ 3,
necessarily ^(r′, c(R), r) > α, that is, also robot r′ must
move.

Consider the points q′ and q′′ on C(R) antipodal to q
and r′′, respectively. When r′ moves, it cannot overpass q′′,
however, by construction, once r has reached p, then q′ is
met by r′ before reaching q′′. It follows that as soon as r′

reaches q′ then r is free to reach q.

By combining the result of Lemma V.9 with the correct-
ness proof of the Circle Formation algorithm given in [17],
the following corollary holds.

Corollary V.10. Let R be a configuration belonging to
T7 ∩ IA with m robots on C(R). By repeatedly applying
Algorithm CircleForm, configuration R is transformed into
a configuration R′ having a regular m-gon on C(R).

VOLUME xxxx, 2016 21

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

(2,2)

(0,1)

(0,1)

(1,1)

(2,2)

(4,4)

(2,2)

(2,2)

(2,2)

(1,1)

(1,1)

(1,1)

(1,1)

(4,4)

(2,2)

(2,2)

(2,2)

(1,1)

FIGURE 14: Task T9: finalize the pattern formation.

(5)

FIGURE 15: The input for the PF problem that we use as secondary running example. Notice that the initial configuration
R is composed of 10 robots and rho(R) = 1, while the pattern F has symmetricity ρ(F) = 5 (numbers close to points
refer to multiplicities).

FIGURE 16: Task T5 applied to the input specified in Figure 15: bring robots to C(R) until |∂C(R)| divides ρ(F). Gray
circles represent robots and small black dots represent forbidden points for C(R).

Proof. The proof simply follows by observing that algo-
rithm CircleForm operates the same movements of those
in [17] but with the further constraint to not changing C(R).
However, Lemma V.9, proves that eventually each moving
robot will reach the destination imposed in [17]. It means
that within multiple (but finite) LCM cycles, each moving
robot behaves like in [17].

Considering the running example of Figure 17 (left side),
the robots on C(R) are opportunely rotated in the clockwise
direction so as to obtain a configuration with a regular
pentagon on C(R). In particular, the only robot that will
never move in the specific configuration is the top-most one
since the angle it forms in c(R) with the clockwise neighbor

is smaller than 2π
5 . All other robots, will rotate eventually.

Once configuration in Figure 17 (right side) is obtained, it
means u = true. Predicates g, a and d2 did not change
their values, whereas variables w and p are clearly false.
Hence the configuration cannot belong to T9, T10 and T11.
Since ¬d2 ⇒ ¬d1, then the configuration belongs to T8.

K. TASK T10

This is actually not a real task. It solves PF by exploiting
other algorithms (namely Gathering from [10] and Leader

from [6]) when F is composed of one point with multiplicity
|R|, that is ρ(F) = |R|, or when ρ(F) = 1, respectively.
Notice that P10 depends only on F and not on the current

22 VOLUME xxxx, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

FIGURE 17: Task T7. Create a regular m-gon on C(R).

configuration. This implies that once one algorithm among
Gathering and Leader starts, it will be invoked to process
the configuration until the pattern is formed.

VI. CORRECTNESS
In this section, we prove the correctness of the provided
algorithm. According to the methodology proposed in [8],
it is realized by proving that each property in Table 4 holds.
It is worth noting that properties H3′ and H3′′ are desirable
but not necessary to prove the correctness of the algorithm.

Concerning property H1, since the tasks’ predicates
P1, P2, . . . , P11 used by the algorithm have been defined as
suggested by Equation 1, it holds according to Remark 1.

Since properties H2, H3, H3′ , H3′′ and H4 (the last limited
to self-loops only) must be proved for each transition / move,
then in the following we provide a specific lemma for each
task. It is worth pointing out that, according to Remark IV.7,
if one of such lemmas analyzes a task - say Ti - and we
have already proved that all the transitions toward Ti are
stationary or almost-stationary or robust, then during the
analysis of Ti we can basically ignore possible pending
moves. A final theorem (cf. Theorem VI.12) will make use
of all these lemmas and will also prove the remaining part
of property H4 concerning cycles that are not self-loops.
As last remark, we remind that properties H3′ and H3′′ are
desirable but not necessary to prove the correctness of the
algorithm. As we are going to see, in a few cases we cannot
guarantee them.

Lemma VI.1. Let R be a stationary configuration in T10.
From R the algorithm eventually leads to a stationary
configuration belonging to T11.

Proof. Since g holds, we have two cases: either ρ(F) = 1
or F contains only one element with multiplicity |R|. In the
first case move m10 consists in calling the Leader() algo-
rithm given in [6]. In the second case, move m10 consists
in applying the algorithm Gathering() given in [10]. Since
the predicate only depends on F , its value never changes
then one of the two algorithms can be applied until forming
pattern F . Concerning the correctness of the algorithms
we refer the reader to the proofs given in [10] and [6],
respectively.

Remark VI.2. As g only depends on F and not on the
current configuration, from now on we can always consider
variable g as false since the movements of robots cannot
change its value. It also follows that no transitions can lead
to T10 apart for self-loops.

Lemma VI.3. Let R be a stationary configuration in T9.
From R the algorithm eventually leads to a stationary
configuration belonging to T11.

Proof. Move m9 aims to finalize the pattern formation by
performing only radial movements of robots from CT∪Ann
to C(R).

H2: During this task, since move m9 does not remove any
robot from C(R), then C(R) does not change and ¬m
remains true. Moreover, since the movement is radial
and by the fact that the computation of CT depends
only on F , p remains true during all the movements.
Similarly, w remains false until the last robot reaches
C(R). This means that it is always possible to solve
PF when ¬m∧p holds. It is enough to radially move all
robots from CT ∪Ann to C(R) (which is exactly what
move m9 does). Hence, independently on the activation
of the robots, the incurred configurations until F is
formed are all solvable, that is none of them belongs
to U(F).

H3: as observed, during the move ¬m, p and ¬w remain
true, then no other tasks can start. If robots are stopped
during their movement by the adversary, the configu-
ration remains in T9. This defines a self-loop in T9. If
all robots involved by move m9 reach their target on
C(R) then w becomes true and the configuration is in
T11.

H3′ : If the configuration remains in T9 after applying move
m9, the set of robots involved by the move as well
as their trajectories do not change, hence the self-
loop of T9 is almost-stationary. Once all the robots in
CT ∪ Ann reach C(R) (that is F is formed and the
configuration is in T11) the configuration is stationary.

H3′′ : actually two robots on the same ray can potentially
collide, but this is not a problem as at their destination

VOLUME xxxx, 2016 23

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

TABLE 4: Properties underlying the correctness

H1 = for each configuration in IA at least one predicate Pi is true and for each i 6= j, Ti ∩ Tj = ∅;
H2 = configurations in U(F) are not generated by A, i.e. IA ∩ U(F) = ∅ - this means that given R and F as

input, each generated configuration R(t), t > 0, must ensure that ρ(R(t)) divides ρ(F);

H3 = for each class Ti, the classes reachable from Ti by means of a transition are exactly those represented
in the transition graph G (i.e., the transition graph is correct);

H3′ = each transition not leading to T11 is stationary, almost-stationary, or robust, while each transition leading
to T11 is stationary;

H3′′ = the algorithm is collision-free;

H4 = possible cycles in the transition graph G (including self-loops but excluding the self-loop in T11) must
be performed a finite number of times.

there must be a multiplicity, as p holds.6

H4: when the self-loop is traversed, the overall distance of
the robots involved by move m9 to C(R) is decreased.
Then, eventually, it becomes zero and all such robots
will be on C(R).

Lemma VI.4. Let R be a stationary configuration in T8.
From R the algorithm eventually leads to a solvable and
stationary configuration belonging to T9 or T11.

Proof. The aim of the task is to form pattern F ′ rather
than F . This is done so as the embedding of F on R is
maintained thanks to the k-gon on C(R) (cf. description
of sub-problems RS and PPF of Section IV-A). Note that
¬d1 ∧ u ⇒ ¬m, hence p must be false as otherwise the
configuration would be in T9.
H2: during the movements, as robots in C(R) remain

unchanged (and so C(R) itself), ρ(R) can be at most
|∂C(R)| or a divisor of it. Being |∂C(R)| a divisor
of ρ(F) (since ¬m holds), then no unsolvable config-
urations with respect to the symmetricity (cf. Theo-
rem III.3) can be generated. Moreover, by Lemma V.8,
if move m8 leads to create a multiplicity, this is on a
point corresponding to a multiplicity in F ′, and also
its size would not be greater than that specified by F ′.
Hence, no unsolvable configurations are created on this
respect as well.

H3: during the movements, m8 does not change the values
of w, m, and d1, that are false, and those of a and u,
that are true, as no robots are moved neither toward
nor from C(R) ∪ Ann . Moreover, by definition p

remains false until the last robot reaches its destination,
that is once F ′ is formed. The configuration is then
always in T8 until F ′ is formed. As soon as the last
robot reaches its destination, the configuration satisfies

6We remind that property H3′′ - as well as H3′ - are desirable but not
necessary. As we are going to prove, the current case is actually the only
one where property H3′′ might be violated.

p. Hence, if F ′ is different from F (in case there
are robots on CT), then the configuration is in T9,
otherwise the configuration is in T11.

H3′ : except for the robots moved by Distmin, no other
robot is moved (the only possible ones are those on
∂C(R), not affected by m8), then, when p holds the
configuration is stationary. Whereas, if the configura-
tion remains in T8 after applying move m8 and it is
non-stationary, the set of robots involved by the move
does not change but their trajectories could. This may
happen when robots deviate to avoid collisions. Hence,
the self-loop in T8 is robust.

H3′′ : by Lemma V.8, procedure Distmin avoids collisions.
H4: if a moving robot is stopped by the adversary during

its movement, the configuration remains in T8 and
the robot will be moved again. By Lemma V.8, the
total distance of the robots from their target decreases.
Hence, the self-loop of T8 can be traversed only a finite
number of times.

The next lemmas refer to the RS subproblem, that is
to tasks T1, T2, . . ., T7. All those tasks operates on
configurations in I \ U(F), that is solvable configurations
without multiplicities, and as we are going to show each
of them generates a configuration in I \ U(F). Non-initial
configurations are instead managed only by tasks T8, T9,
T10, T11 and, as shown in the above lemmas, they never
generate configurations in T1, T2, . . ., T7.

Lemma VI.5. Let R be a stationary configuration in T7 ∩
(I \ U(F)). From R the algorithm eventually leads to a
stationary configuration in I \U(F) belonging to T8, T9 or
T11.

Proof. Let k = |∂C(R)| be the minimal prime factor of
ρ(F). Then ¬d2 holds and this implies that ¬d1 holds too.
The k robots on C(R) are rotated by m7 which applies
Procedure CircleForm so as to obtain a regular k-gon

24 VOLUME xxxx, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

without affecting C(R). Once this happens, m becomes false
and u becomes true.

H2: as k = |∂C(R)| is the minimal prime factor of ρ(F),
then k is prime. This implies either ρ(R) = 1 or
ρ(R) = k. This last possibility can happen only at
the end of this task when u becomes true, whereas
ρ(R) = 1 for each generated configuration R during
the task. Moreover, as Procedure CircleForm guar-
antees to not create multiplicities, then no unsolvable
configurations can be generated.

H3: the move only involves robots in C(R) along C(R),
hence a, that is true, and d2, that is false do not
change their values. Variable w can become true only
once the k-gon is formed. Similarly ¬m ∧ p and u

remain false as long as the k-gon is not formed.
Hence, if robots are stopped during their movements,
the configuration remains in T7. Once the k-gon is
formed then m becomes false and u becomes true.
Since ¬d1 holds, this implies that the configuration can
be in T8 (not in T1, T2, T3, T4, T5, T6), in T9, or in
T11 according to possible changes of the values of p

and w.
H3′ : at the end of the task the configuration is clearly

stationary as the only robots allowed to move are those
on C(R) and they do not move once u holds. If the
configuration remains in T7 after applying move m7,
the trajectory of a moving robot might be prolonged
but always along the circumference of C(R). Hence,
the self-loop in T7 is almost-stationary.

H3′′ : in Procedure CircleForm no collisions are possible
because the target of a move is always between the
moving robot and the next (clockwise) robot on C(R).

H4: the correctness of Procedure CircleForm provided in
Corollary V.10 guarantees the property.

Lemma VI.6. Let R be a stationary configuration in T6 ∩
(I \ U(F)). From R the algorithm eventually leads to a
stationary configuration in I \U(F) belonging to T3 or T9.

Proof. There are exactly three robots on C(R) (as t =
true) and w = false. Note that ρ(R) = 1, otherwise, if
ρ(R) = 3 (and then 3 is a divisor of ρ(F)) the configuration
would not be in T6 (it would be in T8, because in this case
¬d1∧u holds). Moreover ρ(F) must be even as t holds. By
referring to the description of move m6 note that α1 6= 90◦

as otherwise r2 and r3 are antipodal, against m. Moreover,
α1 < 90◦ as otherwise the three robots would lie in half
C(R) hence defining a different smallest enclosing circle.
Being ρ(R) = 1, the configuration is asymmetric and hence
robot r2 can always be selected and moved toward its target
without modifying C(R).

The configuration can start with an equilateral triangle on
C(R) (when three is not a divisor of ρ(F)), but as soon as
r2 moves, u is false and remains false until the end of the
task.

H2: since during this task ρ(R) = 1 and no multiplicities
are created, no unsolvable configurations can be gen-
erated.

H3: during the movement (i.e., before reaching the target),
the variables involved in pre6 do not change their val-
ues. Hence the configuration cannot be in T9 because
of m. It cannot be in T8 because of u. It cannot be in
T7 because of t⇒ d2. Then the configuration remains
in T6 until the moving robot reaches the target. At
that point, m becomes false. If p is also true then the
configuration is in T9. By the same considerations as
above, the obtained configuration cannot be in T8 nor
in T7. It is not in T6 nor in T4 because of m. It is not in
T5 because of f. Hence, it is in T3 since pre3 holds.

H3′ : the transitions to the tasks following T6 are obviously
stationary being r2 the only moving robot. Whereas the
self-loop is almost-stationary as the same robot along
the same trajectory is moved at any time.

H3′′ : by the definition of move m6 no collision can be
generated by r2.

H4: the possible self-loops of this task will end as the total
distance of the robot from its target decreases.

Lemma VI.7. Let R be a stationary configuration in T5 ∩
(I \ U(F)). From R the algorithm eventually leads to a
stationary configuration in I \U(F) belonging to T2 or T7.

Proof. At the beginning the configuration is necessarily
asymmetric, that is ρ(R) = 1, because the number of
robots on C(R) is less than the minimal prime factor
of ρ(F), being f = true. Hence one robot per time
is moved from C1

↓(R) toward C(R) by means of move
m5. In general, the movements are radial toward C(R).
Deviations are applied if the move may cause a collision on
C(R) or may potentially make the configuration symmetric.
As alternative target we may consider the closest middle
point in the clockwise direction between two consecutive
forbidden points. In any case, C(R) remains unchanged.

H2: since during this task ρ(R) = 1 is guaranteed by avoid-
ing forbidden points for C(R), hence avoiding also to
create multiplicities, no unsolvable configurations can
be generated.

H3: during the movement of the robot c = false, whereas
both f and m are true; variable w = false and
variables both d1 and d2 are true. Moreover t =
false since 2 is not a divisor of ρ(F). Then the
configuration cannot be in any task from T6 to T11,
so any configuration generated during the movement
remains in T5. Once the last robot reaches C(R),
variable f becomes false. The obtained configuration
cannot belong to T11 because of variables w, It cannot
belong to T9 and T8 because of m and u, respectively,
as moving robots avoided forbidden points for C(R).
If a = true, it belongs to T7 since both d2 and u are

VOLUME xxxx, 2016 25

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

false, otherwise it belongs to T2 since it cannot belong
to T3, T4, and T6 being a = false.

H3′ : the transitions to the tasks following T5 are obviously
stationary because there is only one moving robot per
time. Whereas the self-loop is robust as the same robot
will be moved but its target may change because of
deviations to avoid forbidden points for C(R).

H3′′ : by the definition of move m5 there is no robot between
the moving robot and its target, then no collision can
be generated.

H4: the possible self-loops of this task will end as the total
distance of the robots from C(R) decreases.

Lemma VI.8. Let R be a stationary configuration in T4 ∩
(I \ U(F)). From R the algorithm eventually leads to a
stationary configuration in I \ U(F) belonging to T6, T7,
or to a robust configuration in I \ U(F) belonging to T2.

Proof. In this task pre4 = a ∧ ¬c ∧ m holds. Since ρ(R)
divides ρ(F) by hypothesis, c = false and m = true

imply that the current configuration R is asymmetric.
Moreover, according to the way predicates are defined, all
preconditions concerning tasks T5, T6, . . ., T11 are false. In
particular, this implies the following properties:
• being c = false, from pre5 = false we derive f =
false: this means that on C(R) there is a number of
robots greater than or equal to the minimal prime factor
of ρ(F).

• being a = true, from pre7 = false and pre8 =
false we derive that at least one variable among d1
and d2 must be true. This means that on C(R) there is
a number of robots which is not equal to the minimal
prime factor of ρ(F).

By combining the previous properties, we know that on
C(R) there is a number of robots greater than the minimal
prime factor of ρ(F).

According to move m4, the algorithm removes one robot
at a time from C(R) (without affecting C(R) by oppor-
tunely removing non-critical robots) until exactly p robots
remain, where p is the minimal prime factor of ρ(F).
H2: according to Procedure GoToCT, the robot r on C(R)

of minimal view is straightly moved toward a suitable
point on CT . By similar arguments applied in the
proof of Lemma V.1, such a movement maintains
the configuration asymmetric, that is its symmetricity
equals one. Moreover, no multiplicities are created and
hence no unsolvable configurations are generated.

H3: as soon as r starts moving, a becomes false. We can
distinguish two cases: either r reaches its target on CT

or it stops before.
When r reaches its target on CT , each variable re-
ferring to C(R) can be potentially influenced. Among
those, certainly d1 and d2 can change; f cannot change
and hence it remains false; t and u can change;
m = true and does not change; w cannot change.

Consequently, no configurations in T11 nor in T9 can
be generated because of m. Concerning T8, notice that
the following implication holds ¬d1∧u⇒ ¬m. Hence,
since m = true in R and it does not change its
value, then no configurations in T8 can be generated
(P8 requires ¬d1 ∧ u = true). If d2 becomes false,
then task T7 must be applied so as to evenly distribute
robots on C(R), hence making variable u true. This
is due to the fact that m is false along the whole task.
If t becomes true, then task T6 must be applied as 3
would not be the minimal prime factor of ρ(F) and
m = true, that is there are no antipodal robots on
C(R). T5 cannot be reached as f cannot change and
hence it remains false. If nothing changes, still task T4
is applied.
When r does not reach its target on CT (i.e., it is
stopped by the adversary inside Ann), a becomes false.
It can be easily observed that in this case only task T2
can be reached.

H3′ : the transitions to tasks T6 and T7 as well as the self-
loop are obviously stationary because there is only one
moving robot per time which has to reach its target.
Whereas the transition to T2 is robust as the same robot
will be moved by m2 but its target may change because
of deviations to avoid forbidden points for CT .

H3′′ : collisions cannot occur according to Procedure GoToCT.
H4: the repeated application of m4 eventually ends as the

number of robots in ∂C(R) decreases opportunely.

Lemma VI.9. Let R be a configuration in T3∩ (I \U(F)).
From R the algorithm eventually leads to a stationary con-
figuration in I \U(F) belonging to T8 or to a configuration
in I \ U(F) belonging to T2.

Proof. In this task a ∧ ¬c holds and all preconditions
concerning tasks T4, T5, . . ., T11 are false. This means that
from pre3∧¬pre4 it follows m = false. That is, on C(R)
there exists a maximal set of k robots regularly disposed,
such that k divides ρ(F). On C(R) there must be more than
k robots as otherwise being m true, ¬d1∧u would be true as
well and the configuration is instead in T8. The aim of the
move is to keep on C(R) only k robots forming a regular
k-gon (hence C(R) is unchanged) and this is realized by
means of Procedure GoToCT that moves robots from C(R)
to CT . According to move m3, at most ρ(R) robots per
time can move.

H2: according to m3, the robots on C(R) that should
move are those of minimum view chosen among the
set ∂C(R) \ M′ if this is not empty, otherwise all
robots on C(R) of minimal view are chosen. The
selected robots are straightly moved toward suitable
points on CT . As the move is basically the same
applied in T2 but involving robots from C(R), similar
arguments of the proof of Lemma V.1 guarantee to
maintain the symmetricity of the configuration equal to

26 VOLUME xxxx, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

a divisor of k along all the movement. Since k divides
ρ(F) and since no multiplicities are created, then no
configuration in U(F) can be generated.

H3: as soon as robots from C(R) start moving, a becomes
false. We can distinguish three cases: 1) all the active
robots involved by move m3 reach their targets on CT ;
2) some of them do not reach their target but all of
them start moving; 3) some of them have performed
the Look phase but did not start moving yet.
In case 1, if no variable changes its value, still task T3
is applied. Otherwise, being the targets of the moving
robots on CT , then w = false. Moreover, similarly to
what is shown in the proof of Lemma V.1, p remains
false as well because of the limit imposed by angle α
established when calling GoToCT. Differently from m2

now robots start moving from C(R) which potentially
may affect the definition of angle α. However, since in
m3 only robots with the same minimum view can move
concurrently, then they could not have been consecutive
on C(R) when T3 started. This would in fact imply
that all robots on C(R) were equivalent, i.e. u was
true. Since m was false, then also d1 would have been
true, but then the configuration was in T8 rather than
in T3.
Hence, the configuration is not in T9 nor in T11. If d1
becomes false, then the configuration might belong to
T8 if u is true. Whereas if u is false, it does not belong
to T8 nor to T7 because d1 ⇒ d2. Variable m cannot
change its value and it is false, that is the configuration
cannot belong to T6 nor to T4. It does not belong to
T5 because of f.
In case 2, some robots are still inside Ann , hence a

becomes false and task T2 is invoked.
In case 3, some robots might be still inside Ann in
which case task T2 is invoked. Whereas if Ann is
empty then task T3 is still applied because more than
k robots are on C(R), that is ¬d1 ∧ u is false.

H3′ : the reached configuration is stationary if all robots
reach CT (i.e. the configuration belongs to T8). Oth-
erwise there might be robots on C(R) or in Ann
concerning pending moves that will reach a suitable
target on CT , possibly computed from a different task
and/or from a different configuration. By Lemma V.1,
we have that the transition to T2 or even the self-
loop are unclassified. This is due to the fact that when
such transitions occur, there might be robots that have
decided to move while they wouldn’t have moved from
the current configuration, or they would have moved
with respect to a different trajectory.

H3′′ : collisions cannot occur according to Procedure GoToCT.
H4: the repeated application of m3 eventually ends as the

number of robots in ∂C(R) decreases until leaving a
single regular k-gon.

Lemma VI.10. Let R be a configuration in T2∩(I\U(F)).
From R the algorithm eventually leads to a stationary
configuration in I \ U(F) belonging to T4, T6, T7, T8, or
to a configuration in I \ U(F) belonging to T3.

Proof. In this task pre2 = ¬c holds and, consequently, all
preconditions concerning tasks T3, T4, . . ., T11 are false.
We recall that task T2 is responsible for the correct removal
of the robots from Ann toward CT in a configuration R.
Hence C(R) cannot change. Notice that in R, and during all
the movements of all robots in Ann , variable a = false.
Moreover, there might be a number of robots equal to
ρ(R) that can move concurrently according to m2 (this
may occur when the processed configuration is symmetric).
In particular, all robots in Ann closest to c(R) and of
minimal view move according to the trajectory computed
by Procedure GoToCT. Note that at beginning of task T2
the configuration could be non-stationary if the previous
performed task is T3.
H2: if the configuration R is stationary, by Lemma V.1 no

configuration in U(F) is generated. If the configuration
R is non-stationary then the transition that led to R was
robust as generated from task T3 by calling the same
Procedure GoToCT. By similar arguments provided in
the proof of Lemma V.1, it is possible to show that
unsolvable configurations cannot be generated.

H3: when all the moving robots reach their target, the
configuration can be in T2 again if there were more
robots in Ann than the moved ones (e.g., when there
are circles Ci↓ with different index i inside Ann). The
configuration remains in T2 as long as Ann 6= ∅. Once
this occurs, all the robots from Ann have reached CT ,
and the resulting configuration R′ cannot be in T1 as
c = false, in T9 as p remains false by the computed
targets of GoToCT, in T11 as w remains false. In contrast,
R′ could be in any class T3, T4, T6, T7, T8, depending
on the status of the variables.

H3′ : the transition to T3 might be unclassified if R was
originally generated from T3 itself by means of an
unclassified transition. Otherwise, and for any other
task different from T2, the obtained configuration is sta-
tionary as variable a changes its value only when all the
robots in Ann reach CT . The self-loop is unclassified
as the set of robots involved by m2 might change as
well as their trajectories. However, Lemma V.1 ensures
to make Ann empty eventually.

H3′′ : Lemma V.1 guarantees that any configuration obtained
while performing task T2 has no multiplicities. This
implies that move m2 is collision-free.

H4: if a robot does not reach its target because of the
adversary, then the configuration remains in T2, since
no variable changes its value and Ann is not empty (a
remains false). However the moving robot decreases its
distance to CT , so task T2 can be performed a finite
number of times.

VOLUME xxxx, 2016 27

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

Lemma VI.11. Let R be a stationary configuration in T1∩
(I \ U(F)). From R the algorithm eventually leads to a
stationary configuration in I \ U(F) belonging to T2, T3,
T4, T5 or T6.

Proof. In this task c = true, which means there is exactly
one robot r inside CB that must be moved. Robot r is
moved toward any point at distance δ(CB) from c(R).
Hence C(R) cannot change. If the robot does not reach
its target, move m1 is repeatedly applied to r until a point
on CB is reached by the robot. Then, if r does not occupy
c(r) its trajectory is radial.

H2: since c = true, a single robot is in int(CB) and
then the configuration admits symmetricity equal to
one along all the movement of r, that is no unsolvable
configurations are generated.

H3: when r reaches its target (possibly after applying move
m1 many times) all the variables remain unchanged
except c that becomes false. In particular, w = false

as the moving robot remains confined on CB , that
is it has not reached a possible target point of F ,
regardless the embedding; ¬m ∧ p remains false as
neither robots on C(R) nor robots in Ann moved and r
has not reached a possible target point of F ; a remains
unchanged as robots in Ann are not moved; d1, d2 and
u remain unchanged as robots on C(R) are not moved.
We can then conclude that the final configuration can
be only in T2, T3, T4, T5, or T6.

H3′ : the reached configuration is stationary as the only
moving robot is r and no other robot moves as all the
variables remain unchanged during the movement. The
self-loop is instead almost-stationary as the moving
robot will be moved along the same trajectory until
reaching CB .

H3′′ : collisions cannot occur being r the only robot inside
CB .

H4: the repeated application of m1 eventually ends as the
distance of r to its target reduces.

We are now ready to state the correctness of the algo-
rithm.

Theorem VI.12 (Correctness). Let R be an initial con-
figuration of ASYNC robots with chirality, and F be any
pattern (possibly with multiplicities) with |F | = |R|. Then,
there exists an algorithm able to solve the Pattern Formation
problem if and only if ρ(R) divides ρ(F).

Proof. (=⇒) This is the case in which ρ(R) does not divide
ρ(F). By Theorem III.3, F is not formable from R.

(⇐=) To this aim, it is sufficient to show that the provided
algorithm fulfills all properties H1, . . . ,H4. Concerning
property H1, we have already pointed out at the beginning
of this section that the tasks’ predicates P1, P2, . . . , P11

used by the algorithm have been defined as suggested by
Equation 1; then, according to Remark IV.1, H1 holds.

By Lemmas VI.1-VI.11 we have that both H2 (i.e., no
unsolvable configurations are created) and H3 (i.e., the
transition graph is exactly that represented in Figure 4) are
true. In order to conclude the proof, we need to prove
property H4. By Lemmas VI.1-VI.11 we have that self-
loops are executed a finite number of times. We can then
focus on the simple cycles contained in the transition graph
shown in Figure 4, that are: (T2, T3), (T2, T4), (T2, T6, T3),
(T2, T4, T6, T3).

Considering node T2, which belongs to all such simple
cycles, we now show it can be entered a limited number
of times. In particular, concerning the nodes involved in
the simple cycles, T2 can be reached from T3 and T4 by
means of moves m3 and m4, respectively. Actually, both
moves decrease ∂C(R) of at least one robot. Since none of
the involved tasks in the cycles increases ∂C(R), then any
cycle involving T2 can occur a finite number of times.

VII. CONCLUSION
We considered one of the most fundamental problems in
the context of distributed computing by mobile robots,
that is Pattern Formation with chirality. We provided a
full characterization, ultimately showing that asynchronous
robots are as powerful as synchronous ones with respect to
the feasibility of the studied problem. This answers to an
old-standing question about the solvability of the studied
problem by means of asynchronous robots. Moreover, our
result highlights the higher difficulties in designing a reso-
lution strategy in the context of ASYNC robots with respect
to FSYNC (or SSYNC) ones. However, we have exploited
a recent methodology in order to approach the problem so
that the correctness proof results to be well-structured and
less prone to faulty arguments as it happened in previous
attempts.

As main open question, it is still not known whether
PF without assuming chirality is solvable, even by FSYNC
robots.

Another interesting direction of investigation concerns
whether there exists a separation problem for robots moving
in the Euclidean plane between SSYNC and ASYNC, that is
a problem solvable by SSYNC robots but not by ASYNC
ones, within the same setting considered here. Concerning
the separation between FSYNC and SSYNC, it is sufficient
to consider the rendez-vous problem, that is the gathering
problem when only two robots are considered. For robots
moving on graphs, by [16] it is known that such a separation
exists but the considered problem does not preserve the same
properties in the context of robots moving in the Euclidean
plane.

REFERENCES
[1] Subhash Bhagat, Sruti Gan Chaudhuri, and Krishnendu Mukhopadhyaya.

Formation of general position by asynchronous mobile robots under one-
axis agreement. In Proc. 10th Int.’l WS on Algorithms and Computation
(WALCOM), volume 9627 of LNCS, pages 80–91. Springer, 2016.

[2] Marjorie Bournat, Swan Dubois, and Franck Petit. Computability of per-
petual exploration in highly dynamic rings. In Kisung Lee and Ling Liu,

28 VOLUME xxxx, 2016

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2021.3089081, IEEE Access

S. Cicerone et al.: Pattern Formation by Mobile Robots with Chirality

editors, 37th IEEE International Conference on Distributed Computing
Systems, ICDCS 2017, Atlanta, GA, USA, June 5-8, 2017, pages 794–
804. IEEE Computer Society, 2017.

[3] Serafino Cicerone, Alessia Di Fonso, Gabriele Di Stefano, and Alfredo
Navarra. Arbitrary pattern formation on infinite regular tessellation graphs.
In Proc. 22nd Int.’l Conf. on Distributed Computing and Networking
(ICDCN), page 56–65, New York, NY, USA, 2021. ACM.

[4] Serafino Cicerone, Gabriele Di Stefano, Leszek Gasieniec, Tomasz Jur-
dzinski, Alfredo Navarra, Tomasz Radzik, and Grzegorz Stachowiak. Fair
hitting sequence problem: Scheduling activities with varied frequency
requirements. In Algorithms and Complexity - 11th International Con-
ference, CIAC, volume 11485 of LNCS, pages 174–186. Springer, 2019.

[5] Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. “Semi-
Asynchronous”: a new scheduler for robot based computing systems. In
Proc. 38th IEEE Int.’l Conf. on Distributed Computing Systems, (ICDCS),
pages 176–187. IEEE, 2018.

[6] Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. Asyn-
chronous arbitrary pattern formation: the effects of a rigorous approach.
Distributed Computing, 32(2):91–132, 2019.

[7] Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. Embedded
pattern formation by asynchronous robots without chirality. Distributed
Computing, 32(4):291–315, 2019.

[8] Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. A method-
ology to design distributed algorithms for mobile entities: the pattern
formation problem as case study. CoRR, abs/2010.12463, 2020.

[9] Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. “Semi-
Asynchronous”: a new scheduler in distributed computing. IEEE Access,
9, 2021.

[10] Mark Cieliebak, Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro.
Distributed computing by mobile robots: Gathering. SIAM J. on Comput-
ing, 41(4):829–879, 2012.

[11] Mark Cieliebak and Giuseppe Prencipe. Gathering autonomous mobile
robots. In Proc. of the 9th Int.’l Colloquium on Structural Information
and Communication Complexity (SIROCCO), volume 13, pages 57–72.
Carleton Scientific, 2002.

[12] Jurek Czyzowicz, Leszek Gasieniec, Adrian Kosowski, Evangelos
Kranakis, Danny Krizanc, and Najmeh Taleb. When patrolmen become
corrupted: Monitoring a graph using faulty mobile robots. Algorithmica,
79(3):925–940, 2017.

[13] Gianlorenzo D’Angelo, Mattia D’Emidio, Shantanu Das, Alfredo Navarra,
and Giuseppe Prencipe. Asynchronous silent programmable matter
achieves leader election and compaction. IEEE Access, 8:207619–207634,
2020.

[14] Shantanu Das, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and
Masafumi Yamashita. Autonomous mobile robots with lights. Theor.
Comput. Sci., 609:171–184, 2016.

[15] Shantanu Das, Paola Flocchini, Nicola Santoro, and Masafumi Yamashita.
Forming sequences of geometric patterns with oblivious mobile robots.
Distributed Computing, 28(2):131–145, 2015.

[16] Mattia D’Emidio, Gabriele Di Stefano, Daniele Frigioni, and Alfredo
Navarra. Characterizing the computational power of mobile robots on
graphs and implications for the euclidean plane. Inf. Comput., 263:57–
74, 2018.

[17] Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro. Self-deployment
of mobile sensors on a ring. Theor. Comput. Sci., 402(1):67–80, 2008.

[18] Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Peter Wid-
mayer. Arbitrary pattern formation by asynchronous, anonymous, oblivi-
ous robots. Theor. Comput. Sci., 407(1-3):412–447, 2008.

[19] Nao Fujinaga, Yukiko Yamauchi, Hirotaka Ono, Shuji Kijima, and Masa-
fumi Yamashita. Pattern formation by oblivious asynchronous mobile
robots. SIAM J. Computing, 44(3):740–785, 2015.

[20] Nao Fujinaga, Yukiko Yamauchi, Hirotaka Ono, Shuji Kijima, and Masa-
fumi Yamashita. Erratum: Pattern formation by oblivious asynchronous
mobile robots. http://tcs.inf.kyushu-u.ac.jp/~yamauchi/manuscripts/
E-FYOKY15.pdf, 2017.

[21] Leszek Gasieniec, Ralf Klasing, Russell A. Martin, Alfredo Navarra, and
Xiaohui Zhang. Fast periodic graph exploration with constant memory. J.
Comput. Syst. Sci., 74(5):808–822, 2008.

[22] Swapnil Ghike and Krishnendu Mukhopadhyaya. A distributed algorithm
for pattern formation by autonomous robots, with no agreement on coor-
dinate compass. In Proc. 6th Int.’l Conf. on Distributed Computing and
Internet Technology, (ICDCIT), volume 5966 of LNCS, pages 157–169.
Springer, 2010.

[23] Akitoshi Kawamura and Yusuke Kobayashi. Fence patrolling by mobile
agents with distinct speeds. Distributed Computing, 28(2):147–154, 2015.

[24] Nimrod Megiddo. Linear-time algorithms for linear programming in R3

and related problems. SIAM J. Comput., 12(4):759–776, 1983.
[25] Ichiro Suzuki and Masafumi Yamashita. Distributed anonymous mobile

robots: Formation of geometric patterns. SIAM J. Comput., 28(4):1347–
1363, 1999.

[26] Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In Results and
New Trends in Computer Science, pages 359–370. Springer-Verlag, 1991.

[27] Masafumi Yamashita and Ichiro Suzuki. Characterizing geometric patterns
formable by oblivious anonymous mobile robots. Theor. Comput. Sci.,
411(26-28):2433–2453, 2010.

[28] Yukiko Yamauchi, Taichi Uehara, Shuji Kijima, and Masafumi Yamashita.
Plane formation by synchronous mobile robots in the three-dimensional
euclidean space. J. ACM, 64(3):16:1–16:43, 2017.

SERAFINO CICERONE is an Associate Profes-
sor at the Department of Information Engineer-
ing, Computer Science and Mathematics of the
University of L’Aquila. He graduated in Com-
puter Science from the University of L’Aquila
in 1993 and the PhD from the University of
Rome “La Sapienza” in 1998. In general, his re-
search interests revolve around the specification,
design, verification and implementation of effi-
cient algorithms. Specific areas of interest include

distributed algorithms, combinatorial optimization, algorithm engineering,
algorithmic graph theory, spatial and geometric data.

GABRIELE DI STEFANO is a Full Professor
at the Department of Information Engineering,
Computer Science and Mathematics of the Uni-
versity of L’Aquila.
He received his Ph.D. at University “La Sapienza”
of Rome in 1992. His current research interests
include network algorithms, combinatorial opti-
mization, algorithmic graph theory, distributed
computing. He is (co-)author of more than 120
publications in journals and international confer-

ences. He had key-participations in several EU funded projects. Among
them: MILORD (AIM 2024), COLUMBUS (IST 2001-38314), AMORE
(HPRN-CT-1999-00104), ARRIVAL (IST FP6-021235-2), and GEOSAFE
(H2020-691161).

ALFREDO NAVARRA is Associate Professor
since 2015 at the Mathematics and Computer
Science Dept, University of Perugia, Italy. He
received the PhD in Computer Science in 2004
from “Sapienza” University of Rome, Italy. Be-
fore joining the University of Perugia, he has been
with various international research institutes like
the INRIA of Sophia Antipolis, France; the Dept
of Computer Science atthe Univ. of L’Aquila,
Italy; the LaBRI, Univ. of Bordeaux, France. His

research interests include algorithms, computational complexity, distributed
computing and networking.

VOLUME xxxx, 2016 29

