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FILOSE for Svenning
A Flow Sensing Bioinspired Robot

T he trend of biomimetic underwater robots has emerged as a search for an 
alternative to traditional propeller-driven underwater vehicles. The drive of 
this trend, as in any other areas of bioinspired and biomimetic robotics, is 
the belief that exploiting solutions that evolution has already optimized 
leads to more advanced technologies and devices. In underwater robotics, 

bioinspired design is expected to offer more energy-efficient, highly maneuverable, 

Digital Object Identifier 10.1109/MRA.2014.2322287
Date of publication: 10 September 2014

© istockphoto.com/nicolao



52 •  IEEE ROBOTICS & AUTOMATION MAGAZINE  •  september 2014

agile, robust, and stable underwater robots. The 30,000 fish 
species have inspired roboticists to mimic tuna [1], rays [2], 
boxfish [3], eels [4], and others. The development of the first 
commercialized fish robot Ghostswimmer by Boston 
Engineering and the development of fish robots for field trials 
with specific applications in mind (http://www.roboshoal.
com) mark a new degree of maturity of this engineering 
discipline after decades of laboratory trials.

So far, all fish robots have been equipped with off-the-shelf 
robotic sensors, such as cameras and sonars, whereas real fish 
have a dedicated sensing organ, the lateral line, for sensing 
flow. This sensing organ does not have a direct analogy in 
robotics. Neither do any of the human senses (e.g., smell and 
taste) have a direct counterpart to a flow sensor or even an 
English word for it (as there is for hearing or tasting). The 
word svenning was therefore proposed to describe flow sens-
ing with the lateral line (in honor of Swedish biologist Sven 
Dijkgraaf [5]) [6]. Fish svenning is involved in a great variety 
of behaviors. Rheotactic behavior is navigation with respect to 
flow. Fish hold position or orient themselves toward or away 
from the current, and it is assumed that this behavior helps 
fish detect odors and food as well as possibly migrate 
upstream. Lateral line sensing helps fish catch prey by detect-
ing the wake of a swimming fish [7]. It is also used in mediat-
ing schooling behavior and possibly helps with building cog-
nitive flow maps. Tropomorphism (the reaction of the fish to 
flow stimuli) is common to all fish species [7]. 

All fish species and many sea mammals have flow-sensitive 
organs, but no underwater robot so far has made use of local 
flow sensing. Such an obvious discrepancy has inspired several 
research groups to develop artificial lateral line sensors [8] 
using different, often bioinspired, working principles. In [9], 
hot-wire anemometry-based flow sensors are used to detect a 
trail in still water left by a vibrating object (a so-called dipole 
source). A strongly bioinspired artificial flow sensor for flow 
speed detection is described in [10]. Whereas these artificial 
lateral line sensors are sensitive to flow speed (cantilever struc-
tures bending in flow), the sensors used to detect and identify 
the flow signatures of objects in [11] are pressure sensitive.

Traditionally, underwater robotics regards flow as a distur-
bance to be compensated by a vehicle’s control algorithms. At 
the same time, biological evidence suggests that the ability to 
detect hydrodynamic events makes it possible to take advantage 
of the flow. An example is fishes’ behavior in the periodic wake 
of a bluff object, where fish have been observed favoring certain 
hydrodynamically distinct locations. Fish swimming in those 
locations tire less quickly than those swimming in the steady 
flow. There are two behaviors that fish can exploit to reduce 
energy consumption in periodic turbulence. The first is the so-
called Kármán gaiting, where fish adjust their tail beat fre-
quency to the vortex shedding frequency of the object so that 
they can almost passively interact with the vortices. The second 
is the so-called flow refuging, where fish seek shelter in the 
object’s hydrodynamic shadow in the reduced flow zone [12].

None of the underwater vehicles developed so far are capa-
ble of controlling themselves with respect to flow. Here we 

describe, to the best of our knowledge, the design of the first 
flow-sensitive underwater robot capable of flow-aided control. 
This article is an overview of the project Fish Locomotion and 
Sensing (FILOSE). It describes the research methodology, 
summarizes the main findings, and discusses and interprets 
the results of the project and the bioinspired approach.

Method of Bioinspired Robot Design
The general goal of the FILOSE project was to understand 
how fish sense flow and react to the flow stimuli, extract the 
underlying principles of this interaction, and then build 
robots with minimal complexity that react to the flow in the 
same way.

According to a classification by [13], the FILOSE project 
used a solution-driven approach to bioinspired design. We 
first indentified an interesting biological phenomenon: fish 
interaction with the flow and its implication for fish energy 
consumption. We then identified two core principles that led 
to robust and energy-efficient behavior in flow.
1)	�Fish have flow-sensitive organs that can perceive flow 

information. This led to the design of flow-sensitive sen-
sor systems.

2)	�Fish have compliant bodies that make it possible to 
adjust their motion in vortices and use the environment 
to facilitate motion. This led to the design of a compliant 
soft-bodied robot.
The biological data were obtained from both the biology 

literature and experiments. The model animal used for the 
biological experiments was a rainbow trout. Fish behavior 
was recorded in a controlled hydrodynamic environment 
with a high-speed video camera and a digital particle image 
velocimetry (DPIV) system (Figure 1). Various flow condi-
tions were investigated to measure the response of animals to 
variations in the sizes and strengths of wakes. The DPIV data 
and fish motion were later analyzed with the specially devel-
oped MathWorks freeware (http://www.mathworks.com/
matlabcentral/fileexchange/37323).

An additional constraint posed to the bioinspired solution 
was the application of a reductionist approach: flow-relative 
behavior of an underwater robot with a minimal complexity 
of its mechanical design, sensor design, and control.

As is usually the case for research and development proj-
ects, the robot prototypes underwent several development 
stages in a frequent testing and developing cycle. The project 
also developed two alternative lateral line systems, only one of 
which was eventually tested onboard a moving robot. 

Fish Robot Actuation
The underlying principle of the FILOSE mechanical design 
was the exploitation of the shape and material properties of 
the body to create mechanically simple but energetically 
favorable and robust robots. As such, we explored the 
extendibility of the soft robotics paradigm to underwater 
robotics. There are several successful examples of using the 
properties of soft materials to implement the principle of 
morphological computations—a design principle where the 
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design parameter space includes material properties and 
body geometry to reduce the system’s complexity and 
increase robustness [14]. No underwater robots currently 
explicitly account for hydrodynamic effects to exploit the 
principles of morphological computation.

Direct application of a bioinspired design would imply rep-
licating the highly distributed system of muscle fibers, which, 
with a current technology of electromechanical (EM) devices, 
would lead to large and complicated machines. Currently, the 
undulating motion of fish robots is achieved using serial chain 
kinematics of a caudal tail consisting of rigid links and rota-
tional joints [1]–[4]. Those design approaches would contra-
dict with our first identified design principle: using a soft and 
compliant body to facilitate interaction with flow. An alterna-
tive approach was first explored in [15], where the undulating 
motion was created with a soft body and a single motor. This 
article uses these findings and designs to build a bioinspired 
fish robot driven by a compliant part with some modifications 
to the mechanical design.

From a modeling point of view, a system with flexible links 
has infinite degrees of freedom. Unlike multibody rigid sys-
tems, exact solutions for modeling the dynamics are not feasi-
ble, so numerical methods are used instead. We extended the 
approach in [15] for modeling a nonhomogeneous body with 
the assumed modes method to derive the equations of 
motion. In contrast to [15] and [16], the modeling objectives 
are different: the model in [15] and [16] was developed to 
mimic the deformation of fish tails by taking the fish motion 
as an input and the torque amplitude as an output. In this arti-
cle, the assumed method is used to derive the relationship 
between the applied forces/moments and the resulting defor-
mations. Our model predicted, in accordance with the theory 
of vibration, that a compliant body exited by an external force 
can deform in defined modes that are dependent on its actua-
tion and natural frequencies. The use of a rigid plate for actua-
tion and the effects of internal damping are considered. Light-
hill’s elongated body theory is used to model the interaction 
between the robot and the surrounding water [17]. When 
mimicking the geometry, stiffness, and stiffness distribution 
of a rainbow trout, the kinematics of the fish can be achieved 
when the tail is actuated only by a single servo motor [18]. 
This is consistent with biological findings suggesting that, at 
the cruising speeds of 1–2 body length per second (BL/s), a 
fish uses mainly the anterior muscles of its body while the rest 
of the tail is passive and functions as a carrier of the traveling 
wave [19]. Our experiments showed good agreement between 
the predicted and measured motions [17]. They also demon-
strated that such a system, as expected, was most efficient 
when actuated at its natural frequencies. We, therefore, fur-
ther adopted a control mechanism where the tail beat fre-
quency was fixed and the swimming speed of the robot was 
controlled by changing the tail beat amplitude. Another 
option would be to vary the stiffness of the tail, which is cur-
rently left for future work. Biological evidence also shows that 
fish change their swimming speed by controlling the fre-
quency, actuation amplitude, and body stiffness [20]. Thus, 

our simulations and experiments have implications for the 
soft-bodied robot design, showing that the kinematic enve-
lope of a real fish is not always possible to achieve if the elas-
ticity profile of the robot is static. The general theoretical 
framework developed for modeling a nonhomogeneous fin 
propulsor is, in the future, also suitable for analyzing the 
swimming modes of a swimmer with a stiffness control. A 
FILOSE robot prototype is shown in Figure 2, and its specifi-
cations are listed in Table 1. It consists of a rigid head and a 
compliant tail actuated by a servomotor that pulls two steel 
cables of an actuation plate. Flow sensors are mounted on the 
rigid head. Onboard data acquisition and servomotor control 
are implemented with an ARM processor with a Linux kernel. 
Flow sensing is analyzed in two dimensions, and, therefore, 
the robot has no buoyancy control. It is operated in a tethered 
mode to permit run-time debugging and data analysis.

Lateral Line Sensing
The sensing unit of a fish’s lateral line is the neuromast, a hair 
cell that bends in the flow. The lateral line is a dual system  
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Figure 1. (a) A snapshot of a high-speed overview camera 
used to detect fish motion in a Kármán vortex street (KVS). 
A cylinder, partially visible on the left edge, is used to create 
periodic turbulence. (b) A DPIV image of the flow around a fish 
postprocessed to obtain the velocity vector field around the fish. 
The blue arrow indicates a vortex approaching the fish.
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consisting of superficial and canal subsystems. Superficial neu-
romasts react to the flow speed on the surface of the fish’s skin. 
Canal neuromasts are situated in the canals under the skin, 
and each of them measures the pressure difference between 
adjacent points where the canal emerges at the surface of the 
skin. This project has created several variations of two types of 
lateral line systems. The first type is based on microelectrome-
chanical system (MEMS) stress-driven nitride-based bilayer 
design (Figure 3), equipped by a strain gauge. It consists of a 
multilayered cantilever beam, whose stress gradient along its 
cross section allows it to bend upward, mimicking a natural 
single hair cell of a neuromast in its EM characteristics and in 
its shape. Waterproofing is achieved by Parylene conformal 
coating. This Parylene encapsulation was demonstrated to be 
an efficient method to control the mechanical and sensory 
properties of a bioinspired artificial hair cell in a similar way as 
the natural hair cell [21]. The MEMS architecture easily adapts 
to flow variations due to its deformability in all points along 

the cantilever beam and shows robustness up to 1 BL/s. These 
lateral line sensors have been demonstrated to respond to flow 
fluctuations in the air and water but have not yet been demon-
strated on an underwater robot.

The other lateral line system consists of commercial pres-
sure sensors, complemented by specialized acquisition elec-
tronics, to improve its sensitivity and accuracy (Figure 4). The 
sensors were mounted on the rigid head of the fish robot pro-
totypes while the complexity of the sensor systems varied from 
a simple two-sensor system to a three-dimensional (3-D) lat-
eral line consisting of 16 sensors. The two-sensor systems 
demonstrate two approaches to apply a biomimetic approach 
on a different level of abstraction. The first one (a MEMS can-
tilever-based lateral line) is an approach of more directly 
applying the biological analogy. It directly copies the sensor 
mechanics of a neuromast—an erect mechanical structure that 
bends in flow. Also, it has a similar height to a real superficial 
neuromast—just about the length to reach through the 
boundary layer. 

The other system represents a bioinspired design on a 
more abstract level. At this level of the abstraction, the direct 
analogy to neuromasts does not matter and, in fact, is also not 
applied. Real fish do not have neuromasts that directly mea-
sure pressure; instead, the canal lateral line is realized by using 
flow-sensitive neuromasts embedded into a canal system. In 
contrast, our system uses sensors that measure absolute pres-
sure, and this has no direct analogy in fish biology. As such, 
the bioinspired approach adopts the solution to the problem 
rather than a direct biological analogy [22]. In this case, the 
problem is more efficient control in flow and the solution is to 
use flow sensing.

Hydrodynamic Environments
Live fish as well as underwater field robots operate in compli-
cated hydrodynamic environments with turbulence, currents, 
and waves. These environments are too complicated to use as 
a testbed for a developing technology, and they are difficult to 
quantify and control. We, therefore, limited our problem to 
simply reproducible but still sufficiently complex and variable 
environments of periodic turbulence. Periodic turbulence 
occurs behind bluff objects in flow at moderate Reynolds 
numbers. It is characterized by a distinct repeating pattern of 
swirling vortices, known as the KVS. On the one hand, KVS is 
a well-studied hydrodynamic effect that can be realized in 
laboratory conditions with high repeatability. On the other 
hand, it is also a sufficiently common natural phenomenon, 
appearing, for example, in rivers behind rocks or other objects 
obstructing the flow or in oceans on a global scale as gyres.

Under laboratory conditions, KVS is created in a flume 
where the stream is obstructed with a cylinder. A cylinder or 
half-cylinder creates a well-defined periodic wake, whose 
characteristics can be adjusted by changing the incoming 
laminar flow speed or the diameter of the cylinder. The tur-
bulence patterns can be visualized using a DPIV system. The 
mean velocity field and its standard deviation, vorticity field, 
wake width, the location of the vortex formation point, vortex 
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Figure 2. The FILOSE robot prototype. 1) Rigid head of the robot. 
2) Servo-motor. 3) Middle section. 4) Steel cables. 5) Actuation 
plate. 6) Compliant tail. 7) Rigid fin. 8) Pressure sensors.

Table 1. The FILOSE robot design specifications. 

Length 0.5 m

Maximum width 0.085 m

Maximum height 0.156 m

Weight 3.04 kg

Motor Futaba BLS152 brushless servo

Maximum torque 3 Nm

Controller 400-MHz ARM

Power source External 24 V

Tail material Dragon Skin 20 + Slacker additive 
by Smooth On

Young’s modulus 83 kPa

Density 1,080 kg/m3
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shedding frequency, and wavelength are some of the features 
that can be extracted and visualized.

Figure 5(a) shows the schematic of the periodic turbulence 
together with the experimentally obtained DPIV image in Fig-
ure 5(b). Figure 5(c) and (d) shows postprocessed DPIV data 
that represents, respectively, the vorticity and the velocity val-
ues. In Figure 5(c), blue and red clearly show the street of 
opposite signed vortices. The velocity graph in Figure 5(d) 
shows the suction zone and the reduced flow zone behind the 
cylinder. The reduced flow zone is the energetically favorable 
place that fish have been observed to prefer.

Characterization of Hyrodynamic Environments 
and Detecting Hydrodynamic Events
To develop new control algorithms for our biomimetic robot, 
we first needed to analyze the hydrodynamic environments 
in which the robot was situated. The DPIV analysis of the 
flow field made it possible to visualize these environments 
globally from the observer’s perspective, whereas the pres-
sure recordings from the immersed platform provided a local 
picture of the flow from a situated perspective. This platform 
was static and attached on a force gauge, which gave infor-
mation about the hydrodynamic forces acting on the plat-
form [23]. The force measurements taken at different loca-
tions in the vortex streets showed that the magnitude of 
lateral forces (perpendicular to the flow stream) was signifi-
cantly larger in vortex streets and the measurements were 
oscillating with the vortex shedding frequency. In contrast, 
the drag (force along the flow stream) was 42% less than the 
one measured in uniform flow. This drag reduction was 
mainly due to the shadowing effect of the cylinder. These 
measurements provided insights on what a mobile robot 
would experience in vortex streets.

By correlating pressure data with ground-truth DPIV data, 
we were able to identify distinct pressure cues that signaled 
interesting hydrodynamic events taking place around the 
robot. First, we identified vortex streets. The key feature that 
separates vortex streets from other flow regimes is the regular 
pattern of vortices in space and time [24]. This regularity was 
reflected in the pressure measurements and was identified 
through Fourier decomposition [24]. When the robot was in 
the vortex street, pressure readings from all of the sensors de-
tected the vortex shedding frequency as the dominant fre-
quency [Figure 6(a)]. The number of sensors having a con-
sensus on the dominant frequency decreased gradually when 
the robot was systematically moved away from the vortex 
street. Besides analyzing absolute pressure measurements, we 
found it advantageous to compare pressure at different loca-
tions. For instance, the pressure difference between the nose 
and side sensors was distinct in vortex streets and uniform 
flows. In uniform flows, the pressure recordings from the 
nose sensor were higher than those from the side sensors, 
whereas, in vortex streets, the opposite was true [25] [Fig-
ure 6(b)]. When the robot was moved away from the vortex 
street laterally, the pressure difference between the nose and 
side sensors increased gradually with the distance and 

finally reached normal values observed in uniform flows. The 
direction of motion (moving to the right or left) was deter-
mined by comparing the pressure values between the two 
sides of the robot.

100 nm
Cupula

Hair Cells

Afferent Fibers

Figure 3. The bioinspired MEMS artificial lateral line flow sensor. 

(a)

(b)

Figure 4. (a) The pressure sensors mounted on circuit boards 
with onboard electronics. The pressure sensors of an artificial 
lateral line use MS5407-AM diver’s watch sensors by Intersema 
Sensoric SA. The sensing unit is connected as a Wheatstone 
bridge to give the sensor a high sensitivity of 56 mV/bar in the 
full scale (0–7 bar). We are using a 22-b differential analog-to-
digital converter (ADC) with 124.5-mV reference voltage so that 
we can measure pressure with a least significant bit (LSB) of 
about (0.106 Pa). (b) The schematic of a fish robot prototype 
with a 3-D pressure-sensing lateral line. 
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After recognizing the presence of the vortex street, the 
next problem was to estimate the position and orientation of 
the robot with respect to the object’s wake. The robot’s  
distance from the cylinder was determined unambiguously 
by monitoring the turbulence intensity (calculated as the 
ratio of the standard deviation of the sensor readings to the 
mean value over an appropriate time window), and the 
amplitude of the dominant frequency [Figure 6(c)]. When 
the robot was moved closer to the suction zone, fewer sen-
sors detected the vortex shedding frequency as the dominant 
frequency and the pressure at the tip of the robot was signifi-
cantly lower. We found that the pressure difference between 
the left and right sensors was correlated with the orientation 
of the robot [Figure 6(d)].

Next, we extracted the robot’s relative swimming velocity 
(i.e., flow velocity for a static robot) from the pressure mea-
surements. In uniform flows, absolute pressure measurements 
as well as the pressure difference between the nose and side 
sensors increased quadratically with the flow velocity [24]–
[26]. In vortex streets, we looked at the cross-correlation be-
tween sensor pairs randomly chosen from the same side of 
the robot. The peak values in the cross-correlation graphs in-
dicated the amount of time required for a vortex to travel fur-
ther down the body from one sensor to the next. The velocity 
of the vortex was then computed by dividing the distance be-
tween the two sensors to the estimated traveling time [27].

Up until now, our analysis was based on the pressure 
recordings obtained from a static robot configuration. To 
extract relevant flow information from the moving craft, we 
first need to understand how the pressure signals are 
impaired by the self-motion of the robot. For this purpose, 
we analyzed the motion of the robot in uniform flow by 
externally moving the robot with a robotic arm and record-
ing pressure data and the robot’s motion simultaneously. 
Two motion types were investigated: forward–backward 
motion along the direction of the flow and side-to-side 
motion perpendicular to the flow. We obtained two sec-
ond-order polynomial models, which incorporated the 
position of the sensors, velocity, and acceleration of the 
robot to predict pressure distribution around the robot. 
The first model was presented in [26]. Through analysis of 
these models, we determined that, when the robot was 
moving with a velocity smaller than 0.2 BL/s, the self-
motion effects on pressure sensing were negligible; the sig-
nal-to-noise ratio (the amplitude of pressure signals from 
hydrodynamic events divided by the amplitude of pressure 
signals generated by the self-motion of the robot) was ade-
quate to characterize the hydrodynamic environments, as 
described in a static configuration. This method is also 
used to indentify parameters of the hydrodynamic environ-
ment in the section “Flow-Aided Control and Navigation” 
(Experiment 5) for flow-aided control. However, at higher 
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Figure 5. The KVS. (a) Schematics m  is the wavelength of the KVS. (b) A snapshot of a DPIV image of the flow obtained during 
fluid dynamics experiments. This data gets analyzed using (http://www.mathworks.com/matlabcentral/fileexchange/37323) and is 
an input for (c) and (d). (c) Instantaneous vorticity obtained from the DPIV image. The blue and red regions show high vorticity in 
opposite directions. The plot is obtained from two consequent DPIV snapshots, and a Gaussian filter is applied to smoothen the plot 
[25]. (d) Velocity readings averaged more than 10 s (500 frames obtained with 50-Hz frequency): 1) suction zone and 2) reduced 
flow zone. 
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swimming velocities, the self-generated pressures would 
impair the perception of the environment. To minimize the 
self-motion effects, new filtering algorithms are needed so 
that external hydrodynamic events relevant to the robot’s 
mission can be identified.

The robot’s motion itself can be advantageous for sensing. 
For a stationary robot, the useful information has to be recov-
ered from the analysis of a pressure pattern measured at one 
particular location. The moving robot can sample the hydrody-
namic environment at multiple locations. By comparing multi-
ple sensing patterns, it is possible to better evaluate the robot’s 
current state. For instance, if the turbulence intensity and 
amplitude of the dominant frequency decrease as the robot 
moves from one arbitrary point to the next, we can deduce 
from Figure 6(c) that the robot would approach the cylinder. In 
Experiment 5, pressure gradients are used to guide the moving 
robots toward the control set point in the reduced flow zone.

Flow-Aided Control and Navigation
The experiments of flow-aided control of the FILOSE robot 
are conducted in uniform flow and in KVS in a flow tank, 
where the flow and the trajectories of the robot are recorded 
(Figure 7). The experimental setup is described in Figure 8. 
Experiments are conducted in a flow tunnel with a 0.5-m 
wide, 0.5-m high, and 1.5-m long working section. The robot 
is freely swimming but its motion is limited to two dimen-
sions to permit trajectory tracking and motion analyses using 
an overview camera. The following experiments of flow-aided 
control were conducted.

Experiment 1: Detection of Flow Direction and  
Swimming Against the Flow
The direction of the uniform flow is detected by measuring 
the pressure difference between two sensors on the sides of 
the robot. A simple Braitenberg controller turns the robot 
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Figure 6. The pressure cues recorded from a robotic platform immersed in uniform flows (red-filled circle) and vortex streets 
(green-filled circle). (a) In vortex streets, most of the pressure signals were dominated by the vortex shedding frequency. The 
number of sensors detecting vortex shedding frequency decreased gradually when the robot was moved away from the vortex 
street. In contrast, in uniform flows, each pressure measurement had a different frequency with maximum amplitude, so there 
was no agreement among sensors. (b) The pressure difference between nose and side sensors is distinct between uniform flows 
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to estimate the position of the robot with respect to the cylinder unambiguously. (d) The amplitude of the pressure difference 
between the right and left sides of the robot was linearly correlated to the robot’s orientation with respect to the oncoming flow. 
The slope of the lines was different in uniform flows and vortex streets. 
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toward the side with a higher pressure by adding an offset to 
the tail actuation signal. In uniform flow, two sensors and a 
simple Braitenberg controller were demonstrated to be suffi-
cient to keep the fish robot oriented into the flow [28]. Fig-
ure 9 demonstrates the trajectories of the robot with and 
without feedback control and those compared with feedback 
control with the overview camera.

Experiment 2: Flow-Aided Trajectory Following 
The robot in uniform flow uses a sideslipping maneuver. 
Sideslipping permits the robot to move laterally with respect 
to the incoming flow by exploiting its passive dynamics. Side-
slipping is controlled by adjusting the heading of the robot 

with respect to the flow when following a closed trajectory in 
a stream. A simple proportional-integral-derivative (PID) 
controller was implemented for controlling the motion of side 
slipping laterally and transversely [29]. Traditionally, when an 
underwater robot follows a trajectory, the coordinates of the 
waypoints are given in the global coordinates and also the 
speed of the robot is calculated with respect to Earth’s refer-
ence frame. This experiment suggests that it is advantageous 
to know the flow-relative speed. It leads to reduced energy 
consumption and more stable trajectories. Figure 10(a) shows 
the trajectory of an underwater robot in the flow compared 
with the desired trajectory and the trajectory where the robot 
is not aware of the flow conditions (the standard case for 
underwater robot control). The average deviation from the 
desired trajectory is reduced by 3% for trajectory 1 (where the 
parallel flow disturbs the vehicle a little) and 82% for trajec-
tory 2 where the flow is mostly perpendicular to the desired 
trajectory. Figure 10(b) shows a more complicated case of fol-
lowing a closed trajectory in the flow that the robot traverses 
without sharp turns in the waypoints.

Experiment 3: Station-Holding in a Steady Stream
The robot estimated the flow speed from the pressure read-
ings at the sides of the head. The flow speed is calibrated with 
respect to the sensor readings at 0 m/s velocity. We used 
these signals as short-term odometry to compensate for the 
downstream drift using a PID controller. Our experiments 
using the setup in Figure 8 showed that the odometry read-
ing from pressure sensors estimated the robot’s relative posi-
tion with respect to the flow, with an accuracy less than one 
body length of the robot over a duration of 270 s with vary-
ing flow speeds. (The initial flow speed was 11 cm/s and it 
was increased after every 30 s by 1 cm/s up to 19 cm/s.) The 

Figure 7. The FILOSE robot in flow in the DPIV flume pipe. The white 
dust is DPIV particles used to visualize the flow. A collimator, which 
is visible to the left, is used to create a uniform flow in the flow pipe. 
(Photo courtesy of the Centre of Biorobotics, Tallinn University of 
Technology.)
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downstream drift at the end of the experiment was 1/5 of the 
robot’s body length [25]. Currently, a standard method in 
underwater robotics is to use an acoustic Doppler current 
profiler (ADCP) to estimate the bulk flow speed. ADCPs are 
bulky, costly, and energy-consuming devices that are not 
suitable for small underwater vehicles. The lateral-line-based 
odometry can here provide a low-cost alternative for estimat-
ing the flow-relative speed and providing the velocity esti-
mate in the absence of a global reference.

Experiment 4: Reducing Energy Consumption in  
Turbulence by Exploiting Vorticity
The experimental setup of this experiment is different than 
that shown in Figure 8 in that the robot is harnessed to a force 
plate for force measurements. The lateral line signals are used 
to control the tail beat timing. A motion pattern similar to 
Kármán gaiting is achieved by adjusting the frequency of the 
tail beat to the vortex shedding frequency and fine-tuning the 
tail beat timing. The tail bends against the high-pressure zone 
created by the vortex, and the robot takes advantage of the 
increased perpendicular component of the lift force cre-
ated by pressure differences on both sides of the flexing tail 
(Figure 11). The results are compared with those of the tail fin 
propulsion in the steady flow with the same incoming flow 
speed. In comparison, 100% more thrust is created in KVS 
with the appropriate tail beat timing than in steady flow [30].

Experiment 5: Reducing Energy Consumption by  
Holding Station in a Hydrodynamic Shadow
We first identified the reduced flow zone [zone 2 in Fig-
ure 5(d)] behind the object from DPIV images and adjusted 
the thresholds of pressure readings to identify the point of ref-
erence for station-holding. The robot compensates for the lat-
eral and longitudinal drift using PID controllers and keeping 
the station in the hydrodynamic shadow. Monitoring the 
motor current consumption reveals that swimming in the 
reduced flow zone consumes 7% less energy behind the cylin-
drical object. The standard deviation of the downstream posi-
tion behind the cylinder is 40.5 mm, and that of the lateral 
position is 12.7 mm. When the cylinder was replaced by the 
cuboid, creating a sharper pressure drop between the suction 
zone and the reduced flow zone, the energy consumption 
reduced by 17%. The standard deviation of the downstream 
position was 21.2 mm, and that of the lateral position was 
13.3 mm in this experiment. The duration of both experi-
ments was 270 s [25]. The trajectories of the robots are plot-
ted in Figure 12.
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Experiment 6: Comparative Experiments
Trajectories of a real fish and the robot were recorded in a uni-
form flow and when swimming behind in an object’s wake. A 
swim path analysis to determine path tortuosity (as a measure 
of the complexity of the trajectory) was performed on data 
extracted from high-speed video recordings of four rainbow 
trout (Oncorhynchus mykiss) with a total body length L^ h of 18 
! 3 cm swimming. Two different points on the fish midlines 
were used to track the path at 10 and 30% body length points, 
in flow speeds of 10, 20, and 30 cm/s and behind a range of 
cylinders with diameters of 2.5, 4.5, and 10 cm.

Path tortuosity was 
determined from the 
fractal dimension or frac-
tal d, one of a number of 
possible tortuosity esti-
mators. Path analysis 
using the fractal dimen-
sion (D) data (estimated 
by the dividers method to 
determine the path length 
at varying step sizes) indi-
cates that trout swim-
ming in the unsteady 
KVS had a significantly 

lower path tortuosity than the steady uniform flow 
. , .P n0 05 451 =^ h  Within the KVS environment, the path 

tortuosity of the largest-cylinder-diameter swim paths was sig-
nificantly lower than that of the smaller cylinder diameters 

. , .P n0 05 451 =^ h  A similar decrease in path tortuosity was 
measured when comparing the robot’s trajectories in uniform 
flow and behind the cylinder.

This suggests that the path tortuosity is influenced by the 
hydrodynamic forces in the environment. Fish and robots in 
KVS appear to have smoother trajectories than those in uni-
form flow. We hypothesize that the hydrodynamic forces 
within the KVS drive the fish/robot toward the center of the 

wake and thereby reduce the complexity of the trajectories, 
whereas, in the steady flow, the environment has no such 
environmental cues that help to stabilize the fish or the robot. 
This explanation is supported by measurements in [23], 
where we show that the drag profile in KVS has a single local 
minimum at the midline of the wake.

Discussion
Though all 30,000 fish species have a lateral line organ, so far, 
there have been no technological counterparts to lateral line 
sensing in use for controlling underwater robots. The contri-
bution of this article is to give a new sense, svenning, to aid 
the control of underwater vehicles. Once flow can be per-
ceived, it can be analyzed and exploited for a variety of pur-
poses. Traditionally, flow is treated as a disturbance in under-
water robotics, to be compensated by the vehicle’s control 
algorithms. With flow sensing, flow becomes a source of 
information, and, with clever sensing–actuation coupling, 
flow becomes a source of energy. Flow information can be 
fused with other sensor modalities and used for vehicle con-
trol. Knowing flow direction and strength permits movement 
with respect to the flow-relative reference frame as opposed to 
the global reference frame.

Flow information can also be incorporated into higher-
level behaviors. Salient flow features, such as wakes of objects 
or steady currents, could be identified and classified and used 
as landmarks. Again, this information can be fed into a vehi-
cle’s navigation algorithm and used for map building and 
localization. Flow sensing permits identification of flow con-
ditions where a vehicle’s control is more stable and energy 
efficient. Coupling of flow sensing and actuation opens up 

(a)
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Figure 11. The fish tail position with respect to the vortex when 
the craft produces (a) max thrust and (b) minimal thrust. 
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270 s in a reduced flow zone [Zone 2 in Figure 5(d)] generated 
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Figure 8 [25].

All fish species and many 

sea mammals have flow-

sensitive organs, but no 

underwater robot so far 

has made use of local  

flow sensing.



61september 2014  •  IEEE ROBOTICS & AUTOMATION MAGAZINE  •

new opportunities to exploit flow for energy-efficient motion. 
Flow-relative control could also make traditional rigid hull 
underwater robots more efficient, but there is more to gain 
from flow perception and robot–fluid interaction from small 
devices, with flexible fins or rudders.

This aligns flow-sensing robots with the increasingly pop-
ular trend of soft robotics. Hydrodynamic forces can be best 
exploited if the craft is continuous, flexible, and able to vary its 
stiffness to adapt to different conditions. For example, our 
FILOSE robot would need a stiffer tail to produce enough 
thrust in uniform flow and a floppy passive tail to bend in 
KVS between the vortices. Designing such a robot can be a 
challenging problem for mechanical engineering. Moreover, 
we still have a limited understanding of the theoretical foun-
dations of coupled compliant body-fluid motion; the hydro-
dynamic effects in turbulence are complex and highly nonlin-
ear and do not lend themselves well to real-time control. Our 
work shows that, in many cases, approximate linear control 
laws are sufficient, but it is unclear as to how well they scale 
up to more complicated tasks and environments.

Another challenge is to develop suitable lateral line sensors 
that would tremendously improve the perception and analysis 
of the fluid environment. Although several promising solu-
tions exist, the FILOSE robot is the first one to exploit the lat-
eral line sensors onboard a moving craft. The project devel-
oped in parallel two sensing systems, one based on MEMS 
technology and direct biological analogy, and another based 
on the commercial sensors and functional similarity. The first 
system was more complicated, and improving its reliability for 
onboard control is still an ongoing work. The other system was 
successfully demonstrated for control of the robot. However, 
its sensitivity does not compare with the one of the biological 
systems and may not be sufficient for complex real-world 
environments. For comparison, the sensitivity of fish canal lat-
eral line neuromasts is four orders of magnitude higher than 
that of the FILOSE pressure sensors, which inevitably sets a 
limit to what the svenning robot can perceive compared with 
fish [31]. From the point of view of bioinspired design meth-
odology, conclusions can be drawn for designing bioinspired 
robots in the future. The success of biologically inspired design 
critically depends on establishing an analogy at the appropriate 
level of abstraction [22]. This was well evident from compar-
ing the application of two different flow-sensing systems as 
well as the design of the compliant tail, where functional simi-
larity was preferred over a direct analogy of a real-fish highly 
distributed actuation system. Finally, the bioinspired locomo-
tion and lateral line sensing offer possibilities to better under-
stand how real fish sense the world and react to hydrodynamic 
stimuli and to use those findings to build better technology on 
the next development iteration. From the experiments con-
ducted with the robot, we know what the flow looks like from 
the situated perspective and what information is there to sense. 
We also understand from comparative experiments as to how 
the stability and efficiency of the robot or a fish arise from the 
interplay with the environmental conditions. If a rigid meth-
odology is used to conduct comparative experiments with fish 

and robots, that will both enhance our understanding of 
nature and enable the development of better technology.
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