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Summary

1. Digital tracking technologies have considerably increased the amount and quality of animal trajectories,

enabling the study of habitat use and habitat selection at a fine spatial and temporal scale. However, current

approaches do not yet explicitly account for a key aspect of habitat use, namely the sequential variation in the

use of different habitat features.

2. To overcome this limitation, we propose a tree-based approach that makes use of sequence analysis methods,

derived from molecular biology, to explore and identify ecologically relevant sequential patterns in habitat use

by animals. We applied this approach to ecological data consisting of simulated and real trajectories from a roe

deer population (Capreolus capreolus), expressed as ordered sequences of habitat use.

3. We show that our approach effectively captured spatio-temporal patterns of sequential habitat use by roe

deer. In our case study, individual sequences were clustered according to the sequential use of the elevation gradi-

ent (first order) and of open/closed habitats (second order). We provided evidence for several behavioural pro-

cesses, such as migration and daily alternating habitat use. Some unexpected patterns, such as homogeneous

sequences of use of open habitat, could also be identified.

4. Our findings advocate the importance of dealing with the sequential nature of movement data. Approaches

based on sequence analysis methods are particularly useful and effective since they allow exploring temporal pat-

terns of habitat use in a synthetic and visually captive manner. The proposed approach represents a useful and

effective way to classify individual movement behaviour across populations and species. Ultimately, this method

can be applied to explore the temporal scale of ecological processes based onmovement.

Key-words: autocorrelation, distance, exploratory analysis, habitat use, Hamming, roe deer, spa-

tio-temporal sequences, trees

Introduction

Recent advances in digital tracking technology and increased

availability of high-resolution environmental data by remote

sensing have facilitated the collection of spatio-temporal series

of animal-borne data (Cagnacci et al. 2010). Application of

satellite navigation technology (e.g. Global Positioning Sys-

tem, GPS) to individual animals allows recording temporal

sequences of animal locations at an unprecedented spatio-tem-

poral resolution. Moreover, by projecting these locations onto

spatial layers, including satellite images, it is possible to obtain

robust and standardized information about the habitat of

these animals (Urbano et al. 2010).

At present, an array of both exploratory and inferential

methods is available to the analyst to investigate the relation

between animal movement and the use of habitat. Explora-

tory methods apply multivariate analysis techniques (e.g. gen-

eral niche-environment system factor analysis, GNESFA, the

K-select analysis, (canonical) outlying mean index analysis;

see R-package AdehabitatHS of Calenge (2006) for an over-

view) to identify relevant variables describing the habitat (or

the realized niche) of a population. Similarly, decision tree

learning methods, such as random forest and CART mod-

elling, are data mining techniques that present decision rules

for classifying a set of data based on associated explanatory

variables (see R-package rpart of Therneau, Atkinson & Rip-

ley (2014)). Conversely, inferential methods mainly consist of

a variety of regression models testing the disproportion

between used and available habitat units (i.e. habitat selec-*Correspondence author. E-mail: degroevejohannes@gmail.com
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tion; Johnson 1980), such as resource selection functions,

RSF (Boyce et al. 2002) and step selection functions, SSF

(Fortin et al. 2005). In essence, exploratory methods offer a

description of animals’ habitat, whereas inferential methods

allow to test specific hypotheses (Calenge & Basille 2008). In

this sense, the first can be used to select explanatory variables

that are relevant for the application of the latter (e.g. Calenge

2006; Wittemyer et al. 2008; Dray, Royer-Carenzi & Calenge

2010).

Despite the proliferation of exploratory methods, current

approaches rarely evaluate the sequential use of habitats by

animals, that is the sequence of locations (trajectory) vs. the

underlying ordered pattern of habitat use. In movement ecol-

ogy, temporal patterns have been addressed, for example, by

exploration of temporal autocorrelation ofmovement parame-

ters (Wittemyer et al. 2008; Dray, Royer-Carenzi & Calenge

2010). We wish to draw attention on the meaningfulness of

temporal patterns when describing habitat choices. For exam-

ple, the same proportion of habitat use in a certain time inter-

val may correspond to very different sequential patterns. An

animal may continuously use a single habitat type, then switch

to another, or, in contrast, alternate the use of both. Such spa-

tio-temporal patterns may correspond to alternative space-use

tactics, and find a deep ecological significance. Currently,

insights in the spatial patterns of use ofmultiple habitat-related

variables are easy to obtain, for example using suitability maps

(e.g. Calenge 2006); however, very few methods provide

insights into spatio-temporal patterns combined. An interest-

ing publication in that direction comes from Benhamou &

Riotte-Lambert (2012) presenting a framework using move-

ment-based kernel density estimation (utilization distribution)

and computation of residence time combined to explore the

areas of intensive use. Here, we are interested into methods to

visually explore the sequential and thus temporal structure of

habitat use.

In other research areas, such as geo-visual analytics, impor-

tant progress has been made in terms of visually exploring

sequential data at variable spatio-temporal scales (Andrienko,

Andrienko & Heurich 2011). Buchin, Dodge & Speckmann

(2012), for example, developed a geometric algorithm for tra-

jectory clustering that takes into account environmental con-

text parameters such as temperature and habitat type. In

sociology, on the other hand, the link between sequential

order of human behaviour and space use has been investi-

gated using sequence analysis methods (SAMs) (Abbott

1995). This technique is principally used in the field of bioin-

formatics to evaluate the degree of similarity among DNA or

protein sequences, but has also been applied successfully in

transportation science (Wilson 2008), tourism research (Sho-

val & Isaacson 2007) and indoor navigation (Delafontaine

et al. 2012).

Sequence analysis methods to our knowledge has never been

applied to explore spatio-temporal patterns in sequential habi-

tat use by animals. The essence of this approach is the possibil-

ity to ‘extract’ ordered sequences of habitat classes occupied

along trajectories by means of clusters, which can be

conveniently visualized in trees and validated by measures of

statistical reliability. Moreover, SAM allows to deal with two

common issues of GPS-based location data sets: missing data

points (i.e. acquisition failures by GPS sensors; Frair et al.

2010) and spatial correlation (Dray, Royer-Carenzi & Calenge

2010).

In this study, we aimed to evaluate the applicability of

SAM to movement ecology data for exploratory purposes by

analysing both simulated trajectories and time-stamped loca-

tions of individually tracked roe deer (Capreolus capreolus)

from a partially migratory alpine population. The analysis

consisted of several steps (Fig. 1). We first produced a classifi-

cation tree based on bimonthly sequences of habitat use by

individual roe deer. We used this first exploratory classifica-

tion to hypothesize potential patterns of sequential habitat

use. Then, we produced simulated trajectories with those pat-

terns, at different proportion of habitat availability, and clas-

sified them in trees. We then re-added the real trajectories to

simulation trees, while accounting for their relative propor-

tion of habitat availability. Finally, we evaluated the biologi-

cal relevance of such classification on the basis of ecological

predictions. This way, we explored spatio-temporal patterns

of real trajectories and evaluated them in a simulated experi-

mental setting.

Materials andmethods

STUDY AREA AND REAL TRAJECTORIES

The studied animal population consisted of 26 European roe deer

equipped with a GPS collar (GPS-Plus D, Vectronic Aerospace

GmbH), of which 16 were females and 10 males. Six of them were col-

lared as fawns (i.e. less than 1 year old; 2 females and 4 males), one as

yearling (i.e. one female between 1 and 2 year old), while all others

were collared as adults. Figure 2 pictures the cumulative sum of the

90% fixed-kernel home ranges (KDE) with reference smoothing

parameter (href; Worton 1995) of individual roe deer using Home

Range Extension (Rodgers & Carr 1998). This area extends across the

Monte Bondone–Monte Stivo range, west of Trento and Adige valley

and east of Valle dei Laghi, in north-east Italy (46°40N, 11°70E).
Elevation ranges between 200 and 2300 m above sea level (m a.s.l.).

Along this altitudinal gradient, climate is extremely varied, ranging

from semi-Mediterranean and temperate (<1000 m a.s.l. defined as

‘low elevation’) to semi-alpine and alpine (>1000 m a.s.l. defined as

‘high elevation’) conditions. The study area is mainly covered by

broad-leaved, coniferous and mixed forest (defined as ‘closed habitat’,

representing 50% and 75% of high and low elevations, respectively),

alternated by pastures (defined as ‘open habitat’, representing 50%

and 25% of high and low elevations, respectively). Relevantly, the

high-elevation range is mainly constituted by protected land,

whereas the low elevation is not and is characterized by more anthro-

pic land use.

The sampling period spanned from 2005 to 2008, during which GPS

collars yielded a total of 54 845 time-stamped locations. The interval

and duration of sampling were different among individuals, depending

on date of capture and battery exhaustion. Locations were acquired at

a pre-determined temporal interval Dt of 4 h at fixed time stamps (0, 4,

8, 12, 16 and 20 h) except for cold winter months (January and Febru-

ary), when Dt was 6 h (0, 6, 12 and 18 h) in order to save battery. We

linked GPS locations to two geographical parameters retrieved from
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remote sensing sources: habitat openness [EEA-Corine Landcover

(CLC) 2006 IV, European Environment Agency, EEA (2010), resolu-

tion = 100 m] and elevation [NASA-ASTER GDEM, Ministry of

Economy, Trade, and Industry of Japan,METI, National Aeronautics

and Space Administration of the United States, NASA

(2012) = 30 m]. We combined and reclassified environmental parame-

ters into four classes: high closed (HC), high open (HO), low closed

(LC), low open (LO) (Table 1 and Fig. 2). In this application, we used

four classes to reduce the complexity of data analysis for demonstra-

tion. On the one side, the classes correspond to well-defined vegetation

successional types in the alpine habitat of this population (Cagnacci

et al. 2011); on the other side, they are meaningful for roe deer habitat

use traits, since they are known to prefer ecotonal habitats and forest

edges (Tufto, Andersen&Linnell 1996).

Then, we recoded sequences of locations into sequences of the envi-

ronmental classes above, adding asterisks to account for missing loca-

tions due to acquisition failure. More precisely, the input sequences for

SAM describe the habitat use by individual animals at regular time

stamps (0, 4, 8, 12, 16 and 20 h) over a period of 2 months. While

SAM is able to deal withmissing data, if they are too frequent, they can

over-fragment the sequence and thus bias the similarity measurement.

To avoid a bias in the downstream analyses, we therefore excluded

bimonthly sequences with more than 40% of missing data. After

removal, the input file consisted of a total of 111 sequences (min 21,

max 24 per bimonthly period), which were reclassified as belonging to

summer (May–October) or winter (November–April) season, based on

snowfalls and typical alpine climate (Ramanzin, Sturaro & Zanon

2007; Cagnacci et al. 2011). Only seven sequences could be retained for

Fig. 1. Flowchart of the complete process to explore spatio-temporal habitat use patterns of real trajectories by sequence similarity analysis. In

essence, based on simple classification trees of real trajectories (a), we simulated trajectories with a priori defined patterns of sequential habitat use

(b), which in turn were used to produce classification trees accounting for spatial correlation, at different proportion of habitat availability (b/c). We

then introduced the real trajectories (c), accounting for the relative proportion of habitat availability, and assessed their classification into tree clus-

ters resulting from the simulation exercise (c/d).
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January–February; therefore, we excluded the whole period from fur-

ther analysis. Finally, sequences were associated with sex, age (fawn,

yearling or adult) and migration occurrence (migrant, non-migrant, no

data), of each individual. We obtained a first visualization of the habi-

tat use patterns represented in our sample by creating a simple classifi-

cation tree of the 111 sequences (Fig. 1a). This classification tree was

based on Hamming distance (Gabadinho et al. 2011; see below for

more details), without accounting for spatial correlation, nor habitat

availability. Thus, this first classification tree does not allow to objec-

tively classify the sequential use of habitat types, but can be used to

build hypotheses for expectedmodels of habitat use.

SIMULATION ARENAS AND SIMULATED TRAJECTORIES

We simulated nine squared gridded arenas, each composed of 10 000

squared cells of 100 9 100 mmirroring the availability of environmen-

tal classes present in the real settings (Fig. 1b,Appendix S1, Supporting

Information). Since elevation classes are highly clustered in our study

area (see Fig. 2), we split each arena into two equal parts, correspond-

ing to high and low elevations.We obtained the final four categories by

randomly assigning all cells to either open or closed habitats, with vary-

ing proportions from 10 to 90% in each arena. Thus, simulated land-

scapes covered all possible habitat prevalence, which may occur within

individual home ranges in this specific study area.

Within each arena, we generated simulated sequential habitat use

using a simple spatially explicit stochastic movement model (Fig. 1b,

grey box ‘MM’; Appendix S2). For the simulated trajectories, we chose

4 different patterns of habitat selection, based on preliminary observa-

tions on the classification tree of real trajectories (Fig. 1a), and previous

knowledge on roe deer ecology. We thus distinguished homogeneous

use of closed or open habitats, and random and alternating use (i.e.

day–night patterns) of open and closed habitats. The random pattern

represented the ‘control’ in our simulated experimental settings. The

homogeneous closed and the alternation between closed and open were

the expected patterns according to roe deer ecology and specifically the

known preference for forest and ecotonal habitats (Tufto, Andersen &

Linnell 1996). Homogeneous open represented the alternative hypothe-

sis. We simulated 100 trajectory replicates for each of the nine arenas

and four behaviours of habitat selection (total of 3600 sequences,

Fig. 1b, grey box ‘simulated sequences’). Because sequential use of ele-

vation was strongly dependent on the release location of the simulated

agents, each of the 100th set of simulations had the same seed random

locations across arenas and behaviours (i.e. trajectories had the same

seed in groups of 36). We then trimmed the simulated trajectories to

match the length of the real bimonthly roe deer trajectories, that is 366

steps. Finally, simulated sequences of habitat use were extracted from

these calibrated trajectories.

GENERAL PROCEDURE OF SEQUENCE SIMILARITY

ANALYSIS FOR CALCULATION OF DISSIMILARITY TREES

Sequence analysis methods are based on sequence similarity measures

that are used to identify groups of sequences showing similar beha-

viour. The input of such analysis always relies on a dissimilarity

matrix, which provides the dissimilarity, or ‘distance’ among all possi-

ble pairs of sequences. Among the available algorithms, we chose

Hamming distance (HD) to ascertain the dissimilarity matrix, as it is

considered the most suitable for sequences with a temporal dimension.

HD relies solely on two operations: identity and substitution, and in

fact, it computes the minimum number of substitutions to equate a

number of sequences of equal length (Gabadinho et al. 2011). In a

more optimized HD, also weights can be assigned to substitutions;

that is, HD computation can be based on a substitution weight matrix.

Figure 3 gives a conceptual example of two alternative HD of the

character strings ‘Kapreolo’ and ‘Capriolo’, respectively, the word for

roe deer in Esperanto and Italian. Both distinguish six identities and

two substitutions, but differ from each other in weights assigned to

substitutions. The substitution between the letters K and C gets a

lower weight (i.e. probability) in ‘a’ (substitution score = 0�4, Fig. 3a)
than in ‘b’ (substitution score = 1, Fig. 3b), since the former HD

takes into account the phonetic similarity. Consequently, the total dis-

similarity in ‘a’ will be lower than in ‘b’.

In our case, the dissimilarity matrix computed by the HD algorithm

was based on substitutionweights for all combinations of habitat classes,

and constrained to their availability and distribution, which together

determine the patterns of spatial correlation. Therefore, we derived the

substitution weights from spatial correlation of habitat classes in the simu-

lated arenas (Fig. 1b, grey box ‘substitution weight matrix’, see Appen-

dix S3 for computation and simulations of the substitutionweights).

The successive step in data analysis is using the HD dissimilarity

matrix to calculate a dissimilarity tree. Here, we used Ward’s method

Fig. 2. The study area, indicated by the darker irregular shaped poly-

gons, was computed as the cumulative sum of home ranges of 26 indi-

vidually marked roe deer (kernel density estimator, 90% polygons).

For codes of habitat classes, see Table 1. N: urban areas.

Table 1. Reclassification of the environmental parameters elevation

and habitat openness resulting in combined classes (coded as HC, HO,

LC andLO)

Elevation Habitat openness Habitat use classes

Low (<1000 m) Closed* LC

Low Open† LO

High (>1000 m) Closed HC

High Open HO

*Forest: Corine Landcover classes 311, 312, 313, 323, 324.
†NoForest: All other Corine Landcover classes, except inlandwater.

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 7, 369–379
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(Fig. 1b/c, HCW), the most common hierarchical agglomerative clus-

ter procedure (Gabadinho et al. 2011). The resulting trees are a repre-

sentation of the dissimilarity among the habitat use sequences of

animals. The distance, or ‘branch length’, between leaves (which stay

for individuals) and nodes (which stay for groups of individuals) can be

used as a proxy for the dissimilarity between the portions of the tree:

the longer the distance, the higher the dissimilarity.

The following step is the identification of ‘clusters’, or portions of the

tree indicating association between sequences. This is the most impor-

tant step to use trees for exploratory purposes and the subsequent inter-

pretation of results. We determined the number of clusters present in a

tree by a cut-off distance, based on a repeatable bootstrapping proce-

dure (Fig. 1b/c,BJ). For this application, we performed 1000 iterations

and calculated the Jaccard bootstrapping index (i.e. bootmean; Hennig

2007) for a cut-off distance that separated from two to twenty clusters.

This index compares the similarities of the original clusters to the most

similar clusters in bootstrapped data sets. The cut-off distance was

determined as the maximum number of clusters where the median

bootmean is higher than 0�9, a value corresponding to highly stable

clusters. This threshold is conservative in a sense that normally values

above 0�75 correspond to robust classification.

DETERMINING CLASSIF ICATION TREES OF SIMULATED

TRAJECTORIES

Using this procedure, we computed a dissimilarity tree and identified

clusters for each simulated landscape by using the 400 simulated

sequences (100 replicates 9 4 patterns of sequential habitat use,

Fig. 1c). To account for spatial correlation of the four habitat classes,

we recomputed the substitution matrix for each landscape. In fact,

although all grid cells were assigned to habitat classes (open/closed) at

random, this still corresponded to different spatial correlation struc-

tures across arenas, an effect of the different proportion of classes.

Then, we investigated the sequence composition of individual clusters

distinguished by the classification trees to assess the liability of the

method to correctly group sequences of different sequential behaviours.

This also allowed us to identify the name of each cluster.

DETERMINING SPATIO-TEMPORAL PATTERNS OF REAL

TRAJECTORIES

In the next step, we introduced the real trajectories into one of the clas-

sification trees (Fig. 1c), according to the relative proportion of habitat

availability as follows. For each real bimonthly sequence, we measured

the availability of open/closed habitat within the corresponding

bimonthly home range. We then associated them to the simulated tra-

jectories referring to the arena with the same habitat proportion. For

example, if an individual bimonthly home range showed an open habi-

tat availability between 45 and 55%, the corresponding sequences were

associated with the simulated sequences originated from the 50%

arena. Then, each tree was recalculated for the combined set of

sequences (simulated and corresponding real sequences). Using this

approach, simulation sequences could be used as a guide for classifica-

tion of real sequences to their most similar sequential behavioural

group (Fig. 1c,d).

EXPECTED SPATIO-TEMPORAL PATTERNS OF REAL

TRAJECTORIES

Based on previous knowledge on roe deer ecology, and the individual

descriptive variables, we formulated predictions of tree clustering. This

was the core of our study, to assess the meaningfulness of SAM for

exploration of spatio-temporal sequences of ecological data. In roe deer

populations of northern and alpine environments, some individuals

reach higher elevations in summer, when habitat suitability increases,

and return at lower elevation in rigid winter conditions. Other individu-

als, instead, occupy the same low-elevation range all year round (Ra-

manzin, Sturaro & Zanon 2007; Cagnacci et al. 2011). This

phenomenon is known as partial migration. On these premises, we

expected individuals to classify into two main clusters according to the

use of elevation: animals with a constant use of the same elevation

range (winter and summer sequences) and animals with a seasonal shift

in elevation range associated with migration (winter sequences sepa-

rated from summer sequences) (P1a). Roe deer reproductive season is

concentrated in summer, when both males and females exploit the best

environmental conditions to meet the high energetic demand of mating

and giving birth (Hewison, Vincent & Reby 1998). If migration is

linked to habitat quality, we expect both sexes to show similar patterns

of migration and thus of elevation range use (P1b, but see Ramanzin,

Sturaro & Zanon 2007). Likewise, since fawns are not yet engaged in

reproduction, we may expect a lower rate of migrating individuals

(P1c). Alternatively, they may follow the mother in the migrating

movements. Predictions on sequential use of open and closed habitats

are less straightforward. Roe deer are known to prefer habitats provid-

ing cover and protection, especially intermediate stages of forest succes-

sion and ecotonal habitats (e.g. Tufto, Andersen & Linnell 1996).

Therefore, we predict that animals would show a sequential use of habi-

tats different from random (P2a). In particular, we predict a separation

between animals using only closed habitat and those showing a com-

bined use of closed and open habitats (P2b). When animals use both

habitats, we expect open habitats to be used mainly during night, due

to the anti-disturbance and anti-predatory behaviour of roe deer, trans-

lating in an alternating sequential use of open and closed (P2c) (Sa€ıd &

Servanty 2005). For similar reasons, a constant use of open habitat is

instead less likely (P2d).

Classification trees of simulated trajectories

The application of HD algorithm to simulated bimonthly

sequences generated 9 trees, each corresponding to landscapes

with different habitat availabilities (i.e. T10–T90; see Fig. 1c

andAppendix S4 for all trees). In all trees, the topological rela-

tionships between tree branches indicated two main orders of

classification: first-order clusters, splitting the sequences into

two groups according to the preferential use of different eleva-

tions (C1 and C2; e.g. Fig. 1c), and several second-order clus-

ters separating animals with different sequential use of open

and closed habitats (C, R, A, O, U; see text below, Fig. 1c and

Appendix S4: second-order clusters are distinguished by

coloured branches).

K A P R E O L O
C A P R I O L O

a 0·4 0 0 0 1 0 0 0 1·4
b 1 0 0 0 1 0 0 0 2

Fig. 3. Two alternative computations of the Hamming distance, based

on substitution weights given to each operation performed to equate

the sequences (reported under each character). Identities are in italic

and substitutions bolt.
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At first order, all trees showed a significant separation (Jac-

card bootstrapping index BJ > 0�95) between high- and low-

elevation trajectories, thus defining a ‘high-elevation’ cluster

(C1) and a ‘low-elevation’ cluster (C2). At second order, our

defined bootstrap threshold (i.e. BJ,median > 0�9) identified 6–8
main clusters (T10–T30 and T70–T90 = 6 clusters, with 40–80
sequences in each cluster; T40–T60 = 8 clusters, with about 40

sequences in each) and 3–7 small clusters (with less than 10

sequences each). Separation of the main second-order clusters

was significant (most clusters BJ > 0�95), whereas for smaller

clusters, it was not (most clusters BJ < 0�75). For both high

and low elevations, the main second-order clusters corre-

sponded to different patterns of sequential open/closed habitat

use. The classification of sequences in such clusters was highly

dependent on habitat availability in arenas. For trees deriving

from arenas with similar open/closed habitat proportion (40–
60%: T40, T50, T60, Fig. 1c, Figs S4.4–S4.6 in Appendix S4),

we distinguished all four simulated sequential behaviours:

homogeneous closed (C; brown and dark blue branches), ran-

dom (R; red and cyan branches), alternating (A; orange and

blue branches) and homogeneous open (O; yellow and light

blue branches). In this case, 99% of sequences in each cluster

was of the same sequential behaviour. For example, all

sequences in the blue cluster of Fig. 1c are homogeneous

closed. Conversely, for landscapes where habitats were dispro-

portionally available (open<30% or open>70%: T10, T20, T30

and T70, T80, T90, Fig. S4.1–S4.3, S4.7–S4.9 in Appendix S4),

random sequences clustered with homogeneous sequences of

the dominant habitat (C with R: brown and dark blue

branches; O with R: light blue and yellow branches). The ran-

dom sequential use of habitat according to availability (i.e. the

control case) was therefore effectively represented by a sepa-

rated random cluster only when sequences were not trivial (e.g.

T10 and T90 obviously led to homogeneous sequences ‘at

random’).

Finally, small clusters corresponded to trajectories indicat-

ing a mixed use of high and low elevations, for a specific pat-

tern of sequential use of open and closed habitats (e.g. mixed-

alternating). Alternatively, small clusters were undefined (U)

due to a too small number of sequences (<5 sequences) and can
be considered as outliers. Both mixed and undefined clusters

were coloured grey in trees (Fig. 1c, Appendix S4).

Spatio-temporal patterns of real trajectories and
discussion of the study case

SEQUENTIAL HABITAT USE PATTERNS

We used the trees based on mixed simulated and real trajecto-

ries to assess the classification of real trajectories according to

sequential habitat use. To visualize how real trajectories were

classified, we extracted (i.e. pruning) the real sequences from

nine different trees (Figs 1d and 4, see also Appendix S5 for a

different visualization).

Fig. 4. Roe deer bimonthly sequences of habitat use classes (right portion of the nine panels; daily scale reported bottom right), and resulting dissim-

ilarity trees, based on the Hamming distance algorithm (left portion of the panels). The real sequences were extracted (pruned) from their corre-

sponding simulated tree from which sequences were derived from a trajectory running over nine different arenas with varying habitat proportions

(10–90%). Tree ‘leaves’ represent a real sequence, while ‘nodes’ indicate their clustering. Branch lengths (distance between leaves, and first common

node: bottom left for the scale) indicate the dissimilarity between individual sequences. The split into twomain clusters define first-order clusters sep-

aration, based on use of elevation classes (high, C1; low, C2). Second-order clusters are based on the use of open/closed habitats and distinguish

homogeneous closed (C, brown and dark blue branches), random (R, red and cyan branches), alternating (A, orange and blue branches) and homo-

geneous open (O, yellow and light blue branches). Grey branches (U) are sequences with undefined classification or clusters with mixed sequences of

high and low. The id gives the animal code and season (summer, S; winter, W). Variables season, age, sex and migration are represented as colour-

coded bars between trees and sequences (see legend formeaning of the colours).
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The first-order clusters C1 and C2 distinguish very well high-

from low-elevation sequences (Fig. 4, Appendix S5 right vs.

left panels).

More interesting is the classification of sequences in differ-

ent sequential patterns of open/closed habitat use (second

order). Within our roe deer population, we found evidence

of the four different patterns of open/closed sequential use

that have been addressed in our simulations. Specifically, 98

sequences out of 111 were classified according to those pat-

terns (91�5%). Moreover, some interesting differences

emerged in sequential use of open/closed habitats for differ-

ent elevations (Fig. 4, Appendix S5). At high elevation, half

of the sequences have an alternating (C1A: 32%, 18

sequences) or homogeneous closed pattern (C1C: 25%, 14

sequences), whereas only 11% of the sequences are random

(C1R: 6 sequences). At low elevation, 63% of the sequences

are homogeneous closed (C2C: 41%, 22 sequences) or ran-

dom (C1R: 22%, 12 sequences), and conversely alternating

sequences are uncommon (C1A: 13%, 7 sequences). Surpris-

ingly, both at high and low elevations, there are also homo-

geneous open sequences (C1O: 18%, 10 sequences; C2O:

14%, 8 sequences). At the study area scale, different sequen-

tial patterns of open/closed habitat use according to eleva-

tion are possibly linked to those habitats availability in the

study area (Fig. 2: open more available at high elevation).

Indeed, individual habitat use sequences are obviously

related to the availability of habitat classes within the home

range (Fig. 4), in particular sequences classified as homoge-

neous sequences (C and O) derived from home ranges with a

large proportion of one specific habitat type (Fig. 4.1–4.3,
<30% open; Fig. 4.7–4.9, >70% open). Instead, heteroge-

neous sequences showed an alternating or random pattern

(A and R) and derived from home ranges where both habi-

tat types were available (Fig. 4.4–4.6, >40% open and <60%
open). Interestingly, though, both homogeneous and hetero-

geneous trajectories lay next to each other in the study area

(Fig. 5). Also, several sequences with the same home range

availability were assigned to different sequential patterns.

For example, 776_W was classified in C2A and 787_S in

C2C, when they both have 30% open in home ranges

(Fig. 4.3). Or, 771_S was classified in C1C and 789_S in

C1R, when they both have 40% open in home ranges

(Fig. 4.4).

Finally, sequences switching between high and low were

classified in the mixed-alternating cluster (only one sequence)

or in the undefined clusters (i.e. as an outlier) (Fig. 4, C1U:

14%, 8 sequences; C2U: 9%, 5 sequences). Notably, C1U

mainly consists of sequences changing from high to low ele-

vation (e.g. Fig. 4.4, 797_W; Fig. 4.6, 784_S, 795_W),

whereas C2U shows the opposite pattern (e.g. Fig. 4.5,

773_S), as a result of the migration between winter and sum-

mer ranges (Fig. 5). Alternatively, undefined sequences may

correspond to sequential behaviours we did not simulate,

such as the shift from homogeneous closed to homogeneous

open sequential habitat use within the bimonthly period (e.g.

Fig. 4.5, 767_W).

Fig. 5. Clusters of real bimonthly trajectories with similar patterns of sequential habitat use in their spatial context. Legend in bottom-right panel.
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SEQUENTIAL HABITAT USE VS. DESCRIPTIVE

VARIABLES

Descriptive variables of individual sequences, in particular

migration occurrence, sex and age, enabled to further inter-

pret the classification of trajectories in first- and second-

order clusters. In winter, individual trajectories were classi-

fied both at high and at low elevation, regardless of the

space-use strategy (i.e. both migrants and non-migrants; see

Figs 4 and 6a). Conversely, in summer migrants’ trajectories

were always classified at high elevation and non-migrants’

mainly at low elevation. Sequences that were classified as

alternating mainly belonged to migrants, whereas homoge-

neous open sequences equally corresponded to migrant and

non-migrant individuals (Figs 4 and 6c). Finally, more than

60% of the non-migrant sequences were either classified as

homogeneous closed or random.

Interestingly, trajectories of fawns were classified at low ele-

vation, both in summer and in winter, except one sequence

(Figs 4 and 6b). In terms of second-order clusters, trajectories

of fawns were classified in the great majority as homogeneous

closed or random (Figs 4 and 6d). Adults’ sequences were

more equally distributed between different patterns of habitat

use.

ASSESSMENT OF PREDICTIONS AND CASE STUDY

DISCUSSION

The first clear spatio-temporal pattern that emerged in the

study of roe deer population through exploratory analysis with

SAM is a differential use of altitude. This can be linked to mi-

gration for two pieces of evidence: first, some individuals with

sequences classified at high elevation in some trees also showed

sequences classified at low elevation in other trees (Fig. 4, e.g.

individual 799). Secondly, some sequences from the same indi-

viduals included both high and low altitudes in the migration

periods, when animals move between seasonal ranges (Fig. 4,

e.g. individual 797, Fig. 5 – undefined). Moreover, the classifi-

cation of sequences in high- and low-elevation clusters can be

attributed to partial migration for a further evidence; that is,

sequences of some other individuals were always included in

the low-elevation cluster (Fig. 4, e.g. individual 783), or always

across both (Fig. 4, e.g. individual 784); that is, they were resi-

dent. As such, prediction P1a is supported.

The property of SAM as a valid exploratory tool to identify

spatio-temporal patterns of individual movements was also

highlighted when looking at descriptive variables. Sequential

use of high and low elevations was same among sexes (Fig. 4:

sequences of both sexes were included in both clusters; P1b),
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Fig. 6. Individual descriptive characteristics are summarized by the clusters to which real individual sequences were assigned. Migration (%; panel

a; migrant-mM, non-migrant-mN) and age (%; panel b; adult-aA, yearling-aY, fawn-aF) in relation to first-order clusters (high, C1; low, C2), both in
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but not across age classes (Figs 4 and 6; P1c). This is a novel

result for roe deer that opens up new directions of research.

For example, age class could be included as an explanatory

variable to assess partial migratory behaviour of roe deer.

The most innovative outcome of our analysis was the

spatio-temporal analysis of open/closed habitat use by indi-

vidual roe deer. The most obvious, and yet relevant, result

was that roe deer did not always use open/closed habitat at

random (P2a). As predicted, sequences of individuals were

clearly distinguished between homogeneous and heteroge-

neous use or shifted between the two categories. We intend

to underline that by SAM exploratory analysis, we always

looked at sequential use of habitat; that is, habitat selection

was not considered here. The term ‘random’ use, therefore,

does not refer to habitat use according to total habitat

availability, as in classic habitat selection analysis (Manly

et al. 2002), but to sequential use of available habitats as it

would happen by chance. Indeed, we found that sequential

use of habitats was heavily influenced by availability in the

home range. For example, home ranges including a high

percentage of closed habitat likely resulted in a ‘random’

homogeneous use of closed (Fig. 4.1–4.3, Fig. 5 – homoge-

neous closed). Conversely, home ranges including both open

and closed habitats may lead to ‘random’ use of both

(Figs 4.4–4.6 and 5 – random). Here, we have two observa-

tions. On the one side, the fact that trajectories with a dif-

ferent spatio-temporal pattern laid next one to each other

in the study area (Fig. 5) indicates that sequential habitat

use reflects the selection operated by animals to define their

home ranges within the study area (i.e. second-order habitat

selection, sensu Johnson 1980). On the other side, though,

we had clear evidence of alternative tactics of temporal use

of habitats available within the home range (several exam-

ples of sequences with same total habitat availability, but

different sequential patterns, see above and Fig. 4). When

both open and closed were available in home ranges, one

pattern stuck out as particularly well represented, that is

the alternating use of both habitats on a daily basis (P2c;

Figs 4 and 5). To our knowledge, this is among the first

systematic exploratory analyses of a behavioural pattern

previously empirically described, and linked to individual

personalities (Bonnot et al. 2015). According to our results,

the propensity of roe deer to expose to open habitats can

result in a systematic spatio-temporal pattern of habitat

use, which is evident only in some individuals (Fig. 4). Even

more, our explorations indicated that migrant individuals

used this pattern much more than resident, at equal habitat

availability in the home range (Figs 4.4–4.6 and 5 – alter-

nating). Migration attitude in partial migratory populations

has been previously attributed to a ‘boldness’ syndrome

(Chapman et al. 2011). Investigating the effect of personali-

ties at both seasonal and daily habitat use scales is a very

exciting research direction that our exploratory results sug-

gest.

A further result that supports the individual differences in

sequential habitat use is the presence of homogenous open

sequences, an unexpected and yet observed pattern both at

high and at low elevation (P2d; Fig. 4).

Discussion: Application of SAM to animal habitat
use

In this paper, we showed that SAM is a useful and powerful

tool to explore and compare sequences of habitat use by ani-

mals, and extract common spatio-temporal patterns. Impor-

tantly, we took into consideration an aspect of animal ecology

largely overlooked in the literature. Indeed, one of the most

interesting and captivating outcomes of SAM is that different

topological levels of trees are associated with hierarchical simi-

larities between the individuals’ sequential use of environmen-

tal features. Repetitive patterns of sequential habitat use are

informative with respect to the interaction between animals

and their environment. In fact, well-known phenomena, such

as migration, or feeding-resting cycles emerge as repetitive pat-

terns of habitat use at different temporal scales, as shown by

our study case.

To understand the potential usefulness of SAM for move-

ment ecology, we shall first clarify what SAM is not. SAM is

not a spatial explicit method and does not provide predictive

models of habitat use, nor of animal distribution. Instead,

SAM embeds the temporal component of habitat use, in the

form of real ordered sequences of used habitat classes. SAM

can provide information at the population and individual level,

by clustering individuals in trees through robust algorithms

that search for dissimilarities in spatio-temporal patterns of

habitat use. Based on all these considerations, we see SAM as

an approach to explore temporal patterns in habitat use across

an animal population. As such, it differentiates from and it

complements current exploratory methods in habitat analysis.

The R-package AdehabitatHS provides a suite of niche-based

methods that are primarily used to express the realized niche

(Calenge & Basille 2008). However, niche-based methods are

also meaningful to identify the most relevant explanatory vari-

ables, and their relationships, for predictive habitat selection

models, such as RSF (Boyce et al. 2002). RSFmodel the prob-

ability of disproportional habitat use in a hypothetical-deduc-

tive framework, by means of selection of competing models. A

preliminary investigation of most relevant variables thus

allows to better express hypotheses, and focuses the analysis.

SAM may complement the aforementioned approaches by

also exploring the temporal component of habitat use patterns.

A big advantage of niche-basedmethods or recursive partition-

ing trees is their ability to provide a graphical representation of

the importance and relation between variables. Similarly,

SAM summarizes common patterns of sequential habitat use

across the population, by clustering. Importantly, we suggest

that the way to handle the length of the sequences (i.e. time res-

olution and total duration) should depend on the research

questions. In the study case, we decided to split the individuals’

sequences in bimonthly periods, since we were interested in

intra-annual patterns. This design implies that each individual

is present more than once in the trees, and caution must be
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taken when interpreting the results (i.e. pseudo-replication

Tukey 1977).

In our exercise, we considered a simple combination of habi-

tat classes, although the R-package TraMineR allows to define

more complex combinations of environmental parameters. All

the same, sequences based onmany habitat classes, would lead

to a very articulated dissimilarity tree, thus likely difficult to

interpret. We therefore suggest a rationale in the combined

and complementary use of the aforementioned methods, when

exploring spatio-temporal patterns in animal movement data.

First, niche-based or recursive partitioning methods or other

simpler multivariate approaches (e.g. PCA) can be applied to

identify the most important and least related environmental

parameters. Then, ordered sequences of locations can be

matched to those variables by spatial join with relevant geo-

graphical layers, and sequences of habitat use thus obtained.

Sequence analysis can then be performed, and provide a repre-

sentation of existing spatio-temporal patterns, or be used to

formulate new hypotheses evaluated through a classic model

selection approach.

Technically, we suggest to simulate expected sequential

behaviours (e.g. based on preliminary classifications or previ-

ous knowledge, Fig. 1a), and use them as a guide to extract

the sequential habitat use pattern of real sequences, while

accounting for spatial correlation (through the substitution

matrix) and habitat availability. As our study case shows,

real-world sequences can exhibit more complex behaviours

than those represented by simulations. We suggest that if the

great majority of real trajectories are classified in cluster types

derived from simulations, then the real sequential habitat use

is well represented. Otherwise, one may want to change the

simulation rules, which can be easily modified in the move-

ment model.

Sequence analysis methods is a well-suited method for data

acquired by animal-borne tracking technologies, since the

method can account for twomain limitations related to animal

movement data: missing locations (Frair et al. 2010) and spa-

tial correlation (Dray, Royer-Carenzi & Calenge 2010). We

explicitly remarked for the first time that the weight matrix

used by SAM can be used to deal with spatial correlation.

Specifically, we offer a quantifiable and repeatable assessment

of the spatial correlation between different habitat classes (i.e.

substitutionmatrix). Notwithstanding the novelty, future stud-

ies may assess the sensitivity of SAM output to changes in the

substitutionmatrix.

While the framework presented in this paper is relevant and

innovative in ecological studies, in practice there are also some

limitations to SAM. First, temporal correlation is not directly

accounted, whereas there is a clear temporal association

between consecutive observations. To account for temporal

correlation, a variant of the Hamming distance known as the

fuzzy Hamming distance (Bookstein, Klein & Raita 2001)

could be used, but is only developed for binary data. Secondly,

several researchers in evolutionary biology (e.g. Morrison

2010) and social sciences (e.g.Wu 2000) have argued thatmany

steps in SAM are based on subjective decisions (e.g. definition

of classes, parameter settings, interpretation of results).

These limitations notwithstanding, we believe that SAM

offers great advantages and new insights into movement ecol-

ogy studies. For instance, the method can be promptly

extended tomultiple or other species than roe deer as well as to

other spatial (e.g. home range) and temporal resolutions (e.g.

hours) and reveal yet underappreciated or overlooked pat-

terns.
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Appendix S1. Simulated arenas.

Figure S1.1. Nine square gridded arenas, each composed of 10 000

squared cells of 100 9 100 m, with varying proportions of open (light

colors) and closed (dark colors) habitats (10–90%) at high (blue) and

low elevation (red/orange).

Appendix S2.Themovementmodel.

Appendix S3. Substitutionmatrix to account for spatial correlation.

Figure S3.1. Simulated dispersed (a), random (b) and clustered (c) spa-

tial distribution of habitat patches based on the shape of the study area.

Figure S3.2. Spatial correlation (Z-scores) in relation to habitat avail-

ability (x-axis, % open habitat) for HCxHC (red), HOxHO (yellow),

LCxLC (blue), LOxLO (light blue).

Table S3.1 Join-Count Statistics for simulated scenarios (a, b, c).

Table S3.2 Substitution matrices for simulated scenarios (a, b, c),

expressed as dissimilarity measured using Join-Counts, i.e. the propor-

tion of the total number of adjacent polygons where the specified habi-

tat neighbour relationship is not observed.

Table S3.3 Join-Count Statistics for 9 arenas with variable proportions

of open and closed habitats (expressed as the percentage of open habi-

tat). See table S3.1 for explanation of codes.

Table S3.4 Substitutionmatrices for the nine arenas.

Appendix S4.Trees.

Figure S4.1–4.9. Simulated and roe deer bimonthly sequences of habi-

tat use classes (right portion of the panel; daily scale reported bottom-

right), and resulting dissimilarity tree, based on the Hamming distance

algorithm (left portion of the panel).

Appendix S5.Clusters of real bimonthly sequences.

Figure S5.1 Clusters of real bimonthly sequences with similar patterns

of sequential habitat use, extracted from the corresponding dissimilar-

ity trees.

Appendix S6.R-script of the complete analysis.
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