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ABSTRACT
A simple box-model is used to investigate the effect of intermediate level heat/freshwater fluxes on the variability of
the oceanic meridional overturning circulation. The model includes a simple representation of the spreading of the
Mediterranean Outflow Water in the North Atlantic. We identify an internal advective feedback affecting the amplitude
of the thermohaline oscillations. When a salinity gradient is maintained in the ocean interior the oscillations are amplified.
Instead, if the intermediate level fluxes are spread in the ocean deep layers, the model variability is reduced. We suggest
that this mechanism may be relevant for climate variability on interdecadal timescales.

1. Introduction

A broad spectral peak at frequencies ranging from 10 to 50 yr is
a distinctive feature of the climate variability observed over the
North Atlantic (Marshall et al., 2001). Such a spectral peak is
loosely attributed to the effect of thermohaline processes in the
ocean. In fact, a common feature of ocean-atmosphere general
circulation models (OAGCMs) is the occurrence of interdecadal
variability of the meridional overturning circulation (MOC) and
of the associated transport of heat and freshwater (Delworth et al.,
1993; Weisse et al., 1994). However, the large number of param-
eters involved in their formulation make GCM’s experiments a
rather uncomfortable tool for detecting well-defined cause-effect
relations. Instead, Stommel-type box-models (Stommel, 1961)
have been extensively used as powerful conceptual tools to in-
vestigate feedbacks and instabilities of the MOC and to explain
the possibility of observing more than one equilibrium in the
circulation of the global ocean (Cessi, 1994; Rahmstorf, 1996;
Scott et al., 1999; Lucarini and Stone, 2005). Another useful
application of such simple models is the analysis of the mech-
anisms affecting the variability of heat and mass transport in
the ocean at interdecadal timescales. For example, Griffies and
Tziperman (1995) explained the MOC variability obtained by
Delworth et al. (1993) in terms of the stochastic excitation of a
damped linear oscillatory eigen-mode of the system. They in-
terpreted the stochastic forcing as the effect of high-frequency
atmospheric variability, de-correlated with the oceanic behavior.
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An alternative explanation was given by Rivin and Tziperman
(1997) who introduced, in the same Stommel-type box-model,
an ad hoc saturation mechanism producing self-sustained os-
cillation with no need for random input of energy from the at-
mosphere. However, adopting a purely statistical approach, they
where not able to identify a definite role of non-linear processes
in the description of the variability of coupled OAGCM experi-
ments such as the one of Delworth et al. (1993).

In this paper, we consider a specific mechanism affecting
MOC variability: the spreading of Mediterranean Outflow Wa-
ter (MOW) in the North Atlantic. We focus on linear dynamics
only. However, by considering different scenarios for the spread-
ing of MOW, we seek to contribute to the understanding of the
mechanisms producing the characteristic spectral peak of cli-
mate variability at interdecadal time-scale. We employ for our
study a Stommel-type box-model similar to that of Tziperman
et al. (1994). We extend their model by including an additional
forcing which is aimed at representing the spreading of the MOW
in the North Atlantic.

The Mediterranean Outflow can be considered as a mapping
into the interior of the North Atlantic of the net evaporation
and heat exchange occurring inside the Mediterranean basin.
Quantitatively, it is a major contributor to the freshwater budget
of the North Atlantic (Curry et al., 2003). In particular, about 1 Sv
of Mediterranean Outflow, 1 psu saltier than the Atlantic inflow
in the Mediterranean, corresponds to about 10–20% of the net
annual evaporation over the North Atlantic (Gerdes et al., 1999).
However, there is substantial uncertainty concerning the path of
MOW in the North Atlantic (Bower et al., 2002; Sparrow et al.,
2002) and its impact deep water formation occurring in the North
Atlantic (Reid, 1979; McCartney and Mauritzen, 2001). Here,
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we compare two substantially different scenarios: in one case, we
assume that the outflow mixes with newly formed deep waters
at high latitudes before having any other interaction with the
overlying atmosphere; in the other case, we assume that MOW
is carried to the oceanic surface layers by the average large-scale
circulation and is allowed to exchange heat and freshwater with
the overlying atmosphere before entering the regions of deep
water formation. The role of the intermediate level anomaly on
the oscillatory behavior will be examined in the presence of a
surface stochastic forcing.

The paper is organized as follows: in Section 2 we discuss the
model equations; in Section 3 we discuss the equilibria of the
model in the presence of intermediate depth anomalies and sum-
marize some results concerning the linear stability analysis of
the system; the effect of a stochastic surface forcing is examined
in Section 4; discussion and conclusions are left to Section 5.

2. Model description

This study will focus on the damped linear oscillatory eigen-
mode of the MOC appearing in pure thermohaline models.
The oscillation, which is described in details by Griffies and
Tziperman (1995), can be summarized as follows. We assume
that the strength of the MOC in a thermally direct equilibrium
is regulated only by the meridional density gradient resulting
from the heat/freshwater exchanges with the atmosphere and
by the heat/freshwater transport in the ocean. A freshening of
the oceanic surface layers in the cold, deep water formation re-
gions reduces the meridional density gradient, thereby weak-
ening the overturning. The weak overturning favors a longer
residence time of surface waters in the evaporative regions at
low latitudes. There, the salt content is increased. Eventually,
these water masses are advected poleward so that the meridional
pressure gradient increases and the overturning strengthens. A
strong overturning implies less residence time in evaporative re-
gions: fresher water masses are transported to high latitudes and
the cycle starts over again. The heat transport has opposite effect
on density and contributes to damp the oscillations. However,
if the amplitude of the freshwater forcing is large enough, the
oscillations may become unstable.

Such oscillatory mechanism originates from two key features
of the large-scale ocean circulation that can be easily included in
a simplified model of the MOC. The first is some functional
dependence of the meridional overturning on the meridional
density gradient, which follows from simple scaling arguments
based on geostrophic assumptions (see Welander, 1971). The
second feature is the dynamical separation of heat and freshwa-
ter fluxes in the buoyancy forcing, accounting for the different
mechanisms driving the exchanges of heat and freshwater be-
tween the ocean and the atmosphere (Mikolajewicz and Maier-
Reimer, 1994). Here, we use a box-model similar to the one of
(Tziperman et al., 1994) which satisfies the two above-mentioned
requirements. However, we include also a simple description of

Fig. 1. Box-numbering and model scenarios. The forcing terms F1 and
F2 in eqs. (A5) and (A6) are reported in the white boxes; the steady
state values Si are computed in a spinup integration during which the
surface salinity is relaxed to climatology. The dashed box represents
the additional internal forcing for the scenarios M5 and M6. The model
parameters are: V = D ·L ·W = 8.0 1016 m3; δ I = 0.05; δ S = 0.05; ε

= 0.1; T ∗
1 = 25.0 ◦ C; T ∗

2 = 0.0 ◦ C; γ T = 1/90 days; γ S = γ T /4. To
compute the values Si , we use S∗

1 = 36.5 psu and S∗
2 = 34.5 psu during

the spinup. A linear equation of state is employed with thermal and
haline expansion coefficients set to α = 1.6 · 10−4 ◦ C−1 and β = 7.6 ·
10−4 psu−1, respectively. The parameter σ is used as control parameter
for the bifurcation analysis. The arrows represent the basic state
circulation around which linear dynamics is investigated.

the MOW by adding, between the surface and the deep boxes,
an intermediate layer that can be subject to additional heat and
freshwater forcing. A sketch of the model configuration, along
with a description of the symbols used throughout the paper, is
shown in Fig. 1. The derivation model equations is presented in
Appendix A.

2.1. Internal anomalies

To account for the presence of MOW in the North Atlantic, we in-
troduce additional heat and freshwater fluxes in the intermediate
level boxes. Three different scenarios of the model are compared.
In the standard scenario, called M0, the model is only subject
to surface heat and freshwater forcing. This model scenario can
be compared to the equivalent 4-box formulation of Griffies and
Tziperman (1995) by collapsing the intermediate boxes on the
deep boxes. In particular, the oscillatory mechanism described
at the beginning of Section 2 evolves in the same way, both in
the 4-box formulation and in our scenario M0.

In the scenario M5, the additional forcing is imposed to box
5. In order to represent the characteristics of the Mediterranean
Outflow, we assume that an outflow of 1 Sv at about 1 psu higher
than Atlantic waters at the same depth is uniformly distributed
over the whole volume of box 5. Therefore, the internal salinity
forcing FS

5 is taken as:

F S
5 = �S 	Med

δI V
, (1)
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where �S = 1 psu, 	Med = 1 Sv ≡ 106 m3 s−1 and the factor δ I V
accounts for the volume of box 5. The salt flux is balanced by a
corresponding heat flux, F T

5 = β

α
F S

5 , such that, assuming a linear
equation of state, density is not directly affected by the additional
forcing. Notice that the compensation between temperature and
salinity anomalies is observed in the real ocean, where recent
changes of the bulk temperature and salinity of the outflow water
have left density almost unchanged (Potter and Lozier, 2004).

To avoid the net accumulation of salt, owing to the presence
of the additional internal flux, an adjustment F ′

i (i = 1, 2) must
be added to the surface freshwater flux such that:{

F ′
1 = F ′

2,

δS F ′
1 + δSεF ′

2 = −δI F S
5 .

(2)

With this adjustment to the surface forcing, the meridional
density gradient is not affected because the corrections F ′

1 and
F ′

2 are equal (first of eq. 2). Yet, the salt content is conserved
because the additional amount of salt extracted from box 1 and
box 2 equals the amount of salt injected in box 5 (second of
eq. 2). From eq. (2) we have that the adjustment of the surface
freshwater fluxes must be implemented in the model equation
for the scenario M5 by operating the following substitution:

Fi → Fi + F ′
i = Fi − δI F S

5

δS(1 + ε)
. (3)

No such adjustment is required for the heat content, because the
surface temperature is restored to climatological values.

Analogous changes are applied for the scenario M6, where the
intermediate level forcing is applied to the box 6, except that:

F S
6 = �S 	Med

δI ε V
, (4)

and

Fi → Fi + F ′
i = Fi − δI ε F S

6

δS(1 + ε)
. (5)

The weighting factors in the denominator of eqs. (1) and (4) ac-
count for the spreading of the same amount of salty water over
boxes having different volume. Physically, the scenario M5 rep-
resents the scenario in which MOW is carried to the oceanic
surface layers by the basic state circulation and heat/freshwater
exchanges occur in some unspecified region of the North At-
lantic, outside the deep water formation region; in the scenario
M6 the mixing of MOW with newly formed deep waters occurs
at high latitudes, before any other interaction with the overlying
atmosphere.

3. Steady states

Since a thorough exploration of the various model parameters
shows that, when the thermal forcing is sufficiently strong, the
circulation regime sketched in Fig. 1 is a general occurrence
of the box-model under study, we skip the complete discussion
of the model sensitivity to the various parameters. Instead, we

choose a parameter set-up which is tuned to produce a strength
of the circulation that can be considered as descriptive of the
real ocean. However, we stress that the results presented below
do not follow from quantitative details such as those concern-
ing the geometric set-up and the corresponding strength of the
overturning. Rather, the physical processes described below are
characteristic of the linear oscillations around the steady state
sketched Fig. 1.

To illustrate the general stability properties of such circula-
tion regime, we allow the amplitude of the surface freshwater
forcing—the parameter σ shown in Fig. 1—to vary over an in-
terval which is large enough to span different stability regimes.
The parameter σ is introduced by first integrating the model
equations to equilibrium with the surface salinity relaxed to a
given climatology. Then, the values of surface salinity obtained
at equilibrium, are employed to compute the standard value of
the surface freshwater flux which corresponds to σ = 1 (see
Fig. 1 for more details). The maximum descent method (Press
et al., 2001) was employed to compute the bifurcation diagram
of the system for the three model scenarios M0, M5 and M6,
with σ as control parameter. The structure of the bifurcation di-
agram is basically the same as in Tziperman et al. (1994), so we
briefly summarize only those features which are relevant to our
analysis.

For small values of σ , two steady solutions exist. The solution
corresponding to the strongest overturning is stable, whereas the
weak overturning corresponds to unstable solutions. As σ grows,
a linear oscillatory eigenmode appears on the stable branch of
solutions. The physical mechanism for the oscillation is the one
described at the beginning of Section 2. A critical value σ c ex-
ists, after which the oscillatory mode becomes unstable and the
branch of solutions connects with the unstable branch character-
ized by small values of the overturning. The dynamics of small
perturbations around this branch of solution is shown in Fig. 2 by
reporting the real and imaginary components of the eigenvalues
associated with the most unstable eigenmode of the linearized
system. The three model scenarios, M0, M5 and M6 are desta-
bilized in correspondence with slightly different values of σ c:

M0 → σc = 1.21,

M5 → σc = 1.15,

M6 → σc = 1.23.

In the stable regime, the relative magnitude of the real part of
the eigenvalues at fixed values of σ represents the decaying rate
of the oscillatory eigenmode. Therefore, at fixed σ , the scenario
M5 is the less damped (Fig. 2) and small initial perturbation to an
equilibrium of M5 results into more persistent oscillations than in
the other two cases. Instead, the scenario M6 is the most stable. A
thorough discussion of the stabilizing and destabilizing feedback
for the three model scenarios is presented in Section 4.2.
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Fig. 2. Real and imaginary parts of the eigenvalues corresponding to
the first unstable eigenmode on the branch of stable solutions.
Eigenvalues are shown for the three model scenarios: M0 (solid
points); M5 (hollow squares); M6 (hollow points). See Section 2.1 for a
definition of the model scenarios.

A first insight into the different behavior of the three model
scenarios can be gained by discussing the equilibrium solution
at a particular value of the control parameter where all model
scenarios are stable (Fig. 3).

With the circulation pattern sketched in Fig. 1, in the absence
of internal forcing (scenario M0), all values of temperature and
salinity in the intermediate and deep layers must be equal to those
in box 2 (Fig. 3a). The strength of the overturning at equilibrium
is determined by the density difference between the surface boxes
(see eqs. A2–A4).

In the scenario M5 (Fig. 3b), the impact of the internal forcing
on temperature is weak. In fact, since surface temperatures are
restored to ‘climatological’ values, the heat carried to the surface
layer is promptly released to the atmosphere within the north-
ward traveling branch of the overturning. Thus the water mass
which is cooled at high latitudes contributes to the cooling of
the intermediate level water in the equatorial box. Therefore, the
temperature of box 5, whose increase could be expected to meet
the density compensation constrain imposed to the intermedi-
ate level forcing, remains close to the temperature of the other
subsurface boxes. As an example, we note that in Fig. 3b, the dif-
ference between the temperature of box 5 and the temperature of
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Fig. 3. Model equilibria on the stable branch
for the three model scenarios: M0 (a); M5
(b); M6 (c). Temperature values are shown
for each box in plain font, in the left and
right columns of each box, with the same
ordering as in Fig. 1. Salinities are indicated
in italic fonts. The central column of each
box indicates the transport in the surface,
intermediate and deep layer. All equilibria
are computed for σ = 1.1. Units are ◦ C for
temperature, psu for salinity and Sverdrup
(1 Sv ≡ 106 m3 s−1) for transport.

the other deep and intermediate level boxes is around 0.015 ◦C,
which is not density-compensating for the corresponding salinity
difference of about 0.06 psu. In fact, the dissipation of salinity
anomalies is not permitted, because the freshwater flux applied
at the surface is steady. Thus, substantial salinity gradient can
be maintained in the intermediate layer. The composition of the
temperature anomaly and of the salinity anomaly in box 5 results
into a net density gradient in the intermediate layer, which is not
present in the other scenarios and is not imposed directly with the
introduction of the additional forcing. The effect of the density
gradient in the intermediate layer is to reduce the strength of the
meridional overturning in the scenario M5.

In the scenario M6 (Fig. 3c), a vertical salinity gradient ap-
pears between box 2 and box 6. Notice that the internal forcing is
introduced as a positive input of heat and salt in box 6. However,
because of the constrain to the total salt content, the introduction
of the intermediate level positive salt flux appears as a freshen-
ing of the surface layer, compared to the scenarios M0 and M5.
In the scenario M6, the heat and salt anomalies are spread to
the other subsurface boxes and the intermediate and deep merid-
ional temperature and salinity gradients are not affected by the
presence of the intermediate level forcing. Therefore, as in the
scenario M0, the strength of the overturning is controlled only
by the density difference of the surface boxes.

The main point of the above discussion is that in the scenar-
ios M0 and M6, the flow is controlled only by the heat and salt
content of the surface boxes. Instead, in the scenario M5 a salin-
ity gradient is maintained in the ocean interior. It contributes to
determine the strength of the overturning and plays an impor-
tant role in the presence of oscillations, as described in the next
section.

4. Stochastically forced oscillation

As suggested by Griffies and Tziperman (1995) and Rivin and
Tziperman (1997) the excitation of an oceanic damped oscil-
latory eigenmode by means of stochastic surface forcing, may
explain the dynamics of the low-frequency (interdecadal) vari-
ability observed in the coupled OAGCM simulation of Delworth
et al. (1993). A further support to this hypothesis comes from
the work of Weisse et al. (1994) who analyzed the Principal
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Fig. 4. Sampled stochastically sustained
oscillation for scenario M0 (thin solid line);
scenario M5 (thick solid line); scenario M6
(dashed line). The panels show the
meridional transport U 1−2 in the surface
layer (top), U 5−6 in the intermediate layer
(center) and U 3−4 in the deep layer
(bottom). Positive values correspond to
northward transports.

Oscillation Patterns of an OGCM with realistic topography. They
showed that the occasional freshening of the Labrador Sea due
to a stochastic component of the freshwater flux, and the succes-
sive freshening of the North Atlantic causes the fluctuations of
the meridional overturning circulation and of the corresponding
heat transport. Building on this hypothesis, we modify the sur-
face freshwater forcing by substituting the eqs. (A5) and (A6)
for the salt content with:

Ṡ1 = U1−2

V
(S5 − S1) + γS

(
S∗

1 − S1

) + w1ξ, (6)

Ṡ2 = U1−2

εV
(S1 − S2) + γS

(
S∗

2 − S2

) + w2ξ, (7)

where w1 and w2 are two independent Wiener processes and
ξ is the amplitude of the stochastic component of the surface
freshwater forcing. We took ξ such that the stochastic component
of the surface forcing has a variance corresponding to 10% of
the steady component.

4.1. Flow dynamics

In Fig. 4, we compare a sample of the oscillations obtained at
σ = 1.1, where all three model scenarios are linearly stable.

As expected from the linear stability analysis, the period of
the oscillation derived from the imaginary part of the complex
eigenvalue—T = 2π/λIm—is about 30 yr for all of the model
scenarios. The northward flow is always carried in the surface
layer, whereas the return southward flow is carried in the inter-
mediate and deep layers.

It is interesting to observe that the anomalous flow have the
same sign in the surface layer and in the intermediate layer.
Such a dynamics of the anomalous flow is equivalent to the one
that can be generated by applying the corresponding pressure
differences in a system of connected pipes and carries important
informations as to how anomalous flows are generated in such a
simple model. In fact, as indicated in eqs. (A2)–(A4), if a density
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Fig. 5. Average power spectrum of U 1−2 over 100 integration with
stochastic surface forcing for the scenario M0 (thin solid line); M5
(thick solid line); M6 (dotted line).

gradient is applied only in the surface layer, an anomalous flow
is generated in the intermediate and in the deep layer against
the corresponding pressure gradient. By continuity, this flow is
balanced with a return flow in the surface layer. Instead, if the
density gradient is in the intermediate or in the deep layer, the
flow against the pressure gradient involves only the deep layer
and the return flow is in the surface layer and in the intermediate
layer. Therefore, the flow dynamics reported in Fig. 4 implies
that the overturning fluctuations are dominated by anomalous
density gradients in the deep boxes. In particular, we found that
the correlation between the anomalous flow and the anomalous
density gradient between box 3 and box 4 is about r = 0.8.
Instead, the anomalous gradients in the surface layer and in the
intermediate layer are de-correlated with the anomalous flow.

A more quantitative view of the differences between the three
scenarios is given in Fig. 5 by comparing the average power spec-
trums over 100 different integrations of the model equations for
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the three scenarios with stochastic surface forcing. The position
of the peaks differ slightly, with the scenario M5 oscillating at
slower frequencies than the scenarios M0 and M6. Physically,
this is a direct consequence of the decreased overturning of M5
(Fig. 3b). The spectrums differ substantially in the height of their
peaks, with the scenario M5 having higher energy on the char-
acteristic timescale of the linear advective oscillation. Instead, a
slight damping is observed in the case of the scenario M6 with
respect to the scenario M0.

4.2. The linearized system

To identify the physical mechanism which is responsible for the
different behavior of the three model scenarios, we systemat-
ically looked at the evolution of each component of the model
equations during the course of the oscillations. In particular, since
the response of the system to the applied stochastic forcing is that
of a damped linear oscillator, it is instructive to focus on linear
dynamics by decomposing each contribution to the tendency of
heat and salinity as:

U �C ′ + U ′ �C, (8)

where over-lined quantities are characteristic of the steady states,
and primed quantities represent perturbations. In eq. (8) we sepa-
rate the contribution of the basic state advection of the anomalous
gradients (first term) from the anomalous advection of the steady
state gradients (second term).

Given the structure of the equilibria discussed in Section 3
(Fig. 3), we expect, in the scenario M5, a relevant role of the
terms U ′ �S affecting the freshwater budget of the intermedi-
ate layer. In Fig. 6, we show a scatter plot of the anomalous
overturning (i.e. the term U ′

1−2 resulting from the decomposi-
tion U1−2 = U 1−2 + U ′

1−2), versus the anomalous advection of

the mean salinity gradient, i.e. the term −U ′
3−4 (S3 − S5)/(δI V )

which appears in the linearized version of eq. (A9). The negative
correlation in the scenario M5 indicates a positive feedback be-
tween the anomalous overturning and the anomalous advection
of salt in the deep layers. In fact, as the circulation strengthens,
fresher water masses are advected from the polar to the equato-
rial boxes. The freshening of intermediate waters at low latitude
amplifies the meridional density gradients and the overturning
circulation is further strengthened. This feedback is responsible
for the strong peak of variability in the power spectrum shown
in Fig. 5: it cannot exist in the other scenarios because in those
cases the intermediate and deep level salinity gradient vanishes.
Accordingly, in Fig. 6, the anomalous advection of the basic state
salinity gradient vanishes for the scenarios M0 and M6.

Similar arguments explain the increased stability, and there-
fore the reduced variability, which is observed in the scenario
M6. In Fig. 7, we show a scatter plot of the term U ′

1−2 δS (S2 −
S6)/(δI ε V ) appearing in the linearized equation for S6 versus
the anomalous overturning U ′

1−2. In this case, when the over-
turning increases, more freshwater is carried from box 2 to box
6. As a consequence, the effect of the intermediate level salt flux
anomaly is partially reduced—the salinity of box 6 decreases—
and the meridional density and pressure gradients are also re-
duced. Therefore, the presence of a salinity difference between
box 2 and box 6—which is caused by the presence of the in-
termediate level forcing—produces a negative feedback on the
amplitude of the overturning fluctuations. This effect increases
the stability of the scenario M6 and reduces the amplitude of
variability as shown in the power spectrum in Fig. 5. Such
mechanism is not allowed in the other model scenarios where
S2 − S6 = 0.

To summarize, we have demonstrated that the presence of
an intermediate level forcing has a stabilizing effect in the
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scenario M6, when the anomalous salt flux is injected in the
intermediate layer and spreads directly in the deep ocean. In-
stead, in the scenario M5, where the anomalous salt flux is in-
jected in the intermediate layer and carried to the surface by
the mean flow, the intermediate level forcing has a destabiliz-
ing effect and amplifies the characteristic linear oscillations at
interdecadal timescale.

5. Conclusions

In this paper, we have analyzed the variability of a simple box-
model of the oceanic meridional overturning circulation in the
presence of intermediate level heat/freshwater forcing, repre-
senting the spreading of MOW in the North Atlantic. We have
analyzed three different scenarios of the system. The instabilities
of the standard case M0 (without internal forcing) are identical
to those described by Tziperman et al. (1994) in a similar box-
model study. The relevance of such instabilities to the interpreta-
tion of variability in coupled GCM’s simulations is discussed by
Griffies and Tziperman (1995). Here, we have shown that inter-
nal forcing may affect the system in two substantially different
ways.

One possibility (scenario M6) is that the internal anomaly
directly mixes with newly formed deep waters. In this case the
efficiency of oscillatory mechanism is reduced, the oscillations
are damped and the internal anomaly turns out to be a stabilizing
factor.

A second possibility (scenario M5) is that the intermediate
level anomaly affects the processes of deep-water formation only
after having interacted both with other water masses produced
in the system and with the atmosphere. In this case, the presence
of an intermediate level forcing, acts as a destabilizing factor for
the convective system. In the presence of stochastic atmospheric
forcing, the scenario M5 shows a significantly higher peak of
variability at frequencies which are characteristic of the linear
thermohaline oscillations. We attribute such an enhanced vari-
ability to the presence of a positive internal advective feedback,
which is permitted by the maintenance of a salinity gradient in
the ocean interior.

In the past, a few authors have addressed, in the context
of GCMs studies, the question of the impact of MOW on the
North Atlantic MOC (Chan and Motoi, 2003; Artale et al., 2002;
Rahmstorf, 1998). All these studies demonstrate that the impact
on the strength of the overturning is indeed marginal. However,
we have shown here that another qualitatively important impact
of MOW is on the variability of the overturning. To our knowl-
edge, no such sensitivity study on GCMs has been performed to
date. Therefore, we suggest that the design and analysis of suit-
able GCM simulation has an important subject for future studies.
In particular, sensitivity studies involving the spreading of MOW
in the North Atlantic may help distinguishing between linear and
non-linear process in sustaining interdecadal oceanic variability,
in the sense discussed by Rivin and Tziperman (1997). In fact, we

have shown that under certain condition related to the spreading
of MOW in the North Atlantic (our scenario M5), linear dynam-
ics alone is sufficient to explain the presence of a strong spectral
peak in the variability of the MOC at interdecadal timescale. In-
stead, other spreading scenarios (such as our scenario M6) would
require additional energy input and/or alternative mechanism to
explain the same spectral peak. The diagnostics employed in
this work to identify the feedbacks between the strength of the
overturning circulation and the anomalous transport in the in-
termediate layers, can be easily applied to the output of coupled
GCM’s simulation. Thus, it can be a useful tool to check whether
the mechanism described in this paper have a significant role in
the real ocean.
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7. Appendix A

The model geometry and box numbering is shown in Fig. 1.
The model equation can be formally derived by discretizing the
same two-dimensional convection equation as in Tziperman et al.
(1994). To derive the meridional pressure gradient, the hydro-
static pressure is computed at the center of each box, by vertically
integrating the equation of state, which is assumed to be linear.
In doing so, an undetermined constant representing the surface
pressure appears. This is eliminated by imposing that the verti-
cally integrated meridional transport is zero:

U1−2 + U5−6 + U3−4 = 0. (A1)

After some algebra, we obtain:

U1−2 = δS U 0 [(ρ4 − ρ3) + (ρ6 − ρ5)(2 + δI )δI

+ (ρ2 − ρ1)(1 + δI )δS], (A2)

U3−4 = U 0

[− (ρ4 − ρ3)(δI + δS)+
− (ρ6 − ρ5)(δI + 2δS)δI − (ρ2 − ρ1)δ2

S

]
, (A3)

U5−6 = δI U 0

[
(ρ4 − ρ3) + (ρ6 − ρ5)(1 − δS)δI +

− (ρ2 − ρ1)δ2
S

]
. (A4)

An upwind differencing scheme is used to compute the trans-
port of tracers between the boxes. The advection of heat and salt
is evaluated by taking into account the origin of the water mass
which is advected in each box. The overturning circulation qual-
itatively depicted in Fig. 1 is described by the following set of
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equations for the evolution of temperature and salinity in each
box:

Ċ1 = U1−2

V
(C5 − C1) + F1, (A5)

Ċ2 = U1−2

εV
(C1 − C2) + F2, (A6)

Ċ3 = −U3−4

V
(C4 − C3), (A7)

Ċ4 = −U3−4

εV
(C6 − C4), (A8)

Ċ5 = −U5−6

V
(C6 − C5) − U3−4

δI V
(C3 − C5), (A9)

Ċ6 = δS U1−2

εδI V
(C2 − C6), (A10)

where C represents either temperature T or the salinity S. The
equations for temperature and salinity differ in the forcing terms
F1 and F2 whose expression is reported in Fig. 1.

The overturning coefficient U 0 is used as a tuning param-
eter and is set to the value U 0 = 3.0 · 109 m3 s−1 m3 Kg−1.
Considering the geometrical factors in eqs. (A2)–(A5), this
value of U 0 results into realistic strength of the meridional
overturning.
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