
Hindawi Publishing Corporation
VLSI Design
Volume 2012, Article ID 413747, 14 pages
doi:10.1155/2012/413747

Research Article

An Efficient Multi-Core SIMD Implementation for
H.264/AVC Encoder

M. Bariani, P. Lambruschini, and M. Raggio

Department of Biophysical and Electronic Engineering, University of Genova, Via Opera Pia 11 A, 16145 Genova, Italy

Correspondence should be addressed to P. Lambruschini, lambruschini@dibe.unige.it

Received 18 November 2011; Revised 20 February 2012; Accepted 3 March 2012

Academic Editor: Muhammad Shafique

Copyright © 2012 M. Bariani et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

The optimization process of a H.264/AVC encoder on three different architectures is presented. The architectures are multi-
and singlecore and SIMD instruction sets have different vector registers size. The need of code optimization is fundamental
when addressing HD resolutions with real-time constraints. The encoder is subdivided in functional modules in order to better
understand where the optimization is a key factor and to evaluate in details the performance improvement. Common issues in both
partitioning a video encoder into parallel architectures and SIMD optimization are described, and author solutions are presented
for all the architectures. Besides showing efficient video encoder implementations, one of the main purposes of this paper is to
discuss how the characteristics of different architectures and different set of SIMD instructions can impact on the target application
performance. Results about the achieved speedup are provided in order to compare the different implementations and evaluate
the more suitable solutions for present and next generation video-coding algorithms.

1. Introduction

In the last years the video compression algorithms have
played an important role in the enjoying of multimedia con-
tents. The passage from analog to digital world in multimedia
environment cannot be performed without compression
algorithms. DVDs, Blu-Ray, and Digital TV are typical
examples. The compression algorithm used in DVDs is
MPEG-2, and Blu-Ray supports VC-1 standardized with the
name SMPTE 421M [1], in addition to MPEG-2 and H.264.
In the digital television, the compression algorithms are
used to reduce the transmission throughput. In DVB-T, the
picture format for DVD and Standard Definition TV (SDTV)
is 720 × 576, and this resolution is the most used in digital
multimedia contents. The most recent standards for digital
television as DVB-T2 and DVB-H support H.264/MPEG-4
AVC for coding video.

The H.264/AVC [2] video compression standard can
cope with a large range of applications, reaching compres-
sion rate and video quality levels never accomplished by
previous algorithms. Even if the initial H.264/AVC stan-
dard (completed in May 2003) was primarily focused on
“entertainment-quality” video, not dealing with the highest
video resolutions, the introduction of a new set of extensions

in July 2004 covered this lack. These extensions are known
as “fidelity range extensions” (FRExt) and produced a set of
new profiles, collectively called High Profiles. As described
in [3], these profiles support all the Main Profile features
and introduce additional characteristics such as adaptive
transform block-size and perceptual quantization scaling
matrices. Experimental results show that, when restricted
to intra-only coding, H.264/AVC High Profile outperforms
the state-of-the-art in still-image coding represented by
JPEG2000 on a set of monochrome test images by 0.5 dB
average PSNR [4].

It results that a H.264 encoder addressing high definition
(HD) resolutions needs to support High Profiles in order to
be part of an effective video application. On the other hand,
the already great complexity of the H.264 algorithm is further
increased by supporting FRExt. In particular, this leads to
implement two new modules: the 8 × 8 intraprediction and
the 8× 8 transform.

In case of mobile devices, the H.264 complexity issues
together with the constraints of limited power consumption
and the typical need of real-time operations in video-based
applications draw a difficult scenario for video application
developers.

2 VLSI Design

The HD resolution involves a large amount of data,
and the compression algorithms are high computational
demand applications, often used as benchmark to measure
the processor performance. In order to support real-time
video encoding and decoding, specific architectures are
developed. Multicore architectures have the potential to meet
the performance levels required by the real-time coding of
HD video resolutions. But in order to exploit multicore
architectures, several problems have to be faced. The first
issue is the subdivision of an encoder application in modules
that can be executed in parallel. In this case, the main difficult
is the strong data dependency in video encoder algorithms.
Parallel architectures can be more easily exploited using
other kind of algorithm like computer graphics, rendering
technology or cryptography, where the data dependency
is not as strong as in video compression. Once a good
partitioning is achieved, the optimization of a video encoder
should take advantage of the data level parallelism to increase
the performance of each encoder module running on the
architecture’s processing element. A common approach is
to use the SIMD instructions to exploit the data level
parallelism during the execution; otherwise, ASIC design can
be adopted for critical kernel. SIMD architectures are widely
used for their flexibility. SIMD ISAs are added at most market
spread processor: Intel’s MMX, SSE1, SSE2, SSE3, SSE4; Amd
3DNow!; ARM’s NEON; Motorola’s AltiVec (also known as
Apple’s Velocity Engine or IBM’s VMX).

In this paper, we will show how the data level par-
allelism is exploited by SIMD and which instructions are
more useful in video processing. Different instruction set
architectures (ISAs) will be compared in order to show
how the optimization can be driven and how different ISA
features can lead to different performance. This paper is
intended to be a great help to both software programmers
that have to choose for the most suitable SIMD ISA for
developing a video-based application and for ISA designers
that want to create a generic instruction set being able to give
good performance on video applications. In that regard, the
authors will select a set of generic SIMD instructions that can
speed up video codec applications, detailing the modules that
will profit from the introduction of each instruction. Besides
describing the optimization methods, the paper indicates
a few guidelines that should be followed to partition the
encoder in separate modules.

Even though the work focuses on H.264/AVC, most of the
proposed solutions will also apply to the earlier mentioned
standards as well as to more recent video compression
algorithms as scalable video coding (SVC) [5]. Moreover,
H.264/AVC tools will have a fundamental role in the emerg-
ing high efficiency video coding (HEVC) standardization
project [6].

This paper is organized as follows. Section 2 gives an
overview of the state-of-the-art SIMD-based architectures,
giving particular attention to those targeting video-coding
applications. A brief description of the three architectures
used for the presented project is given in Section 3. Section 4
describes the H.264 optimized encoder, focusing on module
partitioning and SIMD-based implementation. The per-
formance results of both the C-pure implementation and

the SIMD version are given in Section 5 together with
an explanation about what are the key instructions for
optimizing a video codec. Finally, the conclusion is drawn
in Section 6.

2. Related Works

The basic concept of SIMD instructions is the possibility of
fill vector registers with multiple data in order to execute
the same operation on several elements. One of the major
bottlenecks in the SIMD approach is the overhead due to
the data handling needed to feed the vector registers. Typical
required operations are extra memory accesses, packing data,
element permutation inside vectors, and conversion from
vector to scalar results. All these preliminary operations limit
the vector dimension and the performance enhancement
achievable with SIMD optimization.

In literature, several studies regarding the SIMD opti-
mization of video-coding applications are available [7–11].
The scope driving these studies is the achievement of the
maximum performance, adopting measures in order to
reduce the known bottlenecks. Since its standardization,
SIMD optimizations targeting the H.264 algorithm have
been proposed as can be seen in [12, 13]. However, both the
works only address the H.264 decoder and present a MMX
optimization starting from the H.264 reference code. Besides
addressing a more complex application, our aims were also to
discuss how the characteristics of different architectures and
different set of SIMD instructions can impact on the encoder
performance.

In SIMD processors the memory access has an important
impact on performance. The unaligned access is not usually
possible in SIMD ISA, and when possible it is discouraged
due to additional instruction latency. The programmers
usually take care of handling the unaligned load adding
further overhead to vector data organization. Moreover,
the need of unaligned load is always present in video-
coding algorithm especially in motion estimation (ME) and
motion compensation (MC), where the pixel blocks selected
by motion vectors are frequently at misaligned positions
even if the start of a frame is memory aligned. Often, the
position of a block we need to access cannot be known in
advance, and this leads to unpredictable misalignment in
data loaded from memory. In Intel’s architectures, starting
from SSE2 the support to unaligned load has been added,
but the performance is strongly reduced either if the load
operation crosses the cache boundary or, with SSE3, if the
load instruction needs store-to-load forwarding. In AltiVec,
it is necessary to load two adjacent positions and shift data
in order to achieve one unaligned load, a usually adopted
approach to overcome the misalignment access issue. This
problem is common in digital signal processor (DSP) as well.
Usually, DSP do not support unaligned loads, but due to the
large use of DSP in video application several producers have
added the support to this kind of operation. For example,
Texas Instruments family TMS320C64x supports unaligned
load and store operations of 32 and 64 bit element, but with
only one of the two memory ports [14].

VLSI Design 3

The MediaBreeze SIMD processor was proposed to
reduce the bottlenecks in SIMD implementations [15]. The
Breeze SIMD ISA uses a multidimensional vector able to
speed up nested loops but at the cost of a very complicated
instruction structure requiring a dedicated instruction mem-
ory. In [16], a specific SIMD ISA named VS-ISA was pro-
posed in order to improve performance in video coding. The
authors adopted specific solutions for sum of absolute differ-
ence (SAD), not aligned load applied to ME, interpolation,
DCT-IDCT, and quantization dequantization.

Another typical approach to reduce the SIMD overhead
is the usage of multibank vector memory where data is stored
interleaved. The drawback is the increase of hardware cost for
supporting the addresses generation.

An alternative to SIMD implementation on program-
mable processor architectures is the hardwired processor.
Usually, it is only used when performance and low power
consumption are essential requirements [7, 14, 17]. In fact,
the lack of flexibility typical of hardwired processors reduces
their applicability to a narrow segment of the market, where
the programmability is either not required or considerably
reduced.

3. SIMD ISA Description

In order to optimize the H.264 encoder, we chose three differ-
ent ISAs. The adopted architectures are ST240, xSTream, and
P2012, all developed by STMicroelectronics. The former is
a single-processor architecture, and the others are multicore
platforms. In the following, the three architectures will
be briefly described, giving special attention to the SIMD
instruction set.

We chose these architectures for their novelty and for the
possibility to have a complete toolchain (code generation,
simulation, profiling, etc.) for developing an application in
an optimal way. Each toolchain allowed a complete observ-
ability of the system. In this way, it was possible to evaluate
the effectiveness of every author’s solution. Observability is
a very important characteristic when developing/optimizing
an application. Using a real system it is not always possible to
reach the degree of observability you have using a simulator
and a suitable toolchain. Moreover, in an architecture under
development as P2012 we had the possibility to contribute to
the SIMD instruction set and, more important, to evaluate
the contribution of each particular SIMD to the performance
of the target video codec application. The three instruction
sets present suitable characteristics for our research; they
are generic instruction set, but ST240 includes a few video-
specific instructions; we can analyse the impact of different
vector register sizes; even if xSTream and P2012 share many
characteristics, only xSTream supports horizontal SIMD
(this is a special feature; e.g., other SIMD extensions as Intel
SSE and ARM NEON do not have the same support); in
P2012 platform, we were able to define and insert new SIMD
instructions.

Besides the type of instructions, the SIMD extensions
differ in both size and precision. These differences allow
analyzing the impact of different architecture solutions on
the global performance.

Source 1Source 2

CD B A GH F E

Absubu.pb result

+ Sadu.pb result

| − | | − | | − | | − |

|D−H| |C−G| |B − F| |A − E|

Figure 1: SAD operation.

3.1. ST240. The ST240 is a processor of STMicroelectronics
ST200 family based on LX technology jointly developed with
Hewlett Packard [18, 19]. The main ST240’s features are the
following:

(i) 4-issue Very Long Instruction Word (VLIW)

(ii) 64-32-bit general purpose registers

(iii) 32KB D-Cache and 32KB I-Cache

(iv) 450 MHz clock frequency

(v) 8-bit/16-bit arithmetic SIMD.

In the H.264 encoder SIMD optimization, the most sig-
nificant instructions of the ST240 ISA are the following: the
SIMD add.ph and sub.ph which perform, respectively, the
packed 16-bit addition or subtraction; the perm.pb instruc-
tion which performs byte permutations and the mulad-
dus.pb which multiplies an unsigned byte by a signed byte
in each of the byte lanes and then sums across the four
lanes to produce a single result. Furthermore, several data
manipulation instructions are defined: pack.pb packs 16-bit
values to byte elements ignoring the upper half; shuffeve.pb
and shuffodd.pb, respectively, perform 8-bit shuffle of even
and odd lanes. Two averaging operations (avg4u.pb and
avgu.pb) are also defined in the instruction set.

One important operation in video-coding algorithms,
the absolute value of the difference, abs (a-b), can be
performed with the absubu.pb instruction (Figure 1) which
works on each byte lane (treating each byte lane as an
unsigned value) and returns the result in the corresponding
byte lane of the destination register. The sadu.pb (Figure 1)
performs the same operation and then sums the byte lanes
value and returns the result.

3.2. xSTream. xSTream is a multiprocessor dataflow archi-
tecture for high-performance embedded multimedia stream-
ing applications designed at STMicroelectronics [20, 21].

xSTream is constituted by a parallel distributed and
shared memory architecture. It is an array of processing
elements connected by a Network on Chip (NoC) with
specific hardware for management of communication [22],
as depicted in Figure 2.

4 VLSI Design

xSTNoc

xPE

LMLMLM

xFC

xPE

LMLMLM

xFC

xPE

LMLMLM

xFC

xPE

LMLMLM

xFC

xSTream

xFC

xPE

LMLMLM

xFC

xPE

LMLMLM

xFC

xPE

LMLMLM

xFC

xDMA

System BUS

Host

I/O R
A

M

IP

µP

L1$

Figure 2: xSTream architecture.

1 03 25 47 6

3 2 1 0
127 96/95 64/63 32/31 0

127 96/95 64/63 32/31 0108/107 80/79 48/47 16/15 Vector field

Vector field

Element number

Element number

Vector operand with 16 bit subwords

Vector operand with 32 bit subwords

Figure 3: Vector operand.

The main elements in Figure 2 are the general purpose
engine, the xSTreaming Processing Engines (XPEs) and the
NoC interconnecting all components.

The XPEs are based on ST231 VLIW processors [22] of
ST200 STMicroelectronics family [18, 19]. The main features
can be resumed as

(i) 2-issue VLIW,

(ii) 128-bit vector registers,

(iii) up to 512 KB local memory cache,

(iv) up to 1 GHz clock frequency, and

(v) 16-bit/32-bit arithmetic SIMD.

In order to achieve excellent performance, the XPE core
tries to exploit available parallelism at various levels. It
supports a plethora of SIMD instructions to exploit avail-
able data-level parallelism. These instructions concurrently
execute up to four operations on 32-bit operands or eight
operations on 16-bit operands. The core supports wide 128-
bit load/store.

The xSTream architecture handles scalar and vector
operands.

Vector operands are 128-bit wide and consist of either
eight 16-bit half-words or four 32-bit words, as shown in
Figure 3.

In the xSTream ISA each SIMD instruction has an
additional operand allowing permuting the result’s element
positions or replicating any element in the other positions.

Core L1

Core L1

Core L1

Core L1

L2

L1

L1

L1

L1

Core

Core

Core

Core

NI

Cluster
Fabric

controller
code

HW syncronizer, CDMA, D
and TU, T and MU, E and

 WU

Figure 4: P2012 scheme.

This feature considerably increases the SIMD flexibility
because the results have often to be reordered for further
elaboration. This is especially true for video-coding algo-
rithm with operations performed on several steps where the
input of next step is usually the output of previous one. The
permutation operand allows this with the cost of only one
additional cycle. This leads to reduced costs to perform all
the operation needed for data reordering.

The XPE supports horizontal SIMD as well. This kind of
SIMD allows operations among elements in the same vector,
and it is a key feature for speeding up execution in several
H.264 functional units, as we will see in next sections.

3.3. Platform 2012 (P2012). Platform 2012 is a high-
performance programmable architecture for high com-
putational demanding embedded multimedia applications,
currently under joint development by STMicroelectronics
and Commissariat à l’énergie atomique et aux énergies alter-
natives (CEA) [23]. The goal of P2012 platform is to be refer-
ence architecture for next generation of multimedia product.

The P2012 architecture (Figure 4) is constituted by a
large number of decoupled clusters of STxP70 processors
interconnected by a Network on Chip (NoC). Each cluster
can contain a number of computational elements ranging
from 1 to 16. The main features of the STxP70 processor ele-
ment are as follows:

(i) 32-bit RISC processor (up to 2 instructions per cy-
cle),

(ii) 128-bit vector registers,

(iii) 256 KB of memory shared by all the processors (per
cluster),

(iv) 600 MHz clock frequency, and

(v) 16-bit/32-bit arithmetic SIMD.

The P2012 basic modules can be easily replicated to pro-
vide scalability [24]. Each module is constituted by a com-
puting cluster with cache memory hierarchy and a communi-
cation engine. The STxP70 is dual issue application-specific

VLSI Design 5

instruction-set processor (ASIP) [25] with domain-specific
parameterized vector extension named VECx. STxP70 SIMD
instructions are used to exploit available data level paral-
lelism [26]. These instructions execute in parallel up to four
operations on 32-bit operands or eight operations on 16-bit
operands, while 128-bit load/store is supported.

Vector operands are 128-bit wide and consist of either
eight 16-bit half-words or four 32-bit words. In order to
increase the SIMD flexibility, instructions able to permute
data positions inside the vector operands are defined in the
instruction set. The support to horizontal SIMD is limited
at operation involving only two adjacent elements inside a
vector, but its presence is fundamental for typical video-
coding operation like sum of absolute difference (SAD).

3.4. SIMD Instruction-Set Evaluation. Whatever platform we
choose, we will have a limited number of SIMD instructions
because of hardware constraints. For this reason, besides
precision and size, one of the key issues while choosing
a SIMD extension is generality versus application-specific
instructions. The former can show good speedups for a large
variety of applications. The latter can reach greater perfor-
mance, but limited to a particular family of applications. Of
course, there are a lot of solutions that lay in the middle.

The vector register size impacts performance, hardware
reliability, and costs. The choice of the optimal size and
precision of SIMD instructions is a key factor for reaching the
desired performance for the target application. The axiom
larger SIMD equal to better performance may be valid for
applications having no constraints and data dependencies
in either spatial or temporal field. It is not the H.264
encoder condition. In general, algorithms with a heavy
control flow are very difficult to vectorize, and the SIMD
optimization does not always lead to the desired performance
enhancement.

The application developers should choose the dimension
that best fit their needs, as well as ISA designers should take
into account the requirements of the application families
they are targeting. As stated in [7], in a processor designed
to handle video-coding standards for which the theoretical
worst-case video sequence will consist of a large number of
4 × 4 blocks, four-way SIMD parallelism makes full use of
data paths. In this case, increasing the size will lead to little
performance improvement. In contrast, if we focus on the
H.264’s fidelity range extensions, with their 8 × 8 transform
and 8 × 8 intraprediction, an ISA with eight-way SIMD
parallelism will yield to better performance. Next generation
video-coding standards like HEVC will use wider ranges of
block sizes for both prediction and transformation processes,
making the choice of the optimal vector register size even
more complicated.

4. H.264 Encoder Implementation

4.1. Software Partitioning. In order to support real-time
video encoding addressing HD resolutions, multiprocessor
architectures seem to be an optimal solution, as earlier ex-
plained. Moreover, we would like to test the multicore

MB D MB B MB C

MB A Curr

MB

Figure 5: MB neighbours.

architectures with an application of high interest but not so
suitable for these kind of architectures in order to stress the
architecture design and to evaluate possible issues and find-
ing solutions that could be also useful for other applications.

The first programmer’s task dealing with this type of
platforms is the subdivision of the encoder application in
modules that can execute in parallel. The H.264 encoder
partitioning plays a fundamental role in multicore architec-
tures as xSTream and P2012, where each functional block
has to meet the resources of processor elements, and the
interconnection system must fulfil the memory bandwidth
needed to feed the modules. The designer choice becomes
more complex when some modules can run in parallel
avoiding stalls in pipeline [26].

Even if a detailed description of the encoder partitioning
is beyond the scope of this paper, we can here depict some
issues we faced approaching this process and the solutions
we adopted.

First of all, it is worth to take into account the data
dependency inside the H.264 encoder. Temporal data depen-
dency is implicit in the Motion Estimation mechanism; the
coding of the current frame always depends on the previously
encoded frame(s) that are used as reference. Thus, there is
always a temporal data dependency, except if the current
frame is an I picture. Anyway, the encoding process also
shows a spatial data dependency between macroblocks, that
is, the basic encoding block comprising 16 × 16 pixel ele-
ments. While coding the current macroblock (MB), we need
data from the previously encoded MBs belonging to the same
frame, or, to be more precise, to the same slice (a sequence of
MBs in which the frame can be segmented). Figure 5 shows
the current MB together with the already reconstructed
neighbours that are needed for its prediction. Specifically,
MB A, B, C, and D are required for intraprediction, motion
vector prediction, and spatial direct prediction (in the SVC-
compatible version). Furthermore, MB A and B are used to
check the skip mode in P frames.

Spatial data dependency can even occur inside a MB. The
prediction of a 4 × 4 block may depend on the results of
already-predicted neighbouring blocks. e.g., this occurs in
Intra 4× 4 or in the deblocking filter.

In this scenario, we cannot encode two frames in parallel,
because of the temporal data dependency, and we cannot
concurrently process different MBs, because of the spatial

6 VLSI Design

Table 1: Encoder data flow.

Module Input Output Input from local buffers

MV prediction MV A MV pred MV B, C, D

Motion estimation
Search window, original MB, MV

predictor
MV, cost, best intermode, MB

predictor

Intraprediction Original MB, reconstructed MB A
Cost, best intramode, MB

predictor
Reconstructed MB B, C, D

Residual coding Original MB, MB predictor
Residual signal, coded MB

parameters

IDCT-DeQuant and reconstruction Residual signal Reconstructed MB

Deblocking filter Reconstructed MB A Decoded MB Reconstructed MB B

Entropy coding Coded MB parameters Output stream

data dependency, unless the MBs belong to different slices.
Thus, one opportunity is to concurrently process every slice,
but this solution has two drawbacks; it strongly depends
on the particular encoder configuration, and it requests to
implement the whole encoder on every processor element.
Therefore, the only chance to partition the encoder is during
the MB processing. This does not mean to separately process
8 × 8 or 4 × 4 blocks, but to separately execute the encoder
functional units at MB level.

The encoder partitioning should now derive from an
evaluation of the functional units that can be concurrently
computed, taking into account the amount of data that needs
to be exchanged between the different cores.

If we suppose that each module will run on a different
core, we must consider both the chunk of data each
core needs to exchange with the interconnected cores and
the frequency of such communications. Therefore, for an
optimal module partitioning, it is important to analyse the
encoder data flow. Basically, this analysis should result in
a list of selected modules with a set of input and output
data for every list’s entry, as shown in Table 1. The Figure 5’s
notation is used to indicate the neighbouring MBs. This
table allows identifying the dependencies between modules
as well as the data flow, from which we can obtain the
requested bandwidth for the communication mechanism
between processor elements. This preliminary analysis also
produces the partition diagram, shown in Figure 6.

Each module will keep local memory buffers containing
the data required to process the current MB. For example, the
Intraprediction module needs to store a row of reconstructed
MBs plus one MB (the left MB) in order to be able to
predict the current MB. The deblocking filter will need to
store the same number of reconstructed MBs as well. These
local storages are filled by producer modules as soon as
they complete the respective tasks. In the previous example,
“IDCT-DeQuant & Reconstruction” is the producer for
intraprediction; when the MB reconstruction has completed
for MBn, the intraprediction of MBn+1 can start. It is worth
noting that the intraprediction of MBn+1 can be concurrently
executed with the motion estimation of MBn+1 and the
deblocking filter of MBn.

For the sake of simplicity we did not put into Figure 6
scheme all the project components. The buffer mechanism
for passing reference-frame data to the ME and the decoded

MV prediction

ME Intraprediction

Decision and
residual coding

IDCT-DeQuant and
reconstruction Entropy coding

Deblocking
filter

MV

MV, cost,
best intermode

Cost,
best intramode

Decoded MB

Recon MB
Output
stream

Residual signal
MB type, MV,
residual signal

MV pred

Orig. MB Ref -frame SW

Recon MB

Current-frame
buffer

Figure 6: Encoder partition diagram.

picture buffer are not described. We preferred to focus on
the encoder data flow in order to highlight the chances for
module parallelisation. Moreover, the buffering mechanisms
strongly depend on the architecture design implementation.

The here described partitioning seems to both ful-
fil the data dependency constraints and exploit the few
opportunities of parallel execution available in a H.264
encoder. Moreover, the computational weight of the encoder
components is quite well distributed among the different
cores. The only exception is the ME, which is the most time-
consuming module. In our encoder we utilize the SLIMH264
ME algorithm [27]. SLIMH264 is divided into two different
stages: the first phase is common to all the partitions and

VLSI Design 7

64 64 1616

N N − 1 N + 1NN − 1 N + 1

Figure 7: Search window update.

performs a fast search; the second step utilizes the coarse
results coming from the first phase to refine the search for
every MB partition. The second step can be executed in
parallel for every MB partition. This leaves the designer the
freedom to subsequently split the module to eventually avoid
stalls in pipeline in the likely case the ME requires more cycles
than intraprediction.

Among the issues the designer should take into account,
there is still the memory bandwidth needed to feed the
modules. From Table 1, we can notice that the ME module
requests the largest amount of data. Besides coding param-
eters, the ME should receive data belonging to two frames:
current and reference frame. For each MB, the data passed
to the ME consists of the original MB luma values and the
portion of reference frame enclosed by the search window
(SW). Supposing one byte per luma sample and a SW set
to 64 × 64 pixels (a suitable value for HD formats), we will
get a width of (64 + 16 + 64) pixels leading to 20736 bytes.
Thus, we had 20736 bytes plus the original-image MB 16×16
bytes to send to the ME module for every MB. This leads to a
very large memory bandwidth. Anyway, as could be noticed
in Figure 7, not all of the SW must be resent every time a
new MB is coded. Since MBs are coded in raster-scan order
and search window of neighbouring MB overlaps, just a 16-
byte-wide column update can be sent after the first complete
window, as described in [28, 29]. Figure 7 shows the SW
for the MBN (left side) and the SW for the next MB (right
side). The amount of data sent to the ME module for coding
MBN+1 is shown as a red rectangle. When reaching the end of
the row, MBN+1 does not need the update because this will be
over the image border. Nevertheless, a SW update is written
to the array, and it will be part of the SW of the first MB in
the next row.

4.2. Modules Optimization. The H.264 encoder modules
work on a block basis. Even though the basic block of the
coding process is the macroblock, consisting of 16× 16 pixel
elements, the basic block of each module’s computation can
vary from 4× 4 to 16× 16. A number of experiments carried
out at STMicroelectronics’s Advanced System Technology
Laboratories showed that, addressing HD resolutions, it is
possible to disable interprediction modes involving the 8× 8
blocks subpartitions without significant effects on video-
quality and -coding efficiency. The same experiments also
showed that fidelity range extensions are needed to improve

video quality at high resolutions, as one could expect. For
this reason, we choose both to disable ME on partitions 4×8,
8× 4, and 4× 4 and to add intra 8× 8 and transform 8× 8.
In this scenario, most of the encoder modules work on 8× 8
blocks of 8-bit samples. The 4×4 blocks are still used in Intra-
4×4 and DCT/Q/IQ/IDCT 4×4. The Intra-16×16 prediction
works on the whole MB, whereas the correspondent transfor-
mations just iterate the 4× 4 procedures.

Usually, inside each module the computations require
16-bit precision for intermediate results. Thus, a typical
situation is as follows:

(i) load 8-bit samples from memory;

(ii) switch to 16-bit precision and compute the results;

(iii) store the results to memory as 8-bit samples.

Some of the modules, or at least some parts of them,
require a 32-bit precision. Among them, it is worth noting
a few computations for pixels interpolation and the Quanti-
zation and Inverse-Quantization process.

In order to evaluate the different performance achievable
with the three different ISAs, we have inserted the SIMD
instructions in an already optimized ANSI C code which is
used as reference to evaluate the achieved speedup. For a
better understanding of the presented work, the comparison
is not only carried out at global level, but for every H.264
functional unit.

In the following, the implementation detail of the sum
of absolute difference (SAD) and the Hadamard filter will be
shown for all the three addressed ISAs. Among all the several
modules implementations, we have chosen to describe these
particular operations for different reasons: the SAD is one of
the most time-consuming operations in video-compression
algorithms; the implementation of Hadamard filter is a good
example for describing how an ANSI C implementation can
be rewritten to best fit the available SIMD ISA. The access to
data stored in memory will be discussed as well because it is
a typical issue in optimizing video compression algorithms
using SIMD instructions. A complete description of the
encoder SIMD implementation on the ST240 processor can
be found in [30].

4.2.1. SAD Operation. The sum of absolute differences is a
key operation for a large variety of video-coding algorithms.
The number of times this operation is executed during a cod-
ing process can vary depending on the encoder implementa-
tion and it strongly depends on the motion estimation mod-
ule, that it is not covered by the H.264 standard definition.
Anyway, independently of specific implementations, this
operation is a key factor for the whole-encoder performance.

Here, we will show three different SAD implementations
using SIMD instructions, and we will compare them with an
optimized ANSI C code.

Given the essential role the SAD plays in video coding
algorithms, some instruction sets include specific instruc-
tions to speed up such operation. Here, we will compare
SIMD instruction sets having different size and different de-
gree of specializations.

8 VLSI Design

 load 4 elements for p and i
p_temp0 = *pp; pp += p_off;
i_temp0 = *dd; dd += d_off;

 load 4 elements for p and i
p_temp1 = pp; pp += p_off;
i_temp1 = dd; dd += d_off;

load 4 elements for p and i
p_temp2 = pp; pp += p_off;
i_temp2 = dd; dd += d_off;

 load 4 elements for p and i
p_temp3 = pp;
i_temp3 = dd;
sad0 = sadu.pb(i_temp0, p_temp0);
sad1 = sadu.pb(i_temp1, p_temp1);
sad2 = sadu.pb(i_temp2, p_temp2);
sad3 = sadu.pb(i_temp3, p_temp3);

sad
result = sad0 + sad1 + sad2 + sad3;

i

p
p_temp0

p_temp3

i_temp0

sadu

sadu

sadu

sadu

sad0

sad1

sad2

sad3

i_temp3

/∗

/∗

/∗

/∗

/∗ /∗

/∗ /∗

/∗ /∗

∗
∗

∗
∗

∗
∗

· · ·

· · · · · ·

· · ·

Figure 8: SAD implementation.

Table 2: SAD performance.

Cycles Operations Load Store

ANSI C version 36 134 8 0

SIMD version 14 30 8 0

Using the ST240 32-bit wide SIMD extension, the
optimization of the SAD computation has been quite
straightforward thanks to the SIMD instruction sadu.pb.

The SAD finds the “distance” between two 4 × 4 blocks,
generally between a prediction block and the original image;
given the two blocks in the left side of Figure 8, the pseudo-
code computing the SAD can be viewed in the right side of
the same figure. Besides loading the input data, it basically
consists of four calls to the sadu.pb instruction.

The achieved speedup is shown in Table 2.
The xSTream and P2012 architectures support 128-

bit-wide vector registers, and they can perform 8-bit, 16-
bit, or 32-bit arithmetic SIMD operations. Usually, SAD is
performed using 8-bit precision, allowing for each SIMD
calculation a capability to handle sixteen elements. Using
vertical SIMD instructions, it is easy to achieve the absolute
difference among several elements stored in two vectors,
but the addition of the elements stored in a single vector
is onerous because usually it requires several vertical SIMD
inefficiently utilized. Both P2012 and xSTream ISAs have
horizontal addition of SIMD instructions, but with different
capability. In xSTream, it is allowed adding all the elements
stored in the same vector, producing a scalar result. In P2012,
VECx horizontal addition is limited to only add two adjacent
elements inside a vector; in this way, four SIMD instructions
must be used in order to achieve the scalar result of the SAD
operation. This difference significantly impacts the encoder
optimization. For example, when the SAD is calculated to
evaluate the predictor cost in Intra 16× 16, only two SIMDs
are used with xSTream against the six used with P2012. This
is schematized in Figure 9.

Even if in P2012 ISA the lacking of a horizontal SIMD
for addition partially wastes the obtained great gain, we still

a b c d
e f g h

i j k l

m n o p

a b c d
e f g h

i j k l
m n o p

a b c d
e f g h

i j k l

m n o p

a b c d
e f g h

i j k l
m n o p

- =
abs

Original block Predictor Difference Absolute Diff.

a b c d e f g h i j k l m n o pa b c d e f g h i j k l m n o pcost + + + + + + + + + + + + + + +=

a b c d e f g h i j k l m n o pa b c d e f g h i j k l m n o p

a b c d e f g h i j k l m n o pa b c d e f g h i j k l m n o p

a b c d e f g h i j k l m n o pa b c d e f g h i j k l m n o p

Original block

Predictor

Absolute Diff.

SUBABS

ADDV
cost

xSTream SIMD implementation

P2012 SIMD implementation

a b c d e f g h i j k l m n o pa b c d e f g h i j k l m n o p

a b c d e f g h i j k l m n o pa b c d e f g h i j k l m n o p

a b c d e f g h i j k l m n o pa b c d e f g h i j k l m n o p

Original block

Predictor

Absolute Diff.

SUBABS

cost

VZACC2H

VZACC2H

VZACC2H

VZACC2H

XRF0X2R

S5S4S3S2S1S0 S6 S7

S3S2S1S0

S1S0

S0

Figure 9: Predictor cost calculation.

complete the SAD operation using six VECx instructions and
one scalar instruction, as shown in Figure 9, versus the 48
scalar instructions used in the ANSI C implementation (16
subtractions, 16 absolute values, and 16 additions).

4.2.2. Hadamard. We consider very interesting the Hada-
mard SIMD optimization because it involves a large number
of instructions and can be considered a typical case study.

Although the Hadamard transform it is not currently
used in the rest of the encoder, the intraprediction module
utilizes such transform to find the best 16×16 intraprediction
mode. The intramodule divides the predicted MB into
sixteen 4 × 4 blocks. Each block is compared to the cor-
respondent original-image’s block, and sixteen differences
are calculated. These sixteen values are filtered through the
Hadamard transform before computing the SAD of the
whole MB.

In the ST240 code, the optimization has started consid-
ering that Hadamard can be subdivided into two different
phases: horizontal and vertical. The horizontal phase can be
subdivided into 4 rows as well as the vertical phase into 4
columns, as shown in the portion of pseudocode in Table 3.

VLSI Design 9

Table 3: Hadamard phases.

Horizontal phase Vertical phase

/∗ first row ∗/ /∗ first column ∗/

m0 = d0 + d3 + d1 + d2; w0 = m0 + m12 + m4 + m8;

m1 = d0 + d3− d1− d2; w1 = m0 + m12−m4−m8;

m2 = d0− d3 + d1− d2; w2 = m0−m12 + m4−m8;

m3 = d0− d3− d1 + d2; w3 = m0−m12−m4 + m8;

/∗ second row ∗/ /∗ second column ∗/

m4 = d4 + d7 + d5 + d6; w4 = m2 + m14 + m6 + m10;

m5 = d4 + d7− d5− d6; w5 = m2 +m14−m6−m10;

m6 = d4− d7 + d5− d6; w6 = m2−m14 +m6−m10;

m7 = d4− d7− d5 + d6; w7 = m2−m14−m6 +m10;

/∗ third row ∗/ /∗ third column ∗/

m8 = d8 + d11 + d9 + d10; w8 = m1 + m13 + m5 + m9;

m9 = d8 + d11− d9− d10; w9 = m1 + m13−m5−m9;

m10 = d8− d11 + d9− d10; w10 = m1−m13 +m5−m9;

m11 = d8− d11− d9 + d10; w11 = m1−m13−m5 +m9;

/∗ fourth row ∗/ /∗ fourth column ∗/

m12 = d12 + d15 + d13 + d14; w12 = m3+m15+m7+m11;

m13 = d12 + d15− d13− d14; w13 = m3+m15−m7−m11;

m14 = d12− d15 + d13− d14; w14 = m3−m15+m7−m11;

m15 = d12− d15− d13 + d14; w15 = m3−m15−m7+m11;

In the pseudocode, di are the differences and mi the inter-
mediate values of the transform.

Once we have all the differences contained in packed 16-
bit values subdivided into even and odd pairs, we can rewrite
the first row of the horizontal Hadamard transform as

m0 = (d0 + d1) + (d2 + d3),

m1 = (d0− d1)− (d2− d3),

m2 = (d0 + d1)− (d2 + d3),

m3 = (d0− d1) + (d2− d3).

(1)

In such a way, we can exploit the packed 16-bit addition
and subtraction to obtain the high and low halves of the mi

coefficients. As can be noted, the low and high halves of m0
and m2 are the same, but while the m0’s value is achievable
by adding its halves, to compute the value of m2 we have to
subtract its high half from the lower one. Similar considera-
tions can be applied to the odd elements m1 and m3.

Anyway, since the vertical phase of Hadamard is yet to
come, there is no need to compute such values at this point.
In fact, we can rewrite the mi coefficient as functions of their
own halves as follows:

m0 = m0L + m0H ,

m1 = m1L−m1H ,

m2 = m2L−m2H ,

m3 = m3L + m3H.

(2)

and utilize this notation to rewrite the vertical phase of the
Hadamard transform as described below

w0 = (m0 + m4) + (m8 + m12)

= (m0L + m4L) + (m0H + m4H)

+ (m8L + m12L) + (m8H + m12H)

= (m0L + m4L) + (m8L + m12L)

+ (m0H + m4H) + (m8H + m12H)

= w0L + w0H.

(3)

We can use the low and high halves of the intermediate
coefficients to compute the low and high halves of the final
coefficients wi as illustrated in Figure 10.

The Hadamard optimization with ST240 SIMD is quite
complex. Due to shortness of SIMD, the standard algorithm
has been modified in order to better match the SIMD ISA
features.

Using the xSTream and P2012 architectures, we followed
a different approach. Our goal was the exploitation of 128-
bit-wide SIMD minimizing the data reordering. Considering
that the Hadamard transform can be defined as

Hn =
⎡
⎣Hn−1 Hn−1

Hn−1 −Hn−1

⎤
⎦

H0 = 1,

(4)

the Hadamard matrices are composed of±1 and are a special
case of discrete fourier transform (DFT). For this reason, the
calculation can exploit the FFT algorithm, usually known as
Fast Walsh-Hadamard transform [31].

The only issue is obtaining a good implementation of
the FFT butterfly with SIMD, avoiding wasting all the gain
achieved using fast algorithm with the data reordering
needed to implement the calculation. Our approach consists
of a modified butterfly that allows using always the same
butterfly structure for every level, even if we have to reorder
data between stages (Figure 11).

The output values coming from every butterfly can
be calculated for 16 samples at a time using two SIMD
instructions, one calculating the additions and one calcu-
lating the differences. In this way, we have the advantage of
computing the output of each level using a simple SIMD
implementation, at the cost of swapping intermediate results
between different levels.

Even if xSTream and P2012 share this implementation
mechanism, we have measured different performance. In
this case, the difference depends on the different types of
data manipulation instructions. The xSTream ISA having
the third operand allowing the permutation of results inside
vectors is more flexible and can implement the above
algorithm with a reduced number of instructions respect
to VECx P2012 ISA. Algorithm 1 shows the xSTream SIMD
implementation.

4.2.3. Memory Access Issues. As previous exposed, a key fac-
tor to achieve a good performance improvement with

10 VLSI Design

m0Lm0H m4Lm4H m8Lm8H m12Lm12H

m0L+
m4L

m0H+
m4H

m8L+
m12L

m8H+
m12H

w0Lw0H

Add

Add

Add

w0 pck = add(add(m0 2 pck,m4 6 pck),add(m8 10 pck, m12 14 pck));
w1 pck = sub(sub(m0 2 pck, m4 6 pck),sub(m8 10 pck, m12 14 pck));
w2 pck = sub(add(m0 2 pck, m4 6 pck),add(m8 10 pck, m12 14 pck));
w3 pck = add(sub(m0 2 pck, m4 6 pck),sub(m8 10 pck, m12 14 pck));

m0 2 p m4 6 p m8 10 m12 14

w0 pck

Figure 10: Hadamard vertical phase with ST240 SIMD.

m0L

m0_2_p

m0H m4L

m4_6_p

m4H m8L

m8_10_

m8H m12L

m12_14

m12H

m0L+
m4L

m0H+
m4H

m8L+
m12L

m8H+
m12H

w0Lw0H w0_pck

Add

Add

Add

w0_pck = add(add(m0_2_pck, m4_6_pck),add(m8_10_pck, m12_14_pck));
w1_pck = sub(sub(m0_2_pck, m4_6_pck),sub(m8_10_pck, m12_14_pck));
w2_pck = sub(add(m0_2_pck, m4_6_pck),add(m8_10_pck, m12_14_pck));
w3_pck = add(sub(m0_2_pck, m4_6_pck),sub(m8_10_pck, m12_14_pck));

Figure 11: Hadamard modified butterfly.

SIMD optimization is the efficient handling of unaligned
load operations. In general, programmers should structure
the application data in order to avoid or minimize mis-
aligned memory accesses. In video compression algorithm,
the motion compensation is surely a case where it is not
possible avoid unaligned memory accesses because it is
impossible to predict motion vectors and consequently align
data.

None of the three addressed architectures support una-
ligned load instructions. Therefore, it is important to effi-
ciently use aligned accesses to load misaligned data from
memory. The three ISAs support instructions to concatenate
two vectors. This allows a solution consisting in two steps:
first, we use two aligned load instructions for loading data
in two vector registers, and, then, we concatenate and shift
their elements in order to extract a single vector containing
the needed data, as shown in Figure 12.

/∗first level: one 16 samples butterfly∗/
/∗(s0 ÷ s7)+(s8 ÷ s15)∗/
vaddh out low = in low, in high
/∗(s0 ÷ s7)−(s8 ÷ s15)∗/
vsubh out high = in low, in high

/∗data reordering∗/
/∗0 1 2 3 8 9 10 11∗/
vmrgbl in low = out low, out high, perm
/∗4 5 6 7 12 13 14 15∗/
vmrgbu in high = out low, out high, perm

/∗second level: two 8 samples butterfly∗/
vaddh out low = in low, in high
vsubh out high = in low, in high

/∗data reordering∗/
/∗0 1 8 9 4 5 12 13∗/
vmrge in low = out low, out high
/∗2 3 10 11 6 7 14 15∗/
vmrgo in high = out low, out high

/∗third level: four 4 samples butterfly∗/
vaddh out low = in low, in high
vsubh out high = in low, in high

/∗data reordering∗/
/∗0 8 2 10 4 12 6 14∗/
vmrgeh in low = out low, out high
/∗1 9 3 11 5 13 7 15∗/
vmrgoh in high = out low, out high

/∗fourth level: eight 2 samples butterfly∗/
vaddh out low = in low, in high
vsubh out high = in low, in high

Algorithm 1: Hadamard transform xSTream SIMD implementa-
tion.

VLSI Design 11

uint32 AddressAt128;

vector 16b sw Va, Vb, Vout;

AddressAt128b = ((uint32) (mref ptr)) & (∼0xF);
Offset = ((uint32) (mref ptr)) & (0xF);

Va = ldq(AddressAt128, 0);

Vb = ldq(AddressAt128, 16);

Vout = wrot(Va, Vb, Offset);

Algorithm 2: Unaligned load SIMD implementation with concatenate instruction.

ui32 t PackCurr0 = ∗(orig line);

ui32 t PackCurr1 = ∗(orig line+1);

/∗ Pack to 128 bits ∗/
TmpVectArray[0] = PackCurr0;

TmpVectArray[1] = PackCurr1;

Pack128In = ldqi(Pack128In, TmpVectArray,0);

/∗ Reorganize pixels ∗/
Va = vmrgbeh(Va,Pack128In,VZero,permute0);

Vb = vmrgboh(Vb,Pack128In,VZero, permute1);

VPackCurr = vaddh(VPackCurr,Va,Vb,0);

Algorithm 3: Unaligned load SIMD implementation without concatenate instruction.

Input
data

Output
data

First level Second level

Second level

Output
data

Input
data

First level

Original structure

Modified structure

Data reordering

−1

−1

−1

−1

−1

−1

−1

−1

Figure 12: Unaligned load.

If an ISA does not define a SIMD performing this type
of concatenate operation, then the unaligned load will be
implemented with an extra cost due to the use of additional
instructions for merging data between the two vectors.

Algorithm 2 shows the implementation of an unaligned
load using xSTream. This solution can be compared to the
same operation carried out without a concatenate instruc-
tion shown in Algorithm 3, in which we should add three
instructions to reorganize the data for composing the
required not-aligned vector.

It is very important that these concatenate instructions
can take the offset argument not as a constant value but as

a variable value; otherwise, modules such as motion com-
pensation would not get any benefit from using them. For
example, the Intel SSSE3 “palignr” instruction concatenates
two operands and shift right the composite vector by an
offset for extracting an aligned results, but the offset must
be a compile-time constant value. This is a big issue for a
module as motion compensation, in which it is impossible
to know in advance the offset of a misaligned address.

5. Results

In the H.264 encoder, the most cycle-demanding modules
have been optimized using SIMD instructions: motion
estimation and compensation, DCT, Intraprediction, and so
forth. The best way to compare different instruction sets in
order to judge the effectiveness of both SIMD extensions
and code optimizations is to measure the speedup obtained
with the SIMD-based implementation versus the ANSI C
version of the same source code. In order to separate
the effect of SIMD performance improvement from ANSI
C optimizations, we have inserted SIMD instructions in
previously optimized ANSI C modules.

The results are provided in terms of average cycles
spent to process one macroblock. The xSTream and P2012
architectures share the same modules subdivision. For the
single-core DSP ST240, the subdivision is less fine, and
related modules are joined together. In the reported tests,
the presence of the ST240 processor is important because
it allows comparing the single-processor elements of the
multicore platforms to a single-core architecture. Tests are
performed on a set of video sequences addressing different

12 VLSI Design

Table 4: SIMD instructions for video coding.

Instruction description Affected modules Notes

Horizontal add: adds all the elements inside a vector
register and produces a scalar result

ME, intraprediction Speeds up SAD

Horizontal permute: rearranges elements inside a
vector register

Intraprediction, DCT/Q/IQ/IDCT
Allows zig-zag scan and speeds up intra

diagonal modes

Concatenate: concatenates two vector registers into an
intermediate composite, shifts the composite to the
right by a variable offset

Motion estimation and
compensation

Allows software implementation of
unaligned load

Promotion/demotion precision: an efficient support for
promoting element precision while loading data from
memory, and demoting the precision (with saturation)
while storing data to memory

All the main modules
It will speed up the load and store

operations for several modules

Absolute subtraction: for every element “a” in the first
vector and every element “b” in the second vector
performs the following operation: |a− b|

ME, intraprediction, deblocking filter
Speeds up SAD in conjunction with

horizontal add; used in deblocking filter

Shift with round: performs the following operation for
every element “a” in the vector operand:
(a + 2n−1) >> n, where n is a scalar value

IDCT, deblocking filter, motion
compensation

Speeds up 1/2 pixel interpolation

Average: for every element “a” in the first vector and
every element “b” in the second vector performs the
following operation: (a + b + 1) >> 2

Intraprediction, deblocking filter,
motion compensation

Speeds up 1/4 pixel interpolation

Table 5: Cycles/MB spent in each module for each ISA.

xSTream P2012 ST240

ANSI C SIMD Gain factor ANSI C SIMD Gain factor ANSI C SIMD Gain factor

Luma motion compensation 4788 2257 2.1x 8286 3965 2.1x

Croma motion compensation 3064 658 4.7x 3626 1282 2.8x 265559 200380 1.3x

Motion estimation 303769 84342 3.6x 603182 114776 5.3x

Intra 4 × 4 24366 10076 2.4x 38234 15760 2.4x
32013 19182 1.6x

Intra 8 × 8 15396 4997 3.0x 26972 9455 2,9x

DCT/Q/IQ/IDCT 4 × 4 14994 7616 2.0x 20473 9088 2.3x
32013 19182 1.7x

DCT/Q/IQ/IDCT 8 × 8 18660 3498 5.3x 24486 11636 2.1x

resolutions, and average results are resumed in Table 5.
The results in Table 5 and Figure 13 show that the ST240,
exploiting the instruction level parallelism (ILP) with a 4-
issue VLIW architecture, achieves the best performance for
the ANSI C implementation. All the SIMD implementations
improve performance for every encoder module, but the
ST240 with the shortest SIMD size obtains the lowest
speedup factor. P2012 and xSTream with their wider SIMD
can better exploit the data-level parallelism. In terms of
pure number of cycles spent to encode one macroblock, the
xSTream ISA achieves the best performance.

It is worth analyzing in detail these results to understand
how different instruction sets lead to different performance.
The xSTream processor elements take advantage from the
“horizontal add” instruction that allow an efficient com-
putation of the SAD operations: it is evident in the ME
module, where xSTream spends about 25% fewer cycles
than P2012 (84,342 versus 114,776 cycles/MB). The higher
speedup obtained by P2012 is mainly due to the less-efficient
ANSI C code generated by the P2012 compiler. We already
described as the ST240 can exploit a specific instruction for

the SAD operation. In fact, its result is not far from the
architectures having 128-bit-wide vector registers (the 200,
380 cycles/MB also include motion compensation). From
these results, we can state that the support for horizontal
SIMD will not only give a great performance improvement
for the SAD operation, but it significantly impacts the whole
ME module.

As earlier said, data manipulation instructions are a key
factor to fully exploit SIMD implementations because opera-
tions such as transposing matrices or data reordering become
frequent in this type of optimizations. An experimental
result confirming this consideration can be seen in the
DCT/Q/IQ/IDCT 8 × 8 module, covering all the toolchain
performing the residual coding and decoding. This module
involves several data-reordering operations, ranging from
matrix transposition to zig-zag reorder. Both ST240 and
xSTream instruction sets support the permutation of ele-
ments inside a vector in a very efficient way, as described in
Sections 3.1 and 3.2. The P2012 SIMD extension includes a
series of instructions for interleaving and merging elements
between two vector operands. The great speed up the

VLSI Design 13

0 100000 200000 300000 400000 500000 600000 700000

ANSI-C

SIMD

ANSI-C

 SIMD

ANSI-C

 SIMD

xS
Tr

ea
m

P
20

12
ST

24
0

(Cycles/MB)

DCT

Intra

ME/MC

Figure 13: ISA comparison.

xSTream architecture gathers in comparison with P2012 is
mainly due to the possibility to permute elements using
a single instruction, in a sort of horizontal permute. The
effect is emphasized in the 8 × 8 transform where the data
reordering process is stressed more than in the 4× 4 case. In
our experience, we saw that if such instruction is available,
then the zig-zag reordering can be effectively implemented
with SIMD instructions; otherwise, we are forced to use the
scalar implementation involving look-up tables to perform
the reordering.

Intraprediction can exploit the horizontal permute in-
struction as well; the intraprediction modes involving diago-
nal directions require the permutation of elements inside the
resulting vectors. For similar reasons, ST240 achieves great
speedup factors in DCT and intramodules (resp., 1.7 and
1.6), considering that a 32-bit-wide SIMD can only perform
two 16-bit-arithmetic operations.

There are other several SIMD instructions that in our
opinion are to be considered as key instructions for optimiz-
ing video codec applications. Here, we assume an instruction
set will already include SIMD for all the common arithmetic
operations, compare, select, shift, and memory operations.

In previous sections, we already discussed about the
impact of the unaligned memory access to the video codec
performance. All the encoder modules are affected by the
performance of the unaligned memory operations, but it
becomes a keyfactor for motion estimation and compensa-
tion. An instruction concatenating two vectors and produc-
ing a vector at the desired offset is fundamental to implement
an unaligned load instruction. As stated in Section 4.2.3, the
capability to support variable offsets is a key factor for the
instruction usability because the offset could not be known
in advance.

Inside most of the modules, the computations require a
16-bit precision for intermediate results, but the input and
output data contained into the noncompressed YUV images
are 8-bit values. Thus, a typical operation at the beginning of
a module is to load 8-bit input values and extend them to 16-
bit precision. At the end, the output data precision is usually
demoted down to 8-bit saturating the values before storing
the results. Therefore, even if the support to 8-bit operations
is not required, it would be very useful that an instruction set

will include SIMD instructions for promoting and demoting
precision in a fast way. An optimal solution will also combine
promotion with load operations and demotion with store
instructions.

Usually, the video codec algorithms try to avoid the
division operations because of its computational cost. When
needed, divisors are power of two, and the division is substi-
tuted with a shift right with rounding as follows:

a

2n
⇐⇒ (

a + 2n−1)� n. (5)

Therefore, even if most instruction sets already include
this type of instruction, it is important to remind its utility.
Often, the shift right with rounding is used for averaging
two or more values, as in the intraprediction and deblocking
filter. In our implementation, one of the reasons the ST240
achieves a good speedup in the intraprediction module is the
presence of an average SIMD instruction in the instruction
set.

Table 4 summarizes our conclusions based on the pre-
sented work. The proposed instructions are described in the
first column. For each instruction, the table indicates the
H.264 modules that will be mainly affected by the introduc-
tion of the instruction, as well as a few notes about specific
contributions to basic video coding operations.

6. Conclusions

This paper presents efficient implementations of the
H.264/AVC encoder on three different ISAs. The optimiza-
tion process exploits the SIMD extensions of the three
architectures for improving the performance of the most
time-consuming encoder modules. For each addressed archi-
tecture, experimental results are presented in order to both
compare the different implementations and evaluate the
speedup versus the optimized ANSI C code.

The paper discusses how SIMD size and different instruc-
tion sets can impact the achievable performance. Several
issues affecting video-coding SIMD optimization are dis-
cussed, and authors’ solutions are presented for all the archi-
tectures.

Most instruction sets have specific SIMD instructions for
video coding. Even though these instructions can lead to
great performance improvements, they could be useless for
other application families. In this paper, we identify a set of
generic SIMD instructions that can significantly improve the
performance of video applications.

Besides presenting the SIMD optimization for the most
time-demanding modules, the paper describes how a com-
plex application as the H.264/AVC encoder can be parti-
tioned to a multicore architecture.

Acknowledgments

The authors would like to thank STMicroelectronics’s Ad-
vanced System Technology Laboratories for their support.
This work is supported by the European Commission in the
context of the FP7 HEAP project (#247615).

14 VLSI Design

References

[1] “VC-1 Compressed Video Bitstream Format and Decoding
Process,” SMPTE 421M-2006, SMPTE Standard, 2006.

[2] T. Wiegand, G. J. Sullivan, G. Bjøntegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,” IEEE
Transactions on Circuits and Systems for Video Technology, vol.
13, no. 7, pp. 560–576, 2003.

[3] G. J. Sullivan, P. Topiwala, and A. Luthra, “The H.264/AVC
Advanced Video Coding Standard: Overview and Introduc-
tion to the Fidelity Range Extensions,” in Applications of Digi-
tal Image Processing XXVII, Proceedings of SPIE, August, 2004.

[4] D. Marpe, T. Wiegand, and S. Gordon, “H.264/MPEG4-AVC
fidelity range extensions: tools, profiles, performance, and
application areas,” in IEEE International Conference on Image
Processing (ICIP ’05), pp. 593–596, September 2005.

[5] H. Schwarz, D. Marpe, and T. Wiegand, “Overview of the
scalable video coding extension of the H.264/AVC standard,”
IEEE Transactions on Circuits and Systems for Video Technology,
vol. 17, no. 9, pp. 1103–1120, 2007.

[6] Joint Collaborative Team on Video Coding (JCT-VC), “WD4:
Working Draft 4 of High-Efficiency Video Coding,” 6th
Meeting, Torino, Italy, July, 2011.

[7] J. Probell, “Architecture considerations for multi-format pro-
grammable video processors,” Journal of Signal Processing Sys-
tems, vol. 50, no. 1, pp. 33–39, 2008.

[8] M. Koziri, D. Zacharis, I. Katsavounidis, and N. Bellas, “Imple-
mentation of the AVS video decoder on a heterogeneous
dual-core SIMD processor,” IEEE Transactions on Consumer
Electronics, vol. 57, no. 2, pp. 673–681, 2011.

[9] M. Sayed, W. Badawy, and G. Jullien, “Towards an H.264/AVC
HW/SW integrated solution: an efficient VBSME architec-
ture,” IEEE Transactions on Circuits and Systems II, vol. 55, no.
9, pp. 912–916, 2008.

[10] T. Rintaluoma and O. Silvén, “SIMD performance in software
based mobile video coding,” in 10th International Conference
on Embedded Computer Systems: Architectures, Modeling and
Simulation (IC-SAMOS ’10), pp. 79–85, July 2010.

[11] H. Lv, L. Ma, and H. Liu, “Analysis and optimization of the
UMHexagons algorithm in H.264 based on SIMD,” in 2nd
International Conference on Communication Systems, Networks
and Applications (ICCSNA ’10), pp. 239–244, July 2010.

[12] X. Zhou, E. Q. Li, and Y.-K. Chen, “Implementation of H.264
decoder on general-purpose processors with media instruc-
tions,” in Image and Video Communications and Processing,
Santa Clara, Calif, USA, January 2003.

[13] J. Lee, S. Moon, and W. Sung, “H.264 decoder optimization
exploiting SIMD instructions,” in IEEE Asia-Pacific Conference
on Circuits and Systems (APCCAS ’04), pp. 1149–1152,
December 2004.

[14] W. Lo, D. Lun, W. Siu, W. Wang, and J. Song, “Improved SIMD
architecture for high performance video processors,” IEEE
Transactions on Circuits and Systems for Video Technology, vol.
21, no. 12, pp. 1769–1783, 2011.

[15] D. Talla, L. K. John, and D. Burger, “Bottlenecks in multimedia
processing with SIMD style extensions and architectural
enhancements,” IEEE Transactions on Computers, vol. 52, no.
8, pp. 1015–1031, 2003.

[16] Z. Shen, H. He, Y. Zhang, and Y. Sun, “A Video Specific
Instruction Set Architecture for ASIP design,” VLSI Design,
vol. 2007, Article ID 58431, 7 pages, 2007.

[17] M. Shafique, L. Bauer, and J. Henkel, “Optimizing the
H.264/AVC video encoder application structure for reconfig-
urable and application-specific platforms,” Journal of Signal
Processing Systems, vol. 60, no. 2, pp. 183–210, 2010.

[18] P. Faraboschi, G. Brown, J. A. Fisher, G. Desoli, and F. Home-
wood, “Lx: a technology platform for customizable VLIW
embedded processing,” in 27th Annual International Sympo-
sium on Computer Architecture (ISCA ’00), pp. 203–213, June
2000.

[19] J. Fisher, P. Faraboschi, and C. Young, “VLIW processors: from
blue sky to best buy,” IEEE Solid-State Circuits Magazine, vol.
1, no. 2, pp. 10–17, 2009.

[20] N. Coste, H. Garavel, H. Hermanns, F. Lang, R. Mateescu,
and W. Serwe, “Ten Years of Performance Evaluation for Con-
current Systems using CADP,” in 4th International Symposium
on Leveraging Applications of Formal Methods, Verification and
Validation ISoLA, Heraklion, Greece, 2010.

[21] D. Pandini, G. Desoli, and A. Cremonesi, “Computing and
design for software and silicon manufacturing,” in IFIP
International Conference on Very Large Scale Integration (VLSI
’07), pp. 122–127, October 2007.

[22] G. Desoli and E. Filippi, “An outlook on the evolution
of mobile terminals: from monolithic to modular multi-
radio, multi-application platforms,” IEEE Circuits and Systems
Magazine, vol. 6, no. 2, pp. 17–29, 2006.

[23] L. Benini, “P2012: a many-core platform for 10Gops/mm2
multimedia computing,” in 21st IEEE International Sympo-
sium on Rapid System Prototyping, Fairfax, Va, USA, June 2010.

[24] C. Silvano, W. Fornaciari, S. Crespi Reghizzi et al., “2PARMA:
parallel paradigms and run-time management techniques for
many-core architectures,” in IEEE Annual Symposium on VLSI,
pp. 494–499, July 2010.

[25] C. Mucci, L. Vanzolini, I. Mirimin et al., “Implementation of
parallel LFSR-based applications on an adaptive DSP featuring
a Pipelined Configurable Gate Array,” in Design, Automation
and Test in Europe (DATE ’08), pp. 1444–1449, March 2008.

[26] P. Paulin, “Programming challenges & solutions for multi-
processor SoCs: An industrial perspective,” in Design Automa-
tion Conference (DAC ’11), June 2011.

[27] A. Kumar, D. Alfonso, L. Pezzoni, and G. Olmo, “A complexity
scalable H.264/AVC encoder for mobile terminals,” in Euro-
pean Signal Processing Conference (EUSIPCO ’08), Lausanne,
Switzerland, August 2008.

[28] C. Y. Chen, C. T. Huang, Y. H. Chen, and L. G. Chen, “Level C+
data reuse scheme for motion estimation with corresponding
coding orders,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 16, no. 4, pp. 553–558, 2006.

[29] B. Zatt, M. Shafique, F. Sampaio, L. Agostini, S. Bampi, and
J. Henkel, “Run-Time Adaptive Energy-Aware Motion and
Disparity Estimation in Multiview Video Coding,” in 48th
Design Automation Conference (DAC ’11), pp. 1026–1031, San
Diego, Calif, USA, June 2011.

[30] M. Bariani, I. Barbieri, D. Brizzolara, and M. Raggio, “H.264
implementation on SIMD VLIW cores,” STreaming Day 2007,
Genova, Italy.

[31] C. S. Lubobya, M. E. Dlodlo, G. de Jager, and K. L. Fergu-
son, “SIMD implementation of integer DCT and hadamard
transforms in H.264/AVC encoder,” in Proceedings of the IEEE
AFRICON, pp. 1–5, September 2011.

International Journal of

Aerospace
Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2010

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Active and Passive
Electronic Components

Control Science
and Engineering

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 International Journal of

 Rotating
Machinery

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com

 Journal ofEngineering
Volume 2014

Submit your manuscripts at
http://www.hindawi.com

VLSI Design

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Shock and Vibration

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Civil Engineering
Advances in

Acoustics and Vibration
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Advances in
OptoElectronics

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Sensors
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Chemical Engineering
International Journal of Antennas and

Propagation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Navigation and
 Observation

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
Sensor Networks

International Journal of

