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Abstract 

Goal-oriented communications represent an emerging paradigm for efficient and reli-
able learning at the wireless edge, where only the information relevant for the specific 
learning task is transmitted to perform inference and/or training. The aim of this paper 
is to introduce a novel system design and algorithmic framework to enable goal-
oriented communications. Specifically, inspired by the information bottleneck principle 
and targeting an image classification task, we dynamically change the size of the data 
to be transmitted by exploiting banks of convolutional encoders at the device in order 
to extract meaningful and parsimonious data features in a totally adaptive and goal-
oriented fashion. Exploiting knowledge of the system conditions, such as the channel 
state and the computation load, such features are dynamically transmitted to an edge 
server that takes the final decision, based on a proper convolutional classifier. Hinging 
on Lyapunov stochastic optimization, we devise a novel algorithmic framework that 
dynamically and jointly optimizes communication, computation, and the convolutional 
encoder classifier, in order to strike a desired trade-off between energy, latency, and 
accuracy of the edge learning task. Several simulation results illustrate the effectiveness 
of the proposed strategy for edge learning with goal-oriented communications.

Keywords:  Edge learning, Goal-oriented communications, Lyapunov stochastic 
optimization, Convolutional encoders

1  Introduction
The fifth generation (5G) of wireless networks already represents a breakthrough in 
wireless communication networks, as a single platform that enables a variety of services, 
such as enhanced mobile broadband communications, immersive experiences such as 
virtual and augmented reality, mission-critical communications via ultra-reliable low-
latency links, and enabling also the remote control of critical infrastructures, such as 
Industry 4.0, autonomous driving, and massive Internet of things (IoT). Yet, even though 
5G is still in its deployment phase, there is already a clear trend toward a sixth-genera-
tion (6G) system, which will come out of the fundamental merge between artificial intel-
ligence (AI) and information and communication technologies (ICT). 6G networks are 
expected to be AI-native, meaning that AI tools will not be just services running on the 
communication platform, but they will rather represent the building blocks of the net-
work itself, from the physical up to the network and application layers [1, 2]. This merge 
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will give rise to more autonomous, i.e., zero-touch, networks enabling a truly pervasive 
deployment of intelligent services, subject to a variety of constraints, in terms of learn-
ing and inference reliability, latency, and energy consumption.

The need to tightly control latency and limit energy consumption motivates the shift 
toward edge intelligence (EI) architectures [3], where the information exchange and pro-
cessing are kept as local as possible. In the EI framework, every device may have access 
only to a tiny fraction of the data and low-latency inference/training tasks need to be 
performed collectively and distributively at the wireless network edge.

An efficient design of the EI platform calls for the adoption of a holistic approach, 
where communication, computation, learning, and control are jointly orchestrated to 
achieve new target levels of reliability, energy efficiency, and sustainability. This trend 
motivates the current widespread interest in distributed, low-latency and reliable 
machine learning (ML) tools, calling for a major departure from cloud-based, central-
ized training and inference. In EI, the mobile devices, also called user equipment (UE), 
need to perform AI/ML tasks by partially offloading their computations to edge servers 
(ESs), placed at the edge of the wireless network [4]. The overall system must be then 
designed in order to achieve an optimal balance between accuracy of the ML tasks and 
usage of the network resources, by dynamically allocating transmission and computa-
tional parameters, such as transmission rates and central processing unit (CPU) clock 
frequencies, as well as the scheduling of transmission and computation tasks, possibly 
under uncertainties about the wireless channel state and task arrival rates.

The resource optimization problems formulated in this scenario are mainly focused 
on the trade-off between energy, latency and learning accuracy [5–9]. However, looking 
at the predictions about the exponential increase in traffic in next-generation networks 
[10], it is evident that it is time to envisage a new communication paradigm able to sup-
port EI while preventing the data rate explosion. A possible paradigm shift in this direc-
tion may come from semantic and goal-oriented communications (GOC) [11]. In this 
new context, the focus is not anymore on the reliable recovery of the transmitted bits, 
but instead on the meaning (semantics) conveyed by those bits or the goal motivating 
the transmission of bits.

It is clear that EI and GOCs find application whenever we have a set of devices char-
acterized by limited capabilities that need to perform specific tasks timely and with pre-
scribed requirements in term of reliability. In vehicular edge computing (VEC) scenarios 
[12], for instance, we can imagine that the UEs installed onboard the vehicles need to 
perform an object classification task (e.g., detection of traffic signs in the scene) or col-
lision avoidance/pose estimation. If, due to the limited resources, the devices are not 
able to timely perform the task with the required quality, they may ask an edge server 
to perform the task and send back the outcome. It is clear that a smart communication 
scheme, capable to extract and transmit only the data that are relevant to the task, would 
be very attractive both energy-wise and delay-wise.

On the other hand, also IoT scenarios represent a noticeable field where EI is widely 
deployed [13]. As an example, we can imagine decentralized estimation tasks, pos-
sibly based on energy harvesting devices [14], where smart compression schemes are 
fundamental to parsimoniously offload data toward the edge cloud, in order to save as 
much transmission resources as possible while guaranteeing negligible estimation error 



Page 3 of 34Binucci et al. EURASIP Journal on Advances in Signal Processing        (2022) 2022:123 	

degradation. Another application of EI that would benefit of a GOC architecture is real-
time automatic video surveillance, where there is a continuous flow of video data that 
must be processed timely by specific inference models (e.g., neural networks). Also in 
this case, a fully local deployment at the IoT device may be impractical or impossible, 
making offloading a valuable solution to guarantee the service [13].

The goal of this work is to propose a dynamic communication strategy and an optimal 
allocation of all the network resources, including communication, computational, and 
ML resources, in order to implement a dynamic goal-oriented scheme, which aims to 
transmit only the data that are informative to the fulfillment of the specified goal (e.g., 
image recognition), under constraints on decision accuracy, service delay, and energy 
consumption.

1.1 � Related works

Deep neural networks (DNNs) have already been proposed to design a joint source/
channel coding (JSCC), as an alternative to the conventional cascade of source and 
channel encoders, to achieve superior performance in the finite block-length regime for 
image retrieval applications [15]. Designing the JSCC encoder focusing directly on the 
recognition accuracy rather than performing image reconstruction and then classifica-
tion separately, was investigated in [16]. In [17], the authors proposed an image retrieval 
scheme where, instead of sending the image, the feature vectors are first extracted and 
then mapped into channel input symbols, while the noisy channel output is used by 
the server to retrieve the most relevant images, without involving any explicit channel 
code. This approach has been extended in [18], where the encoder outputs are quantized 
prior to the mapping on the channel symbols, while in [19] a deep-JSCC with channel 
output feedback exploitation is proposed. In contrast to most of the works, which con-
sider AWGN channels, the authors in [20] design a communication scheme for flat-fad-
ing channels based on an OFDM system. Other interesting work can be found in [21] 
and [22], where a combination of JSCC and nonlinear transform coding (NTC) [23] is 
proposed.

In applications such as text transmission, the semantics underlying the text has been 
also explicitly exploited in designing a JSCC, such as in [24] and [25], where a noise-
aware JSCC system is described. The authors of [26] designed speech recognition-
oriented semantic communications to directly recognize the speech signals into texts. 
The work in [27] exploits a hybrid automatic repeat request (HARQ) scheme in order 
to improve reliability in sentence semantic transmission. Semantic communications 
for multimodal data were considered in [28] for serving the visual question answering 
problem, which adopts long short-term memory for text transmission and a convolu-
tional neural network for the image transmission. More recently, a transformer-based 
approach has also been investigated in [29] to support both image and text transmis-
sion. Alternative methods were also proposed in [30] and [31], to define an optimized 
common-language between a listener and a speaker, employing reinforcement learning 
(RL) and curriculum learning (CL). Other interesting examples can be found in [32] and 
[33], concerning, respectively, image classification in an unmanned aerial vehicle (UAV) 
scenario and visual question answering (VQA) tasks.
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A more principled approach, based on the information bottleneck principle [34, 35], to 
limit transmission only to the information that is relevant for the intended goal of com-
munication, was recently proposed in [36], for the Gaussian case, and in the more general 
case in [37], using a variational IB (VIB) approach. Recently, VIB has also been consid-
ered for multi-device cooperative edge inference [38]. Some rate distortion approaches 
were also proposed in [39] and in [40] to support goal-oriented communications.

In all the above works, except [36], the focus was on the communication system, but 
without optimizing the usage of the available resources, namely communication, com-
putational, and semantic-related resources. Resource optimization has been considered 
in [41] and [5, 6]. Specifically, the authors in [41] propose to tune the GOC resources, 
e.g., bandwidths and powers, as well as the size of the goal-oriented compressed rep-
resentation of the data, in order to optimize the success probability of the task under 
flat-fading zero-mean Gaussian channels. This optimization, which includes training of 
the compressive and classification (C C) architecture, and the choice of the data com-
pression ratio, is performed once, by exploiting knowledge of the average statistics (e.g., 
standard deviation) of the flat-fading channel. The optimal bandwidths and transmission 
powers obtained this way, likewise the C&C neural network architecture and the com-
pression ratio, are fixed for a given scenario (average SNR, etc.), and they are used over 
all the possible channel states that the GOC system may experience. This fixed allocation 
of both resources and C&C architecture, is a distinctive difference with respect to our 
approach, where we dynamically adapt all the energy and hardware resources, according 
to the system state, as we will further clarify.

Conversely, the dynamic analysis and optimization of the trade-offs between deci-
sion accuracy, overall (i.e., transmission and computation) energy consumption 
and service delay, has been considered in [5, 6], where the trade-off is achieved by 
dynamically adapting the source encoding rate and the scheduling of transmission and 
computation tasks. This approach was recently extended in [42], for energy-efficient 
edge classification with reliability guarantees, in [43] for ensemble inference at the 
edge, and in [36] by incorporating the information bottleneck principle to identify 
and transmit only the information relevant to the task. Contributions In this paper, 
we focus on the dynamical joint management and optimization of computation, com-
munication, and semantic-extracting resources of a GOC system, where transmitter 
and receiver architectures incorporate a pair of variable size convolutional encoders 
(CE) and classifiers (CC). A finite set of CE/CC pairs, each having a variable dimen-
sion of the CE output, is pre-trained offline, to make possible the selection of the most 
suitable pair to be used online, depending both on how well the overall communica-
tion system is fulfilling the goal and on the constraints of the communication link. 
The proposed communication scheme is reported in Fig. 1, where, inspired by the IB 
principle, the bottleneck is made time-varying, by adaptively selecting in each time 
slot the most suitable CE/CC pair, according to a strategy resulting from the solution 
of two possible constrained optimization problems: i) minimum energy consumption, 
under average service delay and accuracy constraints strategy (MEDA); ii) maximum 
accuracy under average service delay and energy constraints strategy (MADE). This is 
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significantly different from the static optimization proposed in [41], where scheduling 
(and buffering) is not considered as a fundamental ingredient to make best use of the 
available resources in a dynamic fashion. Furthermore, we adapt to the buffer load 
and channel condition the assignment of computation and transmission resources, as 
well as the size of the compressed data, by a dynamic choice of the proper CE/CC pair 
at each time slot. Note that this dynamic use of multiple low-complexity CE/CC (neu-
ral network) pairs, makes our approach quite different from [41] and the recent litera-
ture on semantic and GOC [15, 17, 19, 33, 44], where typically a fixed (very complex) 
DNN architecture is split among transmitter and receiver. The single DNN architec-
ture that these GOC schemes have to train is (typically) very complex because it has 
to work well for a variety of state channels, noise levels, and required task perfor-
mance, which the GOC may have to face. Conversely, in our case, we train a set of 
NNs, where each NN is much simpler because it is well matched to (and will be used 
with) a much more restricted variety of conditions. In particular, each NN has a dif-
ferent output size (the bottleneck) and we adapt the bottleneck dimension online to 
optimize performance.

To address the dynamic management of the overall goal-oriented architecture, we 
hinge on Lyapunov stochastic optimization tools [6, 45], which implement the solution 
in a time-slotted fashion. Specifically, in each time slot, we perform a deterministic opti-
mization of the involved variables, valid also in the general situation where some of the 
involved variables, such as the channel state and the task arrival rates, are random, with 
unknown probability distribution. Under proper feasibility conditions, the proposed 
approach is shown to achieve the optimal solution, while respecting the given con-
straints. The simulation results confirm the effectiveness of the proposed approach to 
manage the system resources in an adaptive way and strike an optimal trade-off between 
average energy, delay, and accuracy.

Outline The paper is organized as follows. In Sect. 2, we present the scheme of our 
goal-oriented communication system, including the joint training procedure of the CE/
CC pair, assuming as goal the classification of the images sent by the UE. In Sect. 3, we 
introduce the overall system model supporting the offloading of the learning task from 
the UE to the ES, defining all quantities of interest, e.g., latency, learning accuracy, and 

Fig. 1  Goal-oriented communication scheme. This figure shows the goal-oriented communication scheme 
employed in our scenario, composed of a CE, a lossless compression system (e.g., JPEG2000) from the UE 
perspective and a set of CCs from the ES perspective
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energy, involved in the proposed resource optimization problems, which are then solved 
in Sect. 4, exploiting stochastic Lyapunov optimization. Section 5 presents the simula-
tion results, and, finally, Sect. 6 draws some conclusions and highlights future research 
directions.

2 � Proposed design of goal‑oriented communications
We consider as an example of application of our proposed strategy, the transmission 
of images from a UE to an ES, where the goal is image classification. The key point of 
the proposed approach is to exploit knowledge of the system state (channel condition, 
computation load, buffer load, etc.) to dynamically compress the images to be trans-
mitted, and then classified, using a GOC perspective, where the goal is not to recover 
the image at the receiver side, but only to achieve the desired classification accuracy.

To this end, the inspiring principle is the Information Bottleneck framework, whose 
purpose is to find a (probabilistic) compact representation U of the random variable 
X emitted by a source, in order to preserve as much information as possible about the 
classification output variable Y, while minimizing the complexity associated with the 
representation of X through U. The IB is based on the following functional optimiza-
tion problem (in Lagrangian form) [34]:

where the mutual information I(X; U) represents the complexity, in terms of number of 
bits used to represent X by U; the term I(U; Y) represents the relevance of U in conveying 
information about Y; β is the parameter used to control the trade-off between complex-
ity and relevance. Since problem (1) depends on the (joint) probability density function 
(pdf) of X, U, and Y, the optimal solution can be found only in specific cases, e.g., when 
the involved random variables are either Gaussian [46] or discrete. In the latter case, the 
solution is known only in an iterative form [34]. However, except for the Gaussian case, 
(1) is quite difficult to solve in practice, especially when the dimension of the data X is 
very large, as it happens with images [47].

Due to the aforementioned issues, in this work we pursue a simpler approach that, 
while it is inspired by the IB principle in (1) and the associated GOC scheme for the 
Gaussian case [36], it implements a practical goal-oriented communication scheme 
that performs a tunable data compression at the UEs, using a convolutional encoder 
that is trained offline to learn how to extract the relevant information necessary to 
achieve the accuracy of the inference task, while consuming the minimum amount of 
resources by properly compressing the input data. Since we focus on image classifica-
tion, we choose the structure of both the encoder and decoders as two convolutional 
neural networks, incorporating a layer-by-layer max-pooling strategy [48] to adapt 
the dimension of the data to be transmitted. The pictorial scheme of the proposed 
goal-oriented communication scheme is illustrated in Fig. 1.

The design of the CEs has been driven by two main strategies:

(1)minimize
p(h|x)

I(X;U)− β I(U;Y ), β ≥ 0,
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•	 Short-CE The compression is obtained by using a single convolutional layer, fol-
lowed by a max-pooling layer, which directly implements the desired compression 
factor.

•	 Deep-CE The compression is obtained by cascading a set of convolutional layers, 
each one followed by a max-pooling step that implements a compression factor 
equal to 2. The number of layers nl to be used is imposed by the total compression 
factor ρ that is desired at the output, e.g., ρ = 2nl.

It is worth to emphasize that the architecture of the CNN that we are using is not nec-
essarily optimal. There certainly exist alternative architectures that may perform better, 
although, as we do in our resource management, the ultimate classification performance 
should always take into account complexity and energy expenditure, which may be criti-
cal for mobile and simple UEs. Thus, the reason underlying our choice is simply dictated 
by the request of having a few simple alternative architectures that make possible to keep 
the complexity and energy spent for processing at the devices as small as possible.

The training of each CE/CC pair, at the UE and ES sides, has been performed jointly 
and offline, as a solution of the following problem

where Lce is a suitable loss function, while θρ and φρ represent the parameters of the 
CNNs used at the CE and CC, respectively, for a given compression (bottleneck) param-
eter ρ , and Nt is the size of the training set. More specifically, dealing with a multi-class 
classification task, we used the categorical cross-entropy as the loss function, so that Lce 
reads as [49]:

where K is the number of classes, Yk(Xn) ∈ {0, 1} are the hot-coded true probabilities, 
i.e., those identifying the ground-truth labels, for the k-th class and n-th training sample; 
whereas, Ŷk(Xn,φρ , θρ) are the soft probabilities estimated at the output of the classifica-
tion network, i.e., those generating the predicted labels.

A key feature of the IB formulation in (1) is that the balance between complexity and 
relevance of the compressed representation U is tuned by acting on the trade-off param-
eter β . In our setup, this balance is tuned by acting on the dimension of the CE/CC pair, as 
depicted in Fig. 1. Hence, the architecture used in each time slot to encode the images and 
extract the relevant information is selected, slot-by-slot, depending on the service delay 
and accuracy constraints, as a function of the current values of the system parameters, 
such as wireless channel state and data arrivals. We remark that the training procedure is 
performed offline, while the selection of the most suitable architecture to be used in each 
time slot is performed in a dynamic fashion according to the criteria described in the next 
section.

(2)minimize
φρ ,θρ

1

Nt

Nt

n=1

Lce(Yn,Yn;φρ , θρ),

(3)Lce(Yn, Ŷn,φρ , θρ) = −

K∑

k=1

Yk(Xn)ln(Ŷk(Xn,φρ , θρ)),
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1 � Remark 1

While the IB looks for a probabilistic mapping of the data source X to the compressed 
representation U [36, 46], in our setup, the mapping is deterministic. Nevertheless, the 
proposed training scheme has an important link with the IB principle, as it was proved 
that the Lce(Yn, Ŷn) is a good proxy for the mutual information I(U; Y) [50]. In particular, 
minimizing the cross-entropy loss (over the training set) leads to the maximization of the 
I(U; Y) of a deterministic mapping. Furthermore, IB arguments can be used to explain the 
performance of a deep neural network trained by a cross-entropy loss [51], which further 
motivates why the IB represents an information-theoretic justification of our practical 
procedure. In principle, we could also make our compression law probabilistic by adding 
noise in the encoding step as well as in the training phase, as this has been recognized as 
a method to improve the generalization capability of a CNN and reduce the overfitting 
errors [52].

1 � Remark 2
Differently from works inspired by JSCC where the encoders directly map the input 
data to the symbols to be transmitted [15, 17, 19, 20, 37], we foresee a more traditional 
approach, where after compression we transmit bits over a conventional, capacity-achiev-
ing communication link, which makes use of ideal channel co-decoding, i.e., with zero bit 
error rate (BER). Although certainly interesting, we leave for future work the quantifica-
tion, and proper handling, of the impact on classification accuracy of a residual BER in 
the communication link, due for instance to finite-length channel coding, where also JSCC 
schemes find their motivations.

Specifically, we split the encoder in a convolutional encoder (CE) followed by a lossless 
compression, as depicted in Fig. 1, where the compression is obtained using the lossless 
JPEG2000 and TIFF codecs. We follow this strategy for the sake of simplifying the over-
all adaptive strategy that selects, slot-by-slot, the most suitable communication archi-
tecture, and to enable an easy control at each time slot of the specific dimension of the 
(goal-oriented) data that have to be transmitted for every image, depending on how well 
the system is behaving in terms of balance between classification accuracy, service delay 
and energy consumption.

The relation between the (data) compression ratio ρ1 to choose from, the dimension 
of the CE output and the size (number of bits) of the data to be transmitted, before 
and after compression, is reported in Table  1. The values for lossless compression for 
ρ = 32, 64 are not-available (N/A), since the overhead due to the zipping algorithm is 
higher than the file size reduction. We remark that state-of-the-art lossless compres-
sion after the CE at the UE allows us to save information bits to be transmitted, without 
impacting the overall accuracy granted by the offline training of the proposed CE/CC 
structure, under capacity-achieving ideal assumptions. Obviously, the price to be paid 

1  Note that ρ represents the compression of the image on each dimension, thus the actual data compression ratio scales 
with ρ2.
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is a higher computational complexity of the system, which has also to perform the loss-
less decompression at the ES before feeding the convolutional classifier. We will take 
into account this computational complexity, as well as the associated delay and energy 
expenditure, in the resource management policies and optimization.

3 � System model
The envisaged goal-oriented communication scenario includes an UE, with limited 
computational (or energy) capabilities, which is connected to an ES with higher com-
putational resources and energy, through a wireless link with an access point (AP). The 
overall scheme is depicted in Fig. 1. We focus on image classification at the edge, assum-
ing a pre-trained set of goal-oriented CE-CC schemes, as described in Sect. . We assume 
that the system state evolves in a time-slotted fashion with time-varying context param-
eters (i.e., wireless channels and data arrivals); each time slot t has a fixed duration τ . In 
our procedure, data (i.e., images) are generated/collected at the UE, with an arbitrary 
distribution of the arrival time, and uploaded to an ES for inference purposes. In par-
ticular, we design a procedure where data are: (i) collected and buffered locally at the 
device; (ii) encoded in a goal-oriented fashion, zipped, and transmitted; (iii) remotely 
buffered and processed by the ES for classification.

The goal of our optimization procedures is to provide inference results within a finite 
E2E delay considering: (i) the minimum energy consumption at the mobile device, under 
a prescribed inference reliability and decision delay; (ii) the maximum accuracy for a 
given energy consumption and delay. In this context, several resources must be opti-
mized and adapted over time depending on dynamic system conditions, e.g., wireless 
channels, data arrivals, and buffered images. In particular, the UE must select its trans-
mission rate R(t) toward the ES, its local computational clock frequency fd(t) , as well as 
the data compression factor ρ(t) , to generate the compressed latent representation U. At 
the same time, the ES has to allocate its computational clock frequency fc(t) in order to 
complete the specific learning task, i.e., image classification. The above quantities rep-
resent the optimization variables for the proposed resource allocation strategies. In the 
sequel, we illustrate the adopted model for latency, energy, and classification accuracy.

3.1 � Latency model

The dynamicity of the system is modeled using queues, which are also used to control 
the overall delay of the service. In particular, our model involves two queues:

Table 1  Image size at CE output with and w/o zipping

ρ M(ρ) [px] Size [kB] Zipped-Size [kB]

2 128 × 128 × 3 47.92 6.69

4 64 × 64 × 3 12.12 3.49

8 32 × 32 × 3 3.12 1.77

16 16 × 16 × 3 0.87 0.85

32 8 × 8 × 3 0.31 N/A

64 4 × 4 × 3 0.17 N/A
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•	 A compression/communication queue at the UE.
•	 A computation queue at the ES.

In the sequel, we introduce some important assumptions for the resource optimization 
problem we are going to design:

Assumption 1  Each data unit must be compressed and transmitted by the UE in the 
same time slot. It is indeed impossible to choose in advance the optimal compression 
factor for a data unit that would have to be stored and transmitted in the future, unless 
we could reliably predict also the future system state (e.g., the wireless channel condi-
tion, energy status, queue lengths, computational power, etc.) at the time slot the data 
unit would be actually transmitted. Therefore, compression and transmission operations 
must be done sequentially within the same time slot.

Assumption 2  We assume that, while the UE transmits some data units, it may also 
simultaneously compress other data units.

The maximum number of data units that could be transmitted at the t-th time slot 
is expressed by

where R(t) and ρ(t) are, respectively, the transmission rate and the compression factor 
chosen by the device for such a time slot, and W (ρ(t)) = M(ρ(t))N (ρ(t)) is the average 
number of bits per data unit. M(ρ(t)) is the data unit size (in pixels) for the compression 
factor ρ(t) , and N (ρ(t)) is the associated number of bits that are necessary (on average) 
to encode a pixel in the compressed and encoded pseudo-image, that we will detail in 
the simulation results. On the other hand, the number of data units that is possible to 
compress during time slot t is given by

where Jd(ρ(t)) denotes the number of data units compressed in a clock cycle (which 
depends on the chosen compression factor ρ(t) ), while fd(t) denotes the clock frequency 
chosen by the UE during the t-th time slot. By Assumption 1 and 2, the UE cannot trans-
mit more data units that can also (simultaneously) compress, which suggests that in (4) 
we have to use a rate R(t) ≤ W (ρ(t))fd(t)Jd(ρ(t)) such that Ntx(t) ≤ Nc(t) . Further-
more, although we are assuming parallel compression and transmission of (the previ-
ously compressed) data units, the very first data unit needs a time 1/(fd(t)Jd(ρ(t)) to be 
compressed before transmission can start. This means that the number NUE(t) that the 
UE can actually transmit and compress in a time slot is given by

(4)Ntx(t) =

⌊
τR(t)

W (ρ(t))

⌋
,

(5)Nc(t) =
⌊
τ fd(t)Jd(ρ(t))

⌋
,

(6)
NUE(t) =

⌊
τ − 1/(fdJd(ρ(t))

W (ρ(t))/R(t)

⌋

=

⌊
τR(t)

W (ρ(t))
−

R(t)

W (ρ(t))fd(t)Jd(ρ(t))

⌋
.
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Plugging in (6) the inequality on the rate R(t) that grants Ntx(t) ≤ Nc(t) , we obtain the 
left-hand side of the following (strict) integer inequality

that will be exploited later on to solve the optimization problems.
We can now write the dynamic evolution of the queue at the UE, which is fed by the 

arrival/acquisition of new data units (images) and is drained by the transmission of 
data units to the ES, thus reading as:

where A(t) is a data arrival process, whose statistical properties are generally unknown. 
Once the data units arrive at the ES, they are put into a computational queue QES(t) . 
To make explicit the dynamic evolution of QES(t) , we need to quantify the number of 
data units that can be processed by the ES at time slot t. To this aim, let 1

Js(ρ)
 denote the 

number of clock cycles that are necessary to process (classify) a data unit encoded with a 
compression factor ρ . Then, the maximum number NES(t) of data units that can be pro-
cessed at time slot t by the ES is given by

where Pt = {ρt,i}i=1,...,Qser (t) is the set containing the compression factors associated 
with each data unit in the ES queue, during the t-th time slot and indexed from the old-
est to the newest. Indeed, problem (9) maximizes the number of processed data units in 
the queue, which clearly must be less than or equal to the ES computational capability, 
i.e., τ fc(t) . Finally, the ES computation queue evolves as

In such a queued dynamic system, the overall latency experienced by a data unit before 
processing depends on the sum of the two queues in (8) and (10), i.e.,

In fact, assuming an average data arrival rate A = E

{
A(t)
τ

}
 , the average long-term delay 

is defined by the Little’s law as [53]:

Thus, we can attain an average delay Davg constraining the average queue length in (11) 
as:

(7)
⌊

τR(t)

W (ρ(t))

⌋
− 1 ≤ NUE(t) ≤

⌊
τR(t)

W (ρ(t))

⌋
,

(8)QUE(t + 1) = max(0,QUE(t)− NUE(t))+ A(t),

(9)

NES(t) =argmax
k

min(k ,QES(t))∑

i=1

1

Js(ρt,i)

s.t.

min(k ,QES(t))∑

i=1

1

Js(ρt,i)
≤ τ fc(t),

(10)
QES(t + 1) = max(0,QES(t)− NES(t))

+min(QUE(t),NUE(t)).

(11)Qtot(t) = QUE(t)+ QES(t).

(12)Davg = lim
T→∞

1

T

T∑

t=1

E

{
Qtot(t)

A

}
.



Page 12 of 34Binucci et al. EURASIP Journal on Advances in Signal Processing        (2022) 2022:123 

with Qavg = DavgA . In the sequel, we introduce the model for the system energy 
consumption.

3.2 � Energy model

The system energy consumption involves three parts:

•	 Transmission energy at the UE, needed to transmit the data units to the ES.
•	 Computation energy at the UE, needed to compress/encode the data units.
•	 Computation energy at the ES, needed to classify the data units transmitted by the UE.

Assuming a capacity-achieving transmission system in a flat-fading channel, the transmis-
sion power ptx(t) can be inferred by the Shannon capacity [54]:

where h(t) is the channel gain, N0 denotes the power spectral density at the (ES) receiver 
side, while B is the bandwidth allocated to the UE. The flat-fading channel assumption 
simplifies the analysis and the optimal resource management, which already contains 
several optimization variables. Conceptually, the proposed framework can be extended 
also to frequency-selective channels, by employing OFDM, which converts it in a set 
of parallel flat-fading channels. This would request to add to the optimization problems 
described in the following an extra vector of optimization variables to dynamically split 
the available transmission power among all the parallel channels, to maximize the over-
all system transmission rate. This solution would lead to a water-filling-like problem, 
which is a well-studied topic in the literature. This possible extension is, however, left for 
future work, which could possibly build upon the results of this manuscript.

Thus, inverting (14), the energy required for transmission during a time slot of duration τ 
is given by:

From the computation perspective, we exploit the model in [55], which assumes a cubic 
dependence of the computing power with respect to the clock frequency. Thus, letting 
fd(t) and fs(t) be the CPU clock frequencies of the UE and ES, respectively, the corre-
sponding energies needed for computation read as:

(13)lim
T→∞

1

T

T∑

t=1

E{Qtot(t)} ≤ Qavg ,

(14)R(t) = B log2

(
1+

ptx(t)h
2(t)

N0B

)
,

(15)Etx(t) = τ
BN0

h2(t)

(
e
R(t)ln(2)

B − 1
)
.

(16)Ed(t) = τκdf
3
d (t),Es(t) = τκsf

3
s (t)
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where the constants κd and κs represent the effective switched capacitance of the UE and 
ES processing units, respectively. Finally, we introduce a weighted energy function Eα(t) , 
which quantifies the energy consumption of the overall system during the t-th time slot:

where α ∈ [0, 1] is a weighting parameter to be chosen. For instance, choosing α = 1 
leads to a pure user-centric strategy; whereas, α = 0 determines a pure network-cen-
tric strategy. An intermediate strategy, which we term as holistic, can be obtained with 

(17)Eα(t) = α

(
Ed(t)+ Etx(t)

)
+ (1− α)Es(t)

Fig. 2  Accuracy on the test set with deep/short-CE and down-sampling with anti-aliasing filter. This figure 
makes a comparison on the accuracy degree obtained in the test set of the GTSRB dataset considering 
images compressed through deep-CE, short-CE and a classical down-sampling with anti-aliasing filter

Table 2  LUT parameters for the deep-CE

ρ G(ρ) [%] 1

Jc
 [ C

DU
]

1

Jzip
 [ C

DU
] Jd [DU

C
]

2 96.3 4.454× 106 1.05× 107 6.66× 10−8

4 97.3 6.46× 106 5.17× 106 8.59× 10−8

8 95.1 7.752× 106 3.38× 106 8.98× 10−8

16 92.2 8.568× 106 1.90× 106 9.47× 10−8

32 88.1 9.486× 106 N/A 1.05× 10−7

64 82.0 1.02× 107 N/A 9.8× 10−8

Table 3  LUT parameters for the short-CE

ρ G(ρ) [%] 1

Jc
 [ C

DU
]

1

Jzip
 [ C

DU
] Jd [DU

C
]

2 96.3 4.454× 106 1.05× 107 6.66× 10−8

4 95.9 4.454× 106 5.17× 106 1.04× 10−7

8 95.1 4.454× 106 3.38× 106 1.27× 10−7

16 90.1 4.454× 106 1.90× 106 1.57× 10−7

32 82.1 4.454× 106 N/A 2.24× 10−7

64 55.0 4.454× 106 N/A 2.24× 10−7
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α = 0.5 . The use of this weighting parameter helps introduce more degrees of freedom 
and flexibility in the resource optimization, depending on the needs of the operators, 
users, and service providers.

3.3 � Accuracy model

It is generally difficult to establish an analytic expression that relates the accuracy of 
the classification task over an available test set and the compression factor adopted by 
our goal-oriented communication scheme. Thus, in this paper we use a more practical 
approach, where the accuracy function G(ρ(t)) for the ES-based learning/classification 
task can be cast in the optimization problem by using a look-up table (LUT) indexed by 
the compression factor ρ(t) , whose entries have been obtained by offline testing each 
CE/CC associated with a specific compression factor. Examples of LUTs for the consid-
ered classification tasks will be provided in the sequel in Tables 2 and 3 and in Fig. 2. The 
LUT is instrumental to define constraints on the average accuracy we want to guarantee 
for the image classification task, as detailed in the two resource management policies 
described in the sequel. Note that, by the rate in (14), we are ideally assuming a capacity-
achieving communication system, which also simplifies the analysis and mathematical 
tractability of the problem. Such a Shannon rate can be practically granted by long chan-
nel codes, which also grant (almost) zero (coded) bit error rate (BER). Thus, coherently 
with (14), we train the CE-CCs without taking into account possible accuracy degrada-
tion induced by a finite BER, and also the LUTs are obtained by testing the CE-CCs neu-
ral networks, with zero BER in the communication link. Although certainly interesting, 
the design of CE-CCs networks that are capable to handle, and possibly mitigate, com-
munication systems with non-negligible BER is out of the scope of this manuscript and 
could be the subject of further studies. Anyway, the results we will obtain for the energy, 
accuracy, and delay trade-offs, can still be considered bounds on those obtainable for 
finite (coded) BER scenarios, which will be tight and achievable up to a maximum BER 
(that depends on the specific task).

4 � Problem formulation and methodology
The latency, energy, and accuracy models defined in the previous section can be 
exploited in the formal definition of two dynamic resource optimization strategies, 
which are described in the sequel.

4.1 � MEDA: minimum energy under average service delay and accuracy constraints 

strategy

In the first resource allocation strategy, we formulate a long-term optimization problem 
that aims at minimizing the average energy consumption of the system, subject to average 
delay and accuracy constraints. The problem can be mathematically cast as:
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where �(t) = [fs(t), fd(t), ρ(t)] collects the discrete optimization variables, and 
�(t) ∈ J� = S × Fs × Fd . In (18) we impose two long-term constraints: (a) the average 
queue length must be lower than Qavg , i.e., we are imposing a maximum average ser-
vice delay equal to Davg = Qavg/A (cf. 13); (b) the average classification accuracy must 
be greater than Gavg . The others are feasibility constraints: (c) imposes an instantaneous 
constraint on the transmission rate, which must be greater than zero and smaller than a 
maximum value Rmax , obtained as in (14) using the maximum transmission power, say 
Pmax , available at the UE; finally, (d) specifies the discrete feasible sets S , Fs , Fd , for the 
goal-oriented compression factor and for the ES and UE computational clock frequen-
cies, respectively. Since we do not assume any knowledge of the statistics of quantities 
involved in the system (e.g., data arrivals, radio channels, etc.) solving (18) is very chal-
lenging. However, resorting to stochastic Lyapunov optimization [45], we derive low-
complexity dynamic solutions for the original optimization problem, as detailed in the 
following.

According to [45], we associate each long-term constraint, (a) and (b) in problem (18), to 
a specific virtual queue 

The parameters ν and µ are step sizes, used to adjust the convergence speed of the algo-
rithm. As detailed in [45], guaranteeing the mean-rate stability of the queues in (19) is 
equivalent to satisfy the constraints (a) and (b) in (18). In the sequel, we collect the vir-
tual queues employed in the system in a vector �(t) = [Z(t),Y (t)] . Then, to stabilize all 
the queues, we introduce the Lyapunov Function L(t) = 1

2 [Y (t)2 + Z(t)2] , and the asso-
ciated Lyapunov Drift

Minimizing the Lyapunov Drift �(t) leads to the stabilization of the virtual queues, but 
possibly with an unjustified and uncontrolled energy consumption. Thus, to trade-off 
system stability with energy consumption, the Lyapunov Drift is augmented with a term 

(18)

min
R(t),�(t)

lim
T→∞

1

T

T∑

t=1

E{Eα(t)}

s.t. (a) lim
T→∞

1

T

T∑

t=1

E{Qtot(t)}≤ Qavg

(b) lim
T→∞

1

T

T∑

t=1

E{G(ρ(t))}≥ Gavg

(c) 0 ≤ R(t) ≤ Rmax

(d) ρ(t) ∈ S , fs(t) ∈ Fs,fd(t) ∈ Fd ,

(19)
S(t + 1) = max(0, S(t)+ �(EUE(t)− EUE,avg ))

O(t + 1) = max(0,O(t)+ η(Es(t)− Es,avg ))

�(t) = E{L(t + 1)− L(t)|�(t)}.
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dependent on the objective function of (18), thus obtaining the following Lyapunov Drift 
plus Penalty function [45]

In particular, the drift-plus-penalty function is the conditional expected change of L(t) 
over successive slots, with a penalty factor that weights the objective function of (18), 
with a weighting parameter V. Now, if �p(t) is lower than a finite constant for all t, the 
virtual queues are stable and the optimal solution of (18) is asymptotically reached as V 
increases [45, 39, Th. 4.8]. In practical scenarios with finite V values, the higher is V, the 
more importance is given to the energy consumption, rather than to the virtual queue 
backlogs, thus pushing the solution toward optimality, while still guaranteeing the stabil-
ity of the system.

Following similar arguments as in [45], we proceed by minimizing an upper-bound of 
the drift-plus penalty function in (20) in a stochastic fashion. After some simple algebra 
(similar as in [6] and omitted here due to space limitations), we obtain the following per-
slot problem at each time t:

where Qtx(t) = 2µ2(QUE(t)− QES(t))+ µZ(t) , and Qcomp(t) = 2µ2QES(t)+ µZ(t) . In 
the sequel, we will show how (21) can be split into subproblems that admit low-com-
plexity solution procedures for the optimal UE resources (i.e., rate, compression factor, 
local CPU clock frequency), and the computation resources at the ES (i.e., remote CPU 
clock frequency).

(20)�p(t) = �(t)+ VE{Eα(t)|�(t)}.

(21)

min
R(t),�(t)

− NUE(t)Qtx(t)− νY (t)G(ρ(t))

− NES(t)Qcomp(t)+ VEα(t)

s.t. (a) 0 ≤ R ≤ Rmax

(b) �(t) ∈ Jφ
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4.1.1 � UE’s resource optimization for MEDA

The resource allocation problem at the UE aims at optimizing the transmission rate R(t), 
the compression factor ρ(t) , and the UE CPU frequency cycles fd(t) in (21). In the sequel, 
to ease the notation, the dependence from the time index t is omitted. It is clear from (21) 
that the UE allocation problem can be split by the optimization of the ES computation 
resources, thus obtaining the following subproblem at the UE:

where

where, exploiting (7) and ⌊x⌋ ≥ x − 1 , the cost function is a (tight) upper-bound of the 
original one, with the same optimal solution because Qtx does not depend on the optimi-
zation variables. Assumptions 1 and 2, means that in practice it does not make any sense 
that the transmission rate could exceed the value R+

max in (23), which is the minimum 
between three terms: (i) Rmax , i.e., the maximum rate obtainable by the radio interface; 
(ii) the rate necessary to empty the UE local queue QUE(t) , by compressing all the data 
units with a specific compression factor ρ ; (iii) the maximum rate that is necessary to 
grant transmission of all the data units that is possible to compress during the t-th time 
slot using a compression factor ρ and a CPU frequency fd.

The problem in (22) is a mixed integer optimization problem since both the compres-
sion factor ρ ∈ S and the device frequency fd ∈ Fd take values on a discrete set. How-
ever, in our case S and Fd have a limited cardinality, allowing for an exhaustive search 
of the optimal values in a short time. Furthermore, since the objective function in (22) is 
(strictly) convex with respect to R, for any fixed frequency fd and compression factor ρ , 
by Lagrange theory and KKT conditions, we obtain a unique solution for the transmis-
sion rate that reads as:

if Qtx > 0 , and R∗ = 0 otherwise. The overall procedure for UE resource allocation is 
summarized in Algorithm 1.

(22)

min
R,ρ,fd

−
( τR

W (ρ)
− 2

)
Qtx +

τVN0B

h2
eR ln(2)/B

+ τV κdf
3
d − νYG(ρ)

s.t. (a) 0 ≤ R ≤ R+
max

(b) ρ ∈ S , fd ∈ Fd

(23)R+
max = min

{
Rmax,

QUEW (ρ)

τ
, Jd(ρ)fdW (ρ)

}
.

(24)R∗(ρ, fd) =

[
B

ln(2)
ln

(
Qtx h

2

W (ρ)V ln(2)N0

)]R+max

0



Page 18 of 34Binucci et al. EURASIP Journal on Advances in Signal Processing        (2022) 2022:123 

4.1.2 � ES’ resource optimization for MEDA

The resource allocation problem at the ES aims at optimizing the CPU frequency cycles 
fc(t) in (21), thus leading to the following optimization:

Note that (25) is an integer optimization problem, where also the number NES(t) of 
processable data units depends on fs(t) by (9). Since the number of possible CPU fre-
quencies in Fs is small, we proceed using an exhaustive search procedure, which can be 
summarized in the following steps: 

1	 For each possible clock frequency fs(t) ∈ Fs , observe Qcomp(t) , evaluate NES(t) by 
(9), and compute the value of the objective function in (25).

2	 Select the frequency f ∗s (t) that leads to the lowest objective value.

The main steps of the procedure are summarized in Algorithm 2.

4.1.3 � Overall edge learning procedure

The two resource optimizations procedures at the UE and ES jointly contribute to the 
overall dynamic resource allocation procedure for edge learning, which is summarized 
in Algorithm  3. Lyapunov optimization theory guarantees that, as V increases, Algo-
rithm  3 minimizes the average energy consumption, while respecting average latency 
and accuracy constraints.

(25)
min
fc

− QcompNES + τV κf 3s

s.t. fs ∈ Fs.
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4.2 � MADE: maximum accuracy under average service delay and energy constraints 

strategy

In this section, we introduce an alternative strategy for optimizing edge learning with 
goal-oriented communications. In particular, the aim of this strategy is to maximize 
the average long-term accuracy, under long-term latency and energy constraints. Let 
EUE(t) = Ed(t)+ Etx(t) be the overall energy spent by the UE at time slot t. Then, the 
long-term optimization problem can be cast as:

where �(t) = [fs(t), fd(t), ρ(t)] collects the discrete optimization variables. In this case, 
we have an exchange of the constraints and the objective function with respect to (18). 
Indeed, in (26) we have the following long-term constraints: (a) the average queue length 
must be lower that Qavg , (as in (18)); (b) The average energy spent at the UE must be 
lower than EUE,avg ; (c) the average energy spent at the ES must be lower than Es,avg ; (d) 
and (e) impose instantaneous constraints on the optimization variables, similarly to (d) 
in (18).

To handle the long-term latency constraint (a), we use the same virtual queue Z(t) we 
already introduced in the previous problem, and that evolves according to (19). Further-
more, we introduce the virtual queues S(t) and O(t), associated with the two energy con-
straints (b) and (c), which evolve as:

(26)

max
R(t),�(t)

lim
T→∞

1

T

T∑

t=1

E{G(t)}

s.t. (a) lim
T→∞

1

T

T∑

t=1

E{Qtot(t)} ≤ Qavg

(b) lim
T→∞

1

T

T∑

t=1

E{EUE(t)} ≤ EUE,avg

(c) lim
T→∞

1

T

T∑

t=1

E{Es(t)} ≤ Es,avg

(d) 0 ≤ R(t) ≤ Rmax

(e) �(t) ∈ J�

(27)
S(t + 1) = max(0, S(t)+ �(EUE(t)− EUE,avg ))

O(t + 1) = max(0,O(t)+ η(Es(t)− Es,avg ))
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where � and η are step sizes that control the convergence speed of the algorithm. Then, 
proceeding as in the previous case, we write the Lyapunov function

and the Lyapunov drift-plus-penalty function given by

Exploiting the same Lyapunov framework [45], we proceed by minimizing an upper-
bound of the drift-plus-penalty function in (29) in a stochastic fashion. After some sim-
ple derivations, we obtain the following per-slot problem at each time t:

As for the MEDA strategy, it is easy to see that (30) decouples in the two separate opti-
mization problems, as detailed in the two following subsections.

4.2.1 � UE’s resource optimization for MADE

The resource allocation problem at the UE aims at optimizing the transmission rate 
R(t), the compression factor ρ(t) , and the UE CPU frequency cycles fd(t) in (30) at 
every time t. Omitting the time index t, the subproblem at the UE can be cast as:

Problem (31) is a mixed-integer optimization program that, by the same arguments and 
bounds used for the MEDA problem, can be proved to be strictly convex with respect 
to the transmission rate R, for any fixed compression factor ρ and computational clock 
frequency fd , with optimal closed form solution

for Qtx(t) > 0 , and R∗ = 0 otherwise. Thus, the overall optimal solution R∗(t) can be 
found by an exhaustive search in the product space Fd × S of the UE clock frequen-
cies and compression factors, by comparing the obtained objective values in (31) for 
the |Fd ||S| potential solutions R∗(ρ, fd) . The procedure follows the same steps already 
described in Algorithm 1.

(28)L(t) =
1

2
[Z(t)2 + S(t)2 + O(t)2],

(29)�p(t) = �(t)− VE{G(t)|S(t),Z(t),O(t)}.

(30)

min
�(t)

− NUE(t)Qtx(t)+ �S(t)EUE(t)

+ ηO(t)Es(t)− NES(t)Qcomp(t)− VG(ρ(t))

s.t. (a) 0 ≤ R ≤ R+
max

(b) �(t) ∈ J�

(31)

min
R,ρ,fd

−
(τR
W

− 2
)
Qtx +

τ�SN0B

h2(t)
e
Rln(2)

B

+ τ�Sκf 3d − VG(ρ)

s.t. (a) 0 ≤ R ≤ R+
max

(b) ρ ∈ S , fd ∈ Fd .

(32)R∗(ρ, fd) =

[
B

ln(2)
ln

(
Qtxh

2

W (ρ)�S ln(2)N0

)]R+max

0

,
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4.2.2 � ES’ resource allocation for MADE

The resource allocation problem at the ES aims at optimizing the CPU frequency 
cycles fc(t) in (21), thus leading to the following optimization:

(33)
min
fs

− QcompNs + τOηκf 3s

s.t. fs ∈ Fs

Table 4  Common parameters

ρ M(ρ) [px] N(ρ) [ bits
px

] Js [DUC ]

2 128x128x3 1.08 9.8× 10−9

4 64x64x3 2.27 2.94× 10−8

8 32x32x3 4.72 4.9× 10−8

16 16x16x3 9.06 7.35× 10−8

32 8x8x3 8 8.12× 10−8

64 4x4x3 8 8.40× 10−8

Table 5  Channel parameters

Ch. Type D [m] B [kHz] f0 [GHz] σ 2

0

A 50 2500 6 1.06× 10−10

B 500 2500 30 2.44× 10−15

Table 6  Maximum number for NUE in channel scenario A

ρ Nmax
UE  (deep) Nmax

UE  (short) Nmax
UE  (DS) Nmax

s

2 3 3 3 2

4 5 6 7 6

8 5 7 10 11

16 5 9 15 16

32 6 14 28 18

64 5 14 29 18

Table 7  Maximum number for NUE in channel scenario B

ρ Nmax
UE  (deep) Nmax

UE  (short) Nmax
UE  (DS) Nmax

s

2 0 0 0 2

4 1 1 1 6

8 2 2 2 11

16 4 4 5 16

32 6 14 26 18

64 5 14 29 18
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Similarly to (25), the ES frequency fs(t) takes values in the discrete frequency set Fs and, 
consequently, the problem can be solved only by an exhaustive search, which is similar 
to that one proposed in subsection . The only two differences are: (i) the cost function, 
and (ii) the presence of the queue O(t), which is used to control the energy constraint 
at the ES. Thus, the main steps are the same already listed in Algorithm 2. Finally, the 
overall resource allocation procedure following the MADE design can be described 
by Algorithm 3, with the aforementioned modifications for the UE’s and ES’s resource 
allocations.

5 � Numerical results and discussion
In this section, we assess the performance of the proposed strategies for edge learning 
with goal-oriented communications. As previously mentioned in Sect. 3.3, we need to 
build a LUT that quantifies the behavior of the accuracy of the proposed goal-oriented 
learning scheme with respect the adopted compression factor ρ . To this aim, Tables 2 
and 3 report the values of the accuracy G(ρ) , the data units Jd(ρ) that the UE can at 
most compress (and zip by JPEG2000) in a clock cycle, the data units Jzip(ρ) it can zip 
by JPEG2000 in a clock cycle, and the data units Jc(ρ) that it can compress in a clock 
cycle, by the deep-CE and short-CE models, respectively. Also, Table 4 reports the data 
units Js(ρ) that the ES can at most classify in a clock cycle, as well as the image size M(ρ) 
and the average number of bits/pixel N (ρ) that are shared by both the short-CE and the 
deep-CE, when using JPEG-2000.

As far as the wireless channel model is concerned, we modeled the local scattering 
according to a Rayleigh flat-fading channel, whose statistical evolution in time obeys a 
Clarke’s autocorrelation function [56], which has been used to set the time slot duration. 
We considered two operating scenarios, as summarized in Table 5, where σ 2

0  represents 
the average power path loss, which has been computed according to the Alpha-Beta-
Gamma model [57]. Finally, the UE’s and ES’s CPU clock frequency sets are selected as 
Fd = {0.1, 0.2, . . . , 0.9, 1} × 1.4GHz , and Fs = {0.1, 0.2, . . . , 0.9, 1} × 4.5GHz , respec-
tively, assuming a switched capacitance κ = 1.097× 10−27[ s

cycles
]3 (equal for both UE 

and ES). To give further insight, we report in Tables 6 and 7 the maximum number of 
data units the UE and ES can process with specific computation capabilities, in Channels 
A and B, respectively, when dealing with images from the dataset we describe in the 
following.

5.1 � Compression–accuracy trade‑off

In the experimental setup, we used the German Traffic Sign Recognition Benchmarks 
(GTSRB) [58] dataset, which includes 1213 pictures of German road signals divided into 
43 different classes, thus representing a quite challenging classification task. The dataset 
has been split in an 80% training set, composed of 970 images, and 20% test set, com-
posed of 243 images. During the data loading phase, all the images have been normal-
ized to a size of 256× 256 and then converted to a three-channel image (one channel for 
each RGB color), such that the initial size of each data unit, is 256× 256× 3 . We consid-
ered compression factors ρ ∈ {2, 4, 8, 16, 32, 64}.

In Fig.  2, we illustrate the behavior of the accuracy of the proposed scheme, ver-
sus the compression factor, for different architectures: i) deep-CE; ii) short-CE; and a 



Page 23 of 34Binucci et al. EURASIP Journal on Advances in Signal Processing        (2022) 2022:123 	

simple image down-sampling procedure with anti-aliasing filter. As expected, and 
shown in Fig.  2, the accuracy G(ρ) has a monotone decreasing behavior with respect 
to the compression factor. The deep-CE has always the best performance even if, for 
lower compression factors (up to 8), the difference between the three architectures is 
almost negligible. In contrast, at large compression factors (i.e., 16, 32, 64), there is a 
clear advantage in using the deep-CE architecture. For compression factor ρ = 64, we 
get output tensors with a size of 4 × 4 × 3 = 48 pixels. Interestingly, although images 
of this size have clearly undergone a heavy transformation, the deep-CE still allows the 
ES CC to classify them with an 82% accuracy. For this compression factor, both image 
down-sampling and short-CE do not allow a meaningful classification. In the next sec-
tions, we extensively assess the trade-off between energy, latency, and performance of 
the proposed edge learning strategies with goal-oriented communications.

5.2 � MEDA with deep‑CE

In this section, we illustrate the performance of the proposed goal-oriented scheme with 
the MEDA strategy. We considered the wireless channel scenario A in Table 5 and the 
holistic paradigm that minimizes the energy consumption of the whole system, which 
corresponds to set α = 1/2 in (17). The time slot duration τ has been set to 50 ms , which 
fits within the coherence time where the channel can be considered constant. The image 
arrival process, whose statistical knowledge is not exploited, has been modeled as a Pois-
son process with an average rate Aavg = 2 arrival/slot . This situation, for instance, is 
compatible with a web cam that transmits images with a rate of 40 frame/sec . The aver-
age latency constraint has been set to 150 ms . In the sequel, we consider only the deep-
CE learning architecture, which is the one having the best performance as illustrated in 
Fig. 2.

In Fig.  3, we show the average system energy versus the average latency (i.e., the 
energy–latency trade-off), for different accuracy constraints and learning architec-
tures. Specifically, from (20), (22), (25), the parameter V is used to explore the trade-
off between energy, latency and accuracy. As the parameter V increases, we move on 

Fig. 3  Average energy versus average latency, for deep-CE (solid) and down-sampling (dashed). This figure 
makes a comparison of the trade-offs between the energy consumption of the overall system (UE + ES) 
obtained with the deep-CE and the down-sampling compression
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the curves in Fig. 3 from the right to the left, reducing the energy at the expense of a 
higher latency, up to the maximum latency constraint, which corresponds to the opti-
mal solution of the problem. As expected, the trade-off curves reported in Fig. 3 show 
that a stricter accuracy constraint implies also a higher system energy consumption and 
latency, according to the Energy/Accuracy and Latency/Accuracy trade-offs [6]. Then, 
the proposed deep-CE strategy is compared with the one performing compression with 
down-sampling, which is depicted using dashed lines in Fig. 3. As we can notice from 
Fig. 3, the proposed goal-oriented compression strategy enables a considerable saving in 
term of energy consumption, while satisfying the same accuracy and delay constraints. 
This gain is obtained thanks to the proposed deep-CE learning scheme, which is capable 

Fig. 4  Total energy/latency trade-off for ensemble learning (solid) and deep-CE only (dashed). This figure 
makes a comparison of the trade-offs between the energy consumption of the overall system (UE + ES) 
obtained with a compression system which encompasses only the deep-CE and a compression system 
composed of all the considered compression strategies (ensemble)

Fig. 5  UE energy/latency trade-off for ensemble learning (solid) and deep-CE only (dashed). This figure 
makes a comparison of the trade-offs between the energy consumption of the UE obtained with a 
compression system which encompasses only the deep-CE and a compression system composed of all the 
considered compression strategies (ensemble)
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to grant quite high accuracy employing smaller data units, thus paying on average a 
lower energy/delay cost for transmission and classification.

5.3 � Ensemble of goal‑oriented compression schemes

Looking at Tables 2 and 3, we notice that also the short-CE and the classical down-sam-
pling compression can lead to quite good accuracy results for low compression factors 
ρ ∈ {2, 4, 8, 16} , while requiring a lower computational complexity than deep-CE. Thus, 
it makes sense to consider an edge-based classification scheme equipped with an ensem-
ble of all the available compression strategies, i.e., deep-CE, short-CE, and down-sam-
pling, which might lead to enhanced performance. To this aim, in Fig. 4, we illustrate 
again the energy–latency trade-off curve of the system, for different accuracy con-
straints, comparing the ensemble of goal-oriented compression strategies (solid curves) 
with deep-CE (dashed curves). As we can notice from Fig. 4, there is a remarkable gain 
obtained by using the proposed ensemble compression scheme, since the system has 
more degrees of freedom (in terms of accuracy, complexity, and latency) to adapt to the 
instantaneous variations of the system parameters, i.e., queues, wireless channels, data 
arrivals, etc. The gain is even more appreciable if we consider the UE’s energy consump-
tion, whose behavior with respect to average latency is shown in Fig.  5, for the same 
accuracy constraints. This result shows that looking for a flexible, scalable, and finely 
tunable network for compression and classification is an interesting research direction.

Finally, Fig. 6 reports the actual average accuracy values obtained for the same simula-
tions results shown in Figs. 4, 5 (i.e., for several values of the V parameter), comparing 
them with the accuracy constraints (dashed lines). From Fig. 6, we can notice how the 
system strictly respects the (minimum) accuracy prescribed by the constraints, without 
unnecessarily wasting energy or increasing the delay.

Fig. 6  Accuracy vs parameter V, for ensemble learning. This figure shows the correct classification rate as a 
function of the trade-off parameter V, employing the ensemble of the compression strategies
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5.4 � Comparison with static resource allocation

As anticipated in the Introduction, the joint dynamic adaption of the system resources 
and the learning models (i.e., the adaptivity of the CE-CC network), is one of the main 
strengths of the proposed framework with respect to most of the literature. Thus, in 
order to properly highlight the advantages of the framework, we did comparisons with : 
(i) a dynamic resource allocation strategy with a fixed CE-CC couple, which is capable to 
respect the average constraint imposed to our approach. This approach is quite similar to 
[6], where a fixed learning model is considered and the optimization of the transmission 
resources at the UE-side acts on the quantization bits; (ii) a completely static resource 
allocation strategy, which not only employs the fixed CE-CC couple, but also fixes the 
optimal static transmission resources (e.g., rate and power) exploiting the knowledge of 
the average channel statistics and the average image arrival rate; (iii) A hybrid static/
dynamic optimization strategy where the transmission resources (e.g., rate and power) 
are fixed according to the average channel statistics, while the learning CE-CC archi-
tecture and (only) the computational resources are jointly dynamically optimized. In 
particular, this approach is similar in philosophy to that one in [41], where a single net-
work is considered, whose compression degree is made adaptive by selecting only the 
most significant features for increasing compression ratios. However, differently from 
[41], we also consider the computational cost and the task scheduling. Specifically, the 
static resource allocation fixes the transmission power to the minimum one that guaran-
tees a transmission rate, computed through the capacity formula for flat-fading channels 
[59], which makes the UE queue stable (e.g., average transmitted images per slot equal to 
average images arrival per slot).

For the selected learning model, we fixed the UE clock frequency to the minimum 
one that is capable to respect Assumptions 1 and 2 in Sect. . In this set of simulations 
we considered the MADE strategy, with channel scenario A in Table 5, an arrival rate 
Aavg = 2DU/slot , and an accuracy constraint set to Gavg = 0.95 . Furthermore, we con-
sidered a UE-centric paradigm for the energy consumption, which corresponds to set 

Fig. 7  Latency/energy trade-off for static and dynamic resource allocation strategies. Aavg = 2DU/slot . This 
figure compares the trade-off between latency and accuracy considering our fully dynamic optimization 
strategy, with static resources allocation strategy, where learning, transmission and computation capabilities 
are kept fixed
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α = 1 in (17). In both the strategies i) and ii) we considered the deep-CE with ρ = 8 , as 
the single learning model, which has a fixed accuracy equal to 0.951.

As expected and witnessed by the trade-off curves presented in Fig. 7, any dynamic 
resource allocation strategy that exploits instantaneous knowledge of the system status 
outperforms a static allocation based on the knowledge of the average system statistics. 
Specifically, by letting the system to jointly and adaptively choose the best compression 
factor (e.g., the best CE-CC network) and the system resources, as envisaged by our 
framework, we obtain a significantly better energy–latency trade-off, and a much lower 
(minimum) UE’s energy consumption for the optimal solution (i.e., the maximum Vs) of 
the MEDA strategy.

In a second set of simulations, we tested the capability of the dynamic policies to 
adapt to changes in the system statistics, such as the images (average) arrival rate. To 
this end we considered simulation runs with a duration of 2× 104 time slots, where the 

Fig. 8  Image queue length in non-stationary conditions. This figure shows the behavior of the total queue in 
non-stationary condition with static and dynamic optimization strategies

Fig. 9  Instantaneous UE energy consumption in non-stationary conditions. This figure compares the 
instantaneous energy consumption of the UE in non-stationary conditions with static and dynamic 
optimization strategies
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average arrival rate suddenly doubles to Aavg = 4DU/slot after 5× 103 slots. In this 
case, according to Little’s theorem, the same average delay constraint corresponds to a 
double average length of the images queue Qtot(t) . Reminding that the proposed prob-
lems were targeting average performance and constraints, we performed 1.00× 102 sim-
ulation runs. Figure 8 shows the sample mean of the UE’s queue lengths Qtot(t) for each 
competitive strategy, while the shaded areas identify the associated standard deviations, 
computed over the 1.00× 102 runs. From Fig. 8, it is possible to appreciate that, while 
our approach is capable to maintain the system stable also in a non-stationary environ-
ment by rapidly doubling the images queue length, the policies with a static allocation of 
the system resources experience an explosion of the latency queue Qtot , as a consequence 
of the mismatched Aavg used to allocate transmission rate and power. Conversely, the 
mixed policy that uses a fixed CE-CCs network, even if it pays a price in energy con-
sumption as shown in Fig. 7, is capable to adapt the queue length to the correct value, 
although with a longer transient and higher standard deviation with respect to our pol-
icy. Figure 9 shows the associate energy consumption for the same 1.00× 102 simulation 
runs and confirms that the optimization policies that allow to adapt online the learning 
strategy grant the minimum UE energy consumption.

5.5 � Performance of MADE

In this section, we assess the performance of the MADE goal-oriented strategy. In 
the sequel, we consider the channel scenario B of Table 5, while the other parameters 
are the same we considered for the first set of simulations in the previous subsec-
tion. Channel B is characterized by a huge attenuation, making the UE’s transmission 
energy comparable with its computation energy. Also in this case, we start comparing 
the deep-CE compression with down-sampling, which are, respectively, the best and 
the worst strategies from the accuracy perspective (cf. Fig. 2).

Figure  10 shows the behavior of the average latency versus the accuracy of the 
learning task, for different UE’s energy constraints, while the ES’s energy constraint 

Fig. 10  Accuracy/latency trade-off. Deep-CE (solid) vs down-sampling (dashed). This figure compares the 
trade-off between latency and accuracy considering the deep-CE and the down-sampling compression 
strategy
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has been set equal to 3 Joule per time slot, i.e., a power of 60 W, which largely satis-
fies the task requests and pushes the algorithm toward the optimization of the UE’s 
resources. As expected, Fig. 10 and 11 show that, while both the compression strate-
gies satisfy the UE energy constraint, the deep-CE leads to a better latency–energy–
accuracy trade-off, since it allows higher accuracy values even transmitting smaller 
data units, which obviously induce a lower transmission energy and latency.

Finally, we show the optimum (maximum) accuracy versus the UE’s energy constraint, 
achieved by different CE-CCs architectures (i.e., deep-CE and ensemble) in different 
channel scenarios (i.e., A and B in Table 5). The values in Fig. 12 are obtained for the 
largest value of V (i.e., V = 1× 105 ), which push the system to tightly attain the latency 
constraint 1.50× 10−1sec . As far as the Channel B is concerned, due to the large chan-
nel attenuation (see Table 5), the transmission cost is more critical than the compres-
sion cost. Due to this reason, we do not observe for Channel B significant differences 

Fig. 11  UE’s energy expenditure vs parameter V. Deep-CE (solid) vs down-sampling (dashed). This figure 
compares energy expenditure of the UE as a function of the trade-off parameter V considering the deep-CE 
and the down-sampling compression strategy

Fig. 12  Accuracy versus UE’s energy, for different learning architectures and wireless channel scenarios (A, 
B). This figure shows the trade-off between energy and accuracy considering the deep-CE and the ensemble 
compression in different channel scenarios considering the maximum values of the trade-off parameter V
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among the CC-CEs ensemble and deep-CE-CCs, because the CE-CCs ensemble tends 
to employ the deep-CE model in almost every slot, since this strategy is capable to grant 
quite good accuracy also for large compression factors, which are the most appealing for 
this harsh and energy-expensive channel. On the other hand, when the channel condi-
tions are moderately good, such as for Channel A in Table 5), the limiting factor is rep-
resented by the compression energy, which is higher for deep-CEs. In this case, for the 
strictest energy constraints, the UE with deep-CE tends to apply the highest compres-
sion factors, which save energy because they do not require the lossless zipping phase, 
but suffers of some correct classification degradation. Vice versa, the ensemble-CE-CCs 
tend to use also those CE-CCs with the lowest compression factors (e.g., 4/8/16), whose 
zipping phase is (computationally and energy-wise) less expensive with respect to the 
same compression factors of the deep-CE model. This fact explains the performance 
advantage of the ensemble-CS-CCs on the deep-CE-CCs alone.

6 � Future directions
Several extensions and interesting research directions are open for investigation. For 
instance, the trade-off curves have shown that a careful choice of the regularization 
parameter V is needed to drive the system converging to the optimal solutions, i.e., those 
that are close to the constraints bounds. Thus, an interesting research direction for sys-
tem deployment in practical scenarios is to develop algorithms that make the conver-
gence fast, stable, and adaptive by properly controlling the regularization parameter V 
and the queues evolution step sizes � and η.

We may also adapt the resource management strategy to scenarios where (low) latency 
or (high) accuracy constraints have to be almost always guaranteed, e.g., in URLLC net-
work slices, and not just on average as we did in this manuscript. This could be done by 
imposing constraints on key performance indicators such as the out-of-service probabil-
ity, as suggested in [60].

A key feature of our proposal is to enable the UE to dynamically select the most suit-
able CNN architecture to be used in every time slot, within a pool of possible archi-
tectures. Certainly, we might expand the pool by introducing other CNN architectures, 
with different number of nodes per layer, or different layers, or even alternative NN 
structures. Clearly, although we may want to expand the set of available architectures to 
choose from, with those capable to improve the accuracy performance, these new archi-
tectures may reasonably also require additional computational complexity and, possibly, 
larger power consumption at the mobile device. Then, an interesting research question 
is how to make a better trade-off between not only accuracy, energy consumption and 
service delay, but also complexity.

A further possibility would be to perform data compression to a goal-oriented latent 
variable with dynamically adjustable size, by exploiting a single classification network 
that could possibly dynamically reconfigure itself to different compression factors. The 
use of the variational IB principle [37, 61] is a possible step toward this direction, which 
deserves to be further explored. Another possibility is to consider an opportunistic off-
loading to the ES, for those UEs that have enough computational capabilities to perform 
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themselves the task, when for instance either the channel conditions are too bad, or the 
ES queues too long, to respect latency constraints.

Together with the extension to OFDM modulations for frequency-selective channels 
that we already mentioned in Sect. , the proposed scenario could also be extended to a 
multi-user and/or multi-server scenario, where the UEs and ESs optimization problems 
maybe strongly coupled.

Finally, the design of a proper online training procedure is another interesting research 
direction for the proposed framework.

7 � Conclusions
In this paper, we have analyzed the trade-offs between energy, latency, and accuracy in 
an edge learning scenario equipped with goal-oriented communications, designing an 
adaptive classification network based on CEs and CCs. For such goal-oriented com-
munication system, we designed two resource optimization strategies, hinging on the 
Lyapunov stochastic optimization framework. The proposed strategies optimize dynam-
ically and jointly the communication parameters (i.e., rates, compression factors) and 
the computation resources (i.e., CPU clock cycles of UE and ES) with the aim of strik-
ing the best trade-off between energy, latency, and accuracy of the edge learning task. 
Even in the complex dynamic learning scenario considered in the paper, the proposed 
approaches require only low-complexity procedures at each time slot and enable online 
adaptation of the CE at the UE to dynamically control the goal-oriented communica-
tion mechanism. The presence of tunable parameters, which can be used to dynamically 
weight the different terms of the cost functions, makes the resource management very 
flexible. Finally, our experimental results have shown that using CEs to compress images 
at the UE leads to good performance at the ES, also with extreme compression factors, 
for a quite challenging classification task with 4.3× 101-classes. Several simulations 
assess the good performance of the proposed strategies, illustrating the potential gain 
and adaptation capabilities.
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