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elling of the pharmacokinetic processes of absorption, distribu-
tion, metabolism, and excretion (ADME) is needed (Andersen 
and Krishnan, 1994; Coecke et al., 2013; Ferrarini et al., 2013; 
Groothuis et al., 2013; Louisse et al., 2016; Bell et al., 2018). 

For this purpose, several physiologically-based kinetic (PBK) 
models have been developed, many of which are compiled in Lu 
et al. (2016). For PBK models to fully conform with the 3Rs, 
their chemical-specific input parameters should be derived from 
non-animal sources, including in vitro models, provided that any 
limitations and uncertainties are considered and stated explicitly. 
Although ideal from a 3Rs perspective, this strategy poses chal-
lenges related to the validation and acceptance of the models by 
end-users (Paini et al., 2019).

To correctly evaluate a kinetic parameter such as clearance of 
a chemical, all relevant in vitro biokinetic processes should be 
identified and quantified as they are likely to influence the bio-
available chemical concentration. The in vitro experimental set-
ting, i.e., cells in aqueous medium, frequently including serum 
in different percentages, in a plastic vessel that is in contact with 

1  Introduction

The increasing need to test chemicals for risk assessment and 
the ethical and scientific concerns over animal experimentation 
have brought in vitro models into the limelight. They have been 
proposed as a more efficient and economical model that is com-
pliant with the 3Rs principles (replacement, reduction, and re-
finement of animal testing).

Considering that toxicological events are mostly initiated at 
the cellular level (Ekwall, 1983; Schirmer, 2006), in vitro meth-
ods are not only relevant to screen for these events but also to 
better understand their mechanisms of action. Such information 
may help to identify other chemicals with similar mechanisms. 
In vitro methods encompass a wide range of cell types, culture 
methods, and experimental conditions. The chemical concentra-
tions tested in these models represent concentrations that are bio-
available to the organ and not actual exposure doses. Therefore, 
to extrapolate observed in vitro toxic doses to respective in vivo 
exposure doses in a quantitative way (QIVIVE), in silico mod-

Research Article

Insights into In Vitro Biokinetics Using 
Virtual Cell Based Assay Simulations 
Susana Proença1,2, Alicia Paini1, Elisabeth Joossens1, Jose Vicente Sala Benito1, Elisabet Berggren1,  
Andrew Worth1, Maurice Whelan1 and Pilar Prieto1
1European Commission, Joint Research Centre, Ispra, Italy; 2Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands

Abstract
The Virtual Cell Based Assay (VCBA) is an in silico model that simulates the biokinetics of chemicals in in vitro test 
systems. VCBA simulations can indicate the degree to which the bioavailable concentration varies across chemicals and 
experimental conditions, thereby providing important contextual information for comparing the results of different in vitro 
toxicity experiments. The simulated results can also be used to support in vitro to in vivo extrapolation of toxicity data, 
especially when the VCBA is coupled to a physiologically based kinetic model.
In this work, we selected 83 chemicals previously tested for in vitro cytotoxicity with a neutral red uptake (NRU) assay 
and used the respective in vitro data to optimize a toxicity and effects model simulating the 3T3 BALB/c cell line in a 
96-well microplate with 5% serum supplementation. We then used the optimized parameters to simulate alternative 
experimental conditions. The simulations show the impact of different physicochemical properties on chemical fate of 
this diverse group of chemicals and how the different partitioning (to protein, lipid, and plastic) and kinetic (evaporation 
and degradation) events are intrinsically connected. The results of VCBA simulations were interpreted with respect to the 
applicability domain of the different QSARs incorporated in the model and the underlying assumptions and uncertainties 
of the VCBA.

This is an Open Access article distributed under the terms of the Creative Commons 
Attribution 4.0 International license (http://creativecommons.org/licenses/by/4.0/), 
which permits unrestricted use, distribution and reproduction in any medium, provi-
ded the original work is appropriately cited. 

https://doi.org/10.14573/altex.1812101
mailto:pilar.prieto-peraita@ec.europa.eu
http://creativecommons.org/licenses/by/4.0/


Proença et al.

ALTEX 36(3), 2019       448

Therefore, a better approximation of in vivo toxic concentra-
tions may be obtained by modulating these in vitro biokinetic 
processes to determine the concentration that is effectively dis-
solved in the exposure medium and is unbound (free concentra-
tion). Indeed, chemicals that have higher cytotoxic potencies are 
affected more strongly by these biokinetic events than chemi-
cals that have lower cytotoxicity potencies, as the amount of 
non-bioavailable chemical can easily surpass the bioavailable 
amount. In the case of less toxic chemicals, the impact of serum 
binding may be negligible if the nominal toxic concentration ex-
ceeds the binding capacity of the serum proteins (Gülden and 
Seibert, 2005). Heringa et al. (2004) showed that while nominal 

air, is an environment that is drastically different from the in vivo 
microenvironment of cells. Indeed, binding of chemicals to se-
rum proteins and lipids, plastic, and evaporation (Kramer, 2010; 
Stadnicka-Michalak et al., 2014; Seibert et al., 2002; deBruyn 
and Gobas, 2007), have been broadly described to considerably 
impact the actual chemical concentration in in vitro systems. 
Moreover, the most commonly used dose metric in in vitro sys-
tems is the added (nominal) concentration, which does not re-
flect the amount of chemical per number of cells in the system. 
Gülden et al. (2001) showed that free concentration and toxic ef-
fects change with cell number, i.e. higher cell numbers in culture 
have higher EC50 values. 

Fig. 1: Schematic representation of the 4 interconnected models of the virtual cell based assay (VCBA) used to simulate  
the kinetics of a test chemical 
Kr, the rate constant for the killing rate increases as a function of the chemical concentration; NEC, no effect concentration for survival
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interconnected models of the VCBA are reported in (Zaldívar  
Comenges et al., 2017). More information on the VCBA can be 
found in (Paini et al., 2017b; Graepel et al., 2017; Sala Benito et 
al., 2017; Worth et al., 2017).

The overall goal of this work was to apply the VCBA to a large 
set of chemicals, for which in vitro acute oral toxicity data were 
already available, to clarify which experimental conditions and 
physicochemical properties have the greatest impact on in vitro 
chemical fate. A subset of 83 chemicals tested in international 
projects and validation studies (NICEATM/ECVAM validation 
study (NIH, 2006); the PF6 EU project ACuteTox2 (Prieto et 
al., 2013a); ECVAM validation study (Prieto et al., 2013b)) was 
chosen. The complete list of chemicals used in these projects can 
be found in the EC-JRC Chemical Lists Information System, 
CheList3. In all of these projects, the BALB/c 3T3 cell line was 
used and cytotoxicity was measured with a neutral red uptake 
(NRU) assay. Hence, the VCBA model was set to simulate the 
conditions of the NRU assay with some experimental variability 
to characterize the uncertainties of the VCBA core model, and 
to estimate the dissolved or intracellular chemical concentration 
that can be used for different in vitro comparisons and as a point 
of departure for QIVIVE.                

2  Materials and methods

Estimation of chemical parameters
The following physicochemical parameters are required to run 
the VCBA: 
1. Molecular weight (MW; g/mol);
2. Molecular diffusion volume (SVcomp, indicated as atomic 

diffusion in Zaldívar Comenges et al. (2017))
3. Molar volume (MV; cm3/mol);
4. Henry law constant (HLC; Pa×m3/mol); 
5. Degradation rates in water and air (s-1);
6. The logarithm of the octanol-water partition coefficient (log-

Kow) (unitless). 
The physicochemical parameters of the 83 chemicals were col-
lected between July 2016 and October 2016. Molecular weight 
was retrieved from the EPA Chemical Dashboard4, and water 
and air degradation rates were derived from the half-life report-
ed by EPI Suite™ (US Environmental Protection Agency) by ap-
plying the following formula: kdeg = ln/t(1/2). Molar volume was 
retrieved from ACD/Labs5 software predictions retrieved from 
Chemspider6, and when not available it was extrapolated from the 
MW through a simple linear equation, as indicated in Proença et 
al. (2017). Molecular diffusion volume (dimensionless), required 
for fugacity prediction, was calculated by the Fuller semi-empir-
ical method as the sum of the specific atomic diffusion volumes, 
discounting the volume of each aromatic/heterocyclic ring (Fuller 

EC50 values depend on serum percentages, the freely available 
EC50 values are roughly the same. Ideally, this in vitro biokinet-
ics translation of nominal to free concentration of chemicals can 
be integrated into PBK models (Gajewska et al., 2015; Paini et 
al., 2017a) and quantitative adverse outcome pathways (qAOPs) 
(Madureira et al., 2014). 

The Virtual Cell Based Assay (VCBA) is an in silico model 
developed as part of the EU FP7 COSMOS project1 (SEUR-
AT-1). It simulates in vitro chemical fate and intracellular con-
centrations to determine the free concentration that is required 
to cause perturbations in cells (Zaldívar Comenges et al., 2010, 
2011). Briefly, to run the VCBA, specific input parameters for 
chemicals, cell types, and experimental set-up are needed. The 
VCBA consists of 4 interconnected models (Fig. 1):
1 Fate and transport model, which is based on each chemical’s 

physicochemical properties. It describes the dynamic mass 
balance of a given chemical, including its partitioning be-
tween headspace (gas exchange equations), plastic, and serum 
lipid (deBruyn and Gobas, 2007; Kramer, 2010), as well as 
chemical degradation; 

2 Cell partitioning model, which describes cell uptake/excretion,  
and the intracellular partitioning between lipid, protein, and 
aqueous fractions, which depends on the chemical characteris-
tics and cell type composition;

3 Cell growth and division model, which is simulated by a 
4-stage (G1, S, G2, and M cell cycle phases) approach using 
a Leslie matrix. Depending on the cell type, cell growth and 
division can be adjusted (Paini et al., 2017b).

4 Toxicity and effects model, which merges the experimental in 
vitro concentration-response curve with the cell growth and di-
vision model to fit the toxicity parameters, i.e., the no-effect 
concentration (NEC) and killing rate (Kr). Briefly, VCBA sim-
ulates the cell growth for all nominal concentrations of the ex-
perimental concentration-response curve and it calculates the 
intracellular concentration for each nominal concentration. 
First, a random threshold is used at which the NEC starts to 
cause cell death (Kr), hence obtaining the percentage of via-
bility for all nominal concentrations. Then, in order to mini-
mize the error between the experimental and the predicted 
concentration-response curve, the sum of errors is calculated. 
Next, the NEC and Kr, are changed to create another concen-
tration-response curve and the error is calculated. Finally, us-
ing the optimum function in R (general-purpose gradient op-
timization function) and following the optimization approach 
described by Zaldívar and Baraibar (2011), NEC and Kr are 
changed to decrease the sum of errors. 

Further, the VCBA considers the experimental set-up, which in-
cludes the well shape and size, the volume of medium, and the 
amount of supplemented serum and, thus, protein and lipid con-
tent in the media. The mathematical equations describing the four 

1 http://www.cosmostox.eu (accessed 08.03.2019).
2 http://www.acutetox.eu/ (accessed 08.03.2019).
3 http://chelist.jrc.ec.europa.eu/index.jsp?id=2&id_list=43 (accessed 08.03.2019). 
4 https://comptox.epa.gov/dashboard (accessed 08.03.2019).
5 https://www.acdlabs.com/ (accessed 08.03.2019).
6 http://www.chemspider.com/ (accessed 08.03.2019).
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diction-model development. In the absence of such predictions, 
the average of the other predictive tools in Chemspider was used. 

Cell line parameters
The values used (Tab. 1) were taken from our previously pub-
lished work (Zaldívar Comenges et al., 2017) except for the in-
tracellular protein concentration, which was recalculated and set 
to 4.4 mol/m3, based on protein density, protein fraction in the 
cell, and cell volume.

The cell division rate parameter does not consider cell- 
cell contact growth inhibition; this cell line reaches confluence 
at 50,000 cells/cm2, after which the cells halt their growth. How-
ever, the initial cell numbers and assay time used describe a 
non-confluency scenario.  

Experimental set-up
The experimental parameters, such as the different well-plates 
and serum percentages used, are illustrated in Table 2. These 
conditions were based on those used in the scope of the ACute-

et al., 1966, 1969). For chemicals requiring atom diffusion vol-
umes, and for which the atom increments were not available, an 
extrapolation from MW was also made. A local sensitivity analy-
sis of the VCBA showed that variations of the atom diffusion vol-
umes and the molar diffusion only slightly impact the predicted 
unbound medium concentration results, thus there is no need for 
highly accurate parameters (Proença et al., 2017).

Both experimental and predicted values of the HLC were avail-
able in both EPIsuite and Chemical Dashboard. Priority was giv-
en to experimental values; if more than one value was found, the 
average was used. When no experimental data was available, pri-
ority was given to EPIsuite predictions, first the Group Method, 
then the Bond Method, and finally Chemical Dashboard, which 
uses several prediction models and presents the average value. 

LogKow values were researched in both Chemspider (Royal 
Society of Chemistry) and Chemical Dashboard, again giving 
priority to experimental values, and using the average when suit-
able. When predicted values had to be used, priority was given 
to Chemical Dashboard, which uses a revised database in pre-

Tab. 1: Cell line (3T3 Balb/c) parameters used to run the VCBA model

Aqueous fraction (% weight) 0.614

Protein fraction (% weight) 0.244

Lipid fraction (% weight) 0.142

Protein concentration (mol/m3) 4.4

Lipid concentration (kg/m3) 170.7

Cell cycle phase G1 S G2 M

Duration (H) 9.63 3.65 3.45 2.26

Mortality (h-1) 0.005 0.005 0.04 0.04

Volume (m3) 1.73E-15 2.4E-15 2.4E-15 2.4E-15

Mass (g) 2.08E-9 2.4E-9 2.4E-9 2.4E-9

Initial cell population (%) 50.7 19.2 18.18 11.92

Cell division rate (h-1) 1.026   

Tab. 2: Experimental set-up based on the 3T3 Neutral Red Uptake protocol and used for  
the virtual cell based assay (VCBA) simulations

% Supplemented serum 0 5 10

Protein in medium (mol/m3) 0 0.0234 0.0468

Lipid in medium (kg/m3) 0 0.08 0.16

Type of well plate 96-well plate 24-well plate 6-well plate

Number of cells  1680 10,000 50,500

Volume medium (m3) 1E-7 6.04E-07 3.00E-06

Diameter top (m) 0.00685 0.0156 0.0348

Diameter bottom (m) 0.00635 0.0156 0.0348

Depth (m) 0.01076 0.01779 0.01766
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trol response (which is included as a response of 100% at 0 µM). 
The experimental set-up that was used to obtain this data was 
based on a 48-hour assay with 5% serum and in a 96-well plate. 

After the NEC and Kr were optimized by minimizing the 
residuals between the experimental and theoretical response 
curves, they were used within the model to further study the im-
pact of different set-ups on the concentration of chemical in the 
various compartments, by keeping them constant but changing 
the experimental set-up parameters. 

The code8 was developed using R software, version 3.3.1, 
with cell growth given in hours and differential equations solved 
using a discretization in seconds. This specific time was chosen 
to speed up optimization, as cell growth/death in minutes would 
require VCBA to run more cycles, slowing down the optimi-
zation process. Moreover, since cell cycle phases take several 
hours rather than minutes, running the cycle in minutes would 

Tox project for 3T3 cells: initial number of 1680 cells, 48 hours 
in a 96-well plate with 10% FBS in 100 µl medium (DB-ALM 
protocol 1397). Then, the volume of medium and cell number 
in the different in vitro set-ups were selected in proportion to 
the surface area. The densities of the phases were set to: water = 
1000g/l, proteins = 1350 g/l, and lipids = 900 g/l, as previously 
reported in Zaldívar Comenges et al. (2017).    

Optimization and running of the VCBA
NEC and Kr are both chemical- and cell line-specific, and were 
obtained using the experimental results, as explained above in 
the introduction to the VCBA model.

Optimization of NEC and Kr was done by calculating the par-
titioning of each chemical and integrating it with the experimen-
tal concentration-response curves from the ACuteTox project, 
consisting of eight concentrations and a value linked to the con-

7 https://ecvam-dbalm.jrc.ec.europa.eu/methods-and-protocols/search/139 (accessed 08.03.2019).
8 doi:10.14573/altex.1812101s1

Fig. 2: Optimization of NEC and Kr, and modelling chemical fate and effects in the cell population for 1,2,3,4-tetrachlorobenzene 
and diethyl phthalate
In each panel, the top left plot shows the optimization of the concentration-response relationship by comparing cell viability after 48 hours 
(black lines) against experimental data (red dots). The top right plot shows the effect of the chemical’s concentration (Molar or gram per gram 
wet weight) relative to the number of cells during the 48-hour assay for several nominal concentrations. For 1,2,3,4-tetrachlorobenzene the 
simulated concentrations ranged from 0 to 0.00232 M and for diethyl phthalate from 0 to 3.6×10-4 M. The remaining plots show the unbound, 
intracellular, lipid and protein bound concentrations over time. For all plots except the first, 10 concentrations were modelled and are 
represented by shades of blue from lower (light color) to higher concentrations (darker color).

https://ecvam-dbalm.jrc.ec.europa.eu/methods-and-protocols/search/139
https://doi.org/10.14573/altex.1812101s1


Proença et al.

ALTEX 36(3), 2019       452

ing to the cut-off value in Equation 3, less than 10% of the chem-
ical was unbound in the medium for the 14 chemicals with a  
logKow higher than or equal to 4.46 (phenantrene has a logKow 
of 4.46). For different logKow ranges, different elements of the in 
vitro system will be the main sequesters of the chemical. Observ-
ing Figure 3 from bottom to top, from 1.88 (triethylene glycol 
dimethacrylate) to higher logKow values, the unbound amount 
decreases as the amount of protein-bound chemical increases un-
til logKow 3.83 (endosulfan), where lipid gradually binds more 
chemical, eventually sequestering chemical from protein bind-
ing. Although there is significant binding to plastic, it is never 
more than 18%. 

Regarding evaporation, the VCBA model indicates that only 
for the two chemicals with higher HLC values, benzene (HLC = 
562 Pa×m3/mol) and xylene (HLC = 525 Pa×m3/mol), the per-
centage of chemical that evaporates is greater than 10%. In con-
trast, for 1,2,4-trichlorobenzene, with an HLC of 144 Pa×m3/mol, 
only 1% is predicted to evaporate. 

Although chemical partitioning has a high impact on its un-
bound concentration after 48 hours, degradation also plays a role 
and is considered in the VCBA model. The ratio between nom-
inal (total initial) amount and final amount (sum of the amount 
of chemical that is unbound, bound to protein, lipids, plastic,  
in headspace and intracellular after the 48 h assay period) was as-
sumed to be an indication of the chemical’s effective degradation:

% Chemical degraded = 100 –  Final Amount    ×100                      (1)
                                                                       

Nominal Amount

The percentage of degraded chemical and related descriptors are 
shown in Table 3. In spite of both chemicals not having especially 
high degradation rates, xylene stands out with the highest degra-
dation (38%), followed by ethanol (14%). Since the degradation 
rate is in general higher in air than in water, volatile compounds 
will tend to degrade faster, which highlights the importance of the 
HLC as an indicator of in vitro fate. It is also noteworthy that the 
overall degradation of a chemical does not depend solely on spe-
cific degradation rates but also on its partitioning behavior. The 
percentage degradation has no apparent correlation with air deg-
radation, while for water degradation there is a trend. These deg-
radation rates will only affect chemicals that are unbound, either 
in the aqueous or the gas phase. Chemical bound to protein, lipid, 
or plastic is considered to be “protected” from degradation in the 
VCBA. Analyzing all these parameters together (Tab. 3) using a 
color scale pattern shows that the actual degradation of chemicals 
in an in vitro experiment is a multifactorial process. 

3.2  Influence of the experimental set-up on chemical  
partitioning 
As binding to plastic, extracellular lipid and protein affects the 
amount of unbound chemical so greatly, it was explored how dif-
ferent in vitro set-ups further influence the partitioning behavior. 
Sixteen chemicals from the initial set of 83 were selected to cov-
er a wide range of logKow values (from dimethyldioctadecylam-
monium chloride with 8.392 to ammonium chloride with -2.68), 

not necessarily better resemble the physiological growth. The 
R code for running the simulations has been included into a 
KNIME workflow to automate the model and make it easier to 
use without the need for programming skills.

Statistical analysis
R studio and GraphPad Prism 3.0 (San Diego, CA) were used to 
plot and analyze the data.

3  Results

The 83 substansces with a range of physicochemical properties 
(logKow = -4.5 to 10.3; HLC = 9.66×10-34 to 1.74×103; and MW 
= 41 to 823) were modelled in the VCBA, with their NEC and 
Kr optimized against the experimental concentration-response 
curves, as presented in the supplementary file9. Figure 2 illus-
trates, for 1,2,3,4-tetrachlorobenzene and diethyl phthalate, how 
the VCBA fits the toxicological parameters against the experi-
mental data, and how it models chemical fate and the effect of 
several concentrations on cell number. Although the fitting was 
optimal for some chemicals (the lowest sum of the residual 
squares was 15 for glycerol), the error was much higher for oth-
ers (the lowest sum of the residual squares was 5313 for benz(a)
anthracene). 

Modelling the relation between cell number and chemical  
concentration (Fig. 2), accounting for both growth and toxici-
ty effects, best illustrates how viability decreases with time. The 
plot for intracellular concentration of diethyl phthalate (Fig. 2) 
indicates a virtually immediate cell uptake, in which the slight 
decrease over time is accompanied by a decrease also in dis-
solved concentration. The partitioning of chemical to plastic, 
serum lipid and protein is also instantaneous (not shown here); 
hence these events are not the cause of the decrease of concen-
tration over time. Since both 3T3 BALB/c cells and the VC-
BA model do not include chemical metabolism, the causes of 
this decrease are evaporation and/or degradation. In fact, after  
48 hours exposure there was a loss of 14% of the chemical mass 
due to diethyl phthalate degradation and less than 0.1% mass in 
headspace.                       

3.1 Influence of logKow and HLC in chemical partitioning
The binding of chemicals to lipids, protein and plastic is mod-
elled as achieving equilibrium instantaneously, and is thus not 
considered a rate-limiting step; however, it does affect the bio-
available/unbound concentration during the whole assay du-
ration as lipids, protein and plastic act as chemical reservoirs. 
Figure 3 shows the extracellular partitioning after 48 hours, 
where the nominal concentration is the experimentally obtained 
EC50 value, hence a concentration that induces cell death. Even 
though the model requires additional chemical descriptors, 
which vary widely among the chemicals, this influence is clearly 
observed by sorting the chemicals from the highest to the lowest 
logKow and plotting their modelled partitioning (Fig. 3). Accord-

9 doi:10.14573/altex.1812101s2

https://doi.org/10.14573/altex.1812101s2
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Fig. 3: Calculated percentage of partitioning of the 83 chemicals after 48 hours, relative to the nominal concentration 
Figure adapted from Proença et al. (2017); logKow, logarithm of octanol/water partition coefficient
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Tab. 3: Percentage of degraded chemical and parameters describing degradation: air and water degradation rate (s-1)  
and amount of chemical available for degradation (i.e., unbound chemical in medium and evaporated chemical) at 48 hours  
The green color coding shows a gradient from lower values with light color to higher values with a darker color.

  % Deg Air Water % Unbound + %  
  degradation (s-1) degradation (s-1) evaporated

Xylene 38.6 1.0E-05 5.3E-07 44

Ethanol 14.4 2.5E-06 9.3E-07 83

Glycerol 14.3 1.4E-05 9.3E-07 83

Citric acid 14.3 5.3E-06 9.3E-07 83

Ethylene glycol 14.3 5.8E-06 9.3E-07 83

2-(2-Butoxyethoxy)ethanol 14.3 5.6E-05 9.3E-07 83

2-Butoxyethyl acetate 14.3 1.6E-05 9.3E-07 82

Diethyl phthalate 14.3 2.2E-05 9.3E-07 66

Acrolein (acrylaldehyde) 11.4 1.5E-05 5.3E-07 86

Caprylic acid 9.0 6.3E-06 9.3E-07 55

p-Benzoquinone 9.0 5.9E-06 5.3E-07 88

Benzaldehyde 8.8 9.7E-06 5.3E-07 86

Isopropyl alcohol 8.6 3.8E-06 5.3E-07 89

Tert-butyl hydroperoxide 8.6 2.2E-06 5.3E-07 88

Ethyl chloroacetate 8.6 9.1E-07 5.3E-07 88

Dimethylformamide 8.5 1.3E-05 5.3E-07 89

Ammonium chloride 8.5 1.9E-09 5.3E-07 89

Ethyl acetoacetate 8.5 1.5E-06 5.3E-07 89

Acrylamide 8.5 9.6E-06 5.3E-07 89

Acetaminophen 8.5 1.3E-05 5.3E-07 89

5-Aminosalicylic acid 8.5 1.6E-05 5.3E-07 89

Glycerol triacetate 8.5 6.4E-06 5.3E-07 89

Urea 8.5 1.5E-06 5.3E-07 89

Caffeine 8.5 1.5E-05 5.3E-07 89

Acetonitrile 8.5 1.3E-07 5.3E-07 89

2-Phenoxyethanol 8.5 2.4E-05 5.3E-07 88

Acetylsalicylic acid 8.5 9.8E-07 5.3E-07 88

Acetophenone 8.3 2.1E-06 5.3E-07 86

Phthalic anhydride 8.2 5.6E-07 5.3E-07 86

Triethylene glycol dimethacrylate 8.0 6.7E-05 5.3E-07 83

Benzene 7.2 9.2E-07 2.1E-07 85

Tetramethylthiuram monosulphide 6.5 1.0E-04 2.1E-07 90

Valproic acid 6.3 6.1E-06 5.3E-07 68

Propylparaben 5.1 1.1E-05 5.3E-07 58

Diallyl phthalate 4.2 5.9E-05 5.3E-07 51

Busulfan 3.5 3.5E-06 2.1E-07 93

Cycloheximide 3.5 4.9E-05 2.1E-07 93

Chloral hydrate 3.5 1.4E-06 2.1E-07 93

Nicotine 3.5 6.8E-05 2.1E-07 93

Dichlorvos 3.4 7.1E-06 2.1E-07 91
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Trichloroacetic acid 3.4 3.9E-07 2.1E-07 91

1-Naphthylamine 3.0 1.5E-04 2.1E-07 83

2-Chloro-4-nitroaniline 3.0 2.9E-06 2.1E-07 82

2,6-Diethylaniline 2.8 1.2E-04 2.1E-07 76

Carbamazepine 2.7 2.4E-04 2.1E-07 76

2,4-Dichlorophenoxyacetic acid 2.4 5.0E-06 2.1E-07 71

Methenamine 2.2 3.8E-04 1.3E-07 95

Tetracycline hydrochloride 2.2 1.5E-04 1.3E-07 95

Chloramphenicol 2.2 2.3E-05 1.3E-07 94

Colchicine 2.2 7.0E-04 1.3E-07 94

Diazepam 2.0 7.4E-06 2.1E-07 67

Ethoxyquin 1.8 1.9E-04 2.1E-07 58

Warfarin 1.8 1.4E-04 2.1E-07 59

N-isopropyl-N’-phenyl-p-phenylenediamine 1.1 1.6E-04 2.1E-07 41

Benzyl benzoate 0.9 5.2E-06 5.3E-07 20

Triphenyltin hydroxide 0.7 4.5E-06 2.1E-07 39

Disopyramide 0.4 9.4E-05 4.5E-08 77

Dibutyl phthalate 0.3 7.0E-06 9.3E-07 5

Thioridazine hydrochloride -0.2 1.9E-04 1.3E-07 5

1,2,3,4-Tetrachlorobenzene -0.5 6.2E-08 1.3E-07 6

Parathion -0.6 6.9E-05 2.1E-07 26

17a-Ethynyloestradiol -0.7 9.4E-05 1.3E-07 33

Endosulfan -1.0 6.8E-06 4.5E-08 26

Rifampicin -1.0 6.6E-04 4.5E-08 21

Lindane -1.0 1.1E-07 4.5E-08 28

Methadone hydrochloride -1.0 2.9E-05 1.3E-07 18

1,2,4-Trichlorobenzene -1.2 4.1E-07 1.3E-07 21

4’-Tert-butyl-2’6’-dimethyl-3’5’-dinitroacetophenone -1.3 1.2E-06 1.3E-07 18

Chlorpromazine hydrochloride -1.4 1.3E-04 1.3E-07 10

Amitriptyline hydrochloride -1.6 1.2E-03 2.1E-07 17

Pentachlorophenol -1.8 4.1E-07 4.5E-08 1

Benz(a)anthracene -2.0 3.8E-05 1.3E-07 0

Haloperidol -2.1 8.7E-05 4.5E-08 11

Chloroquine bis(phosphate) -2.4 6.4E-05 4.5E-08 7

Phenanthrene -2.8 9.8E-06 1.3E-07 8

D-Amphetamine sulphate -2.9 4.3E-05 2.1E-07 11

Pyrene -3.2 3.8E-05 1.3E-07 3

Pentachlorobenzene -3.3 4.3E-08 4.5E-08 1

Fenpropathrin -3.3 1.3E-05 1.3E-07 0

Dimethyldioctadecylammonium chloride -3.4 5.2E-05 2.1E-07 0

Ochratoxin A -3.7 1.9E-05 2.1E-07 4

Hexachlorophene -4.0 1.6E-06 4.5E-08 0

Maprotiline -4.4 7.1E-05 2.1E-07 5

 
 

  % Deg Air Water % Unbound +   
  degradation (s-1) degradation (s-1) % evaporated
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VCBA simulates that the lipid content of dead cells is released 
into the medium. It is evident for the same chemicals that the 
6-well plate, followed by the 24-well plate, is the plate config-
uration with the highest unbound chemical concentration, pos-
sibly due to higher plastic binding found for the 96-well plate 
(results not shown). 

Figure 4B shows a lower percentage of chemical within the 
cells for the 0% FBS condition than for 5% and 10%. Because 
this percentage reflects the amount in all cells, this means more 
chemical is being taken up by the cells, inducing toxicity, and 
thus decreasing the number of cells. In fact, the concentration of 
chemical in the few live cells remaining in the 0% FBS condition 
is higher.

Although the VCBA simulates a very low percentage of un-
bound chemical for highly lipophilic chemicals, lipophilicity 
also determines uptake and bioaccumulation. Therefore, high-

including the two chemicals with significant evaporation (ben-
zene and xylene). By using the previously optimized NEC and 
Kr values, the compounds’ fates were simulated for experiments 
in 96, 24, and 6-well plates with 0, 5, and 10% serum. 

Xylene had the highest percentage of degradation (Fig. 4B) for  
all in vitro set-ups. However, a higher % of serum does reduce 
degradation by decreasing the amount of free chemical in me-
dium or in headspace. Figure 4A also shows the impact of the 
different percentages of serum supplementation and the micro-
plate configuration on the final unbound amount of chemical in 
medium relative to the nominal amount. As expected, less serum 
is related to a higher unbound amount of chemical. However, for 
highly lipophilic compounds (logKow ≥ 5.76), there is virtually 
no unbound fraction in the medium, even with 0% serum, mainly 
due to plastic and lipid binding. It is noteworthy that lipids pres-
ent in the 0% serum condition are derived from dead cells, as the 

Fig. 4: Percentages of the final partitioned amounts (after 48 hours) relative to the nominal amount (amount indicated in  
the supplementary file9) for different experimental set-ups
A) Final unbound amount in medium for different experimental set-ups. B) Percentage of amounts partitioned into the components  
of the in vitro assay for a 96-well plate experiment with 0, 5, and 10% FBS. FBS, fetal bovine serum
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(1,1,1-trichloroethane HLC = 1740, 1,2-dichlorobenzene HLC = 
195, hexachlorobenzene HLC = 131, tris(nonylphenyl)phosphite 
HLC = 66.2, 2-ethylhexyl acrylate HLC = 43.8). It is noteworthy 
that these chemicals all have very high HLC values, suggesting 
that the difficulty in obtaining a classical concentration-response 
relationship may be related to the degree of evaporation. 

This optimization step is needed for the inclusion of toxicity 
parameters in a cell growth model that allows the comparison of 
in vitro toxicity experiments with different assay durations and 
can give insight into how viability changes in a repeated exposure 
assay (Paini et al., 2017b).

The VCBA is a flexible model that is capable of adjusting to 
the variety of experimental set-ups used and facilitates data inte-
gration and interpretation. The impact of several biokinetic pro-
cesses on the chemical concentrations at the end of a 48-hour as-
say was studied here. The model predictions are a direct result 
of the model equations for the three main partition constants for 
lipid, protein, and plastic binding, which are the following:

Plastic partition constant: Kp = 10(0.97*logKow-6.94)                     (2)
Protein partition constant: Ks < -10(vals-1.178)

               -1.31, if logKow < 1.09 
vals =      0.57×logKow + 0.69, if 1.09 ≤ logKow ≤ 4.6       (3) 
                          logKow - 1.3, if logKow > 4.6 

Lipid partition constant: Kl < -10(1.25*logKow-3.70)        (4)

The binding processes to plastic, protein and lipid will indirectly 
compete by removing dissolved unbound chemical from the me-
dium. LogKow is a common descriptor of unspecific binding in 
chemical-biological systems (Caron and Ermondi, 2008) and is 

er cell permeability compensates to some extent for the lack of 
bioavailable chemical, as observed in Figure 5A. In fact, by di-
viding the chemicals into those with logKow < 2.5 (hydrophilic)  
and those with higher values (lipophilic), a different relation of in-
tracellular to unbound amount becomes apparent (Fig. 5B). Chem-
icals with logKow < 2.5 show a linear correlation, while chemicals 
with logKow > 2.5 have more scattered intracellular amounts of 
chemical. Still, for the same unbound amount, lipophilic chemi-
cals (logKow > 2.5) show a higher intracellular amount than less 
lipophilic chemicals. 

The more lipophilic the chemical, the more the intracellular 
amount of chemical per cell varies between experimental set-ups; 
decreasing with higher serum concentrations but with little differ-
ence between the different well geometries. For a few of the most 
lipophilic chemicals, the intracellular concentration increased 
such that 0% FBS was enough to kill all the cells (with NEC and 
Kr previously optimized). Evaporation also seems to play a role 
for intracellular concentration, as both benzene and xylene show 
the lowest intracellular amounts in the 6-well plate configuration.  

4  Discussion

VCBA simulations for 83 chemicals were optimized against ex-
perimental concentration-response curves. While the VCBA 
was able to fit the experimental data approximately for most of 
these chemicals, resulting in small errors, the fit was poor for 
some chemicals. This was due to their experimental concentra-
tion-response curves deviating from the classical form (an in-
verted logistic sigmoidal curve). Accordingly, when choosing 
the chemical set, five chemicals were excluded for having con-
centration-response curves that were considered inadequate 

Fig. 5: Amounts of intracellular chemicals (moles) per cell in different experimental set-ups 
A) Amount of intracellular chemicals for several experimental set-ups. B) Percentage of chemicals per cell vs unbound in medium  
(for 96-well geometry, 5% FBS). FBS, foetal bovine serum; logKow, the logarithm of octanol/water partition coefficient
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cal in the headspace (at 5% serum). Several reports (ISO, 2006; 
OECD, 2000) have indicated that chemicals with 1 Pa×m3/mol 
are likely to evaporate, while chemicals with 100 Pa×m3/mol 
(which would include 1,2,4-trichlorobenzene) are considered 
highly volatile. Therefore, we expected higher percentages in the 
headspace for 1,2,3,4-tetrachlorobenzene, pentachlorobenzene, 
diethyl phthalate, p-benzoquinone, endosulfan, phenanthrene, 
ethyl chloroacetate, acetonitrile, benzaldehyde, tetramethylthiur-
am monosulphide, tert-butyl hydroperoxide, benz(a)anthracene, 
pyrene, and acetophenone, while, in fact, modelling predicted that 
less than 0.8% of any of these chemicals would evaporate.

Furthermore, since evaporation is linked to degradation, the 
concentrations of volatile chemicals can drop even further during 
the 48-hour incubation. High evaporation and degradation was 
found for xylene and benzene in the 6-well plate owing to its high-
er ratio of headspace to medium volume. For non-volatile chemi-
cals, the 24-well plate seems to retain the highest concentration of 
unbound chemical in the medium as there is less plastic binding 
(clearer in 0% serum conditions), which is related to a relatively 
lower ratio of plastic surface exposed to medium volume. When 
choosing the conditions to be simulated, care was taken to main-
tain the proportions across the experimental set-ups, but differ-
ences were still found among the microplate geometries. Hence, 
when comparing experimental conditions that do not maintain 
proportions, even greater differences would be expected between 
the different microplates. 

In the current version of the VCBA, cell uptake of chemicals is 
based entirely on passive diffusion; active transport is not consid-
ered. This uptake rate is based on the specific cell surface and the 
permeability equation suggested by Yazdanian et al. (1998):

Log permeability = −1.1711 + 0.98 logKow − 0.0011MW        (5)

This equation considers the molecular size and the lipophilicity 
(logKow) of the molecule, which constitute two of the five rules 
of Lipinski (Lipinski et al., 1997), as essential parameters. The 
contribution of logKow to the uptake will compensate, to some 
extent, the lower concentration of unbound chemical in the me-
dium. Other chemical characteristics, such as the van der Waals 
surface area, also influence cell uptake. However, calculating 
these requires powerful computational methods and therefore, 
for the sake of a higher throughput model, they were not consid-
ered here (Yazdanian et al., 1998). As no distinction was made 
between neutral and charged chemicals, the uptake of charged 
compounds at pH 7.4 will be overpredicted. 

The global applicability of the VCBA, which allows any chem-
ical to be simulated as long as the physicochemical characteristics 
are known, is based on several assumptions that we briefly high-
light here. Firstly, the QSARs used in the VCBA to predict parti-
tion coefficients for lipids, serum, and plastic were based mostly 
on logKow. Other physicochemical properties that are important 
for fate, such as charge and whether the chemical is an H-do-
nor/H-acceptor, were not included (Goss and Schwarzenbach, 
2001). Besides, as described below, these QSARs were derived 
from specific sets of chemicals.

For plastic, Kramer (2010) analyzed seven polycyclic aromat-
ic hydrocarbons (PAHs) with logKow values ranging from 3.33 

therefore frequently used in QSARs, including those used in the 
VCBA. The greater contribution of logKow to lipid binding than 
to plastic binding will always dictate a higher binding constant 
to lipids. Similarly, for proteins, the relationship between logKow 
and protein binding depends on the logKow value. The binding 
constant for protein is always higher than for plastic and lipids 
up to a logKow value of about 6. For very lipophilic compounds, 
the binding constants for lipids and proteins are similar. The total 
binding to each element depends on this binding constant but also 
on the concentration of proteins and lipids in the medium and on 
the plastic surface area. 

It is noteworthy that although the lipids in medium with 0% se-
rum should be one eighth of the lipids in 5% serum after 48 hours, 
they still have a high binding capacity, as observed in Figure 4. 
However, two considerations indicate that the 0% serum plot is 
most likely far from reality. Firstly, at 0% serum, most cell lines 
halt growth and thus the fraction of lipids in the medium would 
be expected to be even smaller. Secondly, saturation is not includ-
ed in the simulation. Saturation is not a straightforward phenom-
enon for lipids, especially because the interaction of lipids with 
chemicals occurs in the form of aggregates rather than individ-
ually (Balaz, 2009). Modelling saturation could furthermore in-
crease the differences among the different percentages of serum 
supplementation. Although the extent of lipid binding should alert 
to careful consideration of the chemical’s kinetics, high lipid bind-
ing may also indicate a mode of toxicity (Armitage et al., 2014) 
based on narcosis, which can also occur via external cell effects, 
without complete cell uptake. 

While partitioning to plastic does seem (experimentally) to 
change with nominal concentration (Kramer, 2010), saturation of 
this process is very likely and was not modelled. Indeed, Wilmes 
et al. (2013) showed evidence of plastic binding saturation for cy-
closporin A. Likewise, protein and lipid binding saturation was 
also not modelled, and therefore these VCBA estimations are rep-
resentative of the maximum concentration which will partition to 
non-aqueous phases. To include saturation for these phases, addi-
tional experimental measurements would have to be performed, 
such as determination of the maximum number of binding sites 
on serum protein, or the maximum concentration of chemical that 
can be bound to plastic (Kramer, 2010).

Although the absence of serum leads to a higher unbound chem-
ical concentration in medium, evaporation consequently increas-
es for xylene and benzene in all simulated in vitro set-ups. This 
is in line with Kramer et al. (2012), who experimentally verified 
that serum retained phenanthrene in solution. In the same article, 
a possible deficiency of the model in capturing evaporation was 
reported, since it uses the HLC obtained/predicted for 20-25°C as 
a proxy of evaporation, while experiments are often run at higher 
temperatures such as 37°C (Kramer et al., 2012). Furthermore, the 
HLC is dependent on chemical solubility and vapor pressure in-
creases with temperature. It was reported that the HLC increased 
by about 50% for chlorobenzene, chlorobiphenyls, and polycyclic 
aromatic hydrocarbons (Ten Hulscher et al., 1992) when the tem-
perature was increased from 20 to 30°C. 

Evaporation of phenantrene and 1,2,4-trichlorobenzene has 
been experimentally verified (Kramer et al., 2012), while our 
model points to only 0.03% and 2.74% of the respective chemi-
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The best way to integrate the predicted concentrations as a point 
of departure for extrapolation in risk assessment is still being stud-
ied. Can we assume that the unbound concentration reflects the 
bioavailable concentration, and can this be used as a point of de-
parture for QIVIVE? In this work, the unbound concentration in 
the medium after 24-48 hours is assumed to be the “toxic dose”, 
while some chemicals cause their toxic effect by being bound to 
lipids (narcosis) or proteins. Moreover, other dose metrics such as 
Cmax (maximum concentration) and the area under the concentra-
tion-time curve (AUC) are used in concentration-response studies 
(Groothuis et al., 2013), especially for repeated long-term expo-
sures, which can be modelled by VCBA. The most appropriate 
dose metric for comparison with in vivo toxicity is an issue that 
should be further evaluated in the future.

To increase confidence in VCBA simulations, an initial step 
should be to check some of the simulations experimentally. It 
would be especially insightful to test compounds representing 
a wide range of physicochemical properties (e.g., logKow and 
HLC). For HLC, the use of a correction factor such as van’t Hoff 
may help to avoid under-prediction of evaporation (Armitage et 
al., 2014). Besides, the high uncertainty derived from modelling 
compounds outside the applicability domain of the QSARs in-
cluded in the VCBA is an issue that needs to be addressed and, 
ideally, the applicability domains should be widened. Addition-
ally, running local or global sensitivity analysis and uncertainty 
analysis (UASA) will increase model credibility. 

The most direct use of the VCBA, even with all of its uncertain-
ties, is to compare the results of in vitro toxicity assays. This can 
indicate whether partitioning or biokinetic processes explain dif-
ferences between toxicity assays, and also whether assays of dif-
ferent durations actually produce the same results once the NEC 
and Kr are optimized. Moreover, the VCBA can be run without 
toxicity data when designing experiments: It can indicate whether 
a chemical is likely to evaporate, especially considering experi-
ments with higher serum supplementation. Moreover, it gives 
indications whether a 100% mass balance can be expected after 
a chosen assay duration, and in case a specific range of concen-
trations is to be tested, what nominal concentrations in a specific 
medium correspond to respective unbound, bioavailable, or intra-
cellular concentrations. 

In this work, the VCBA is used to model a fibroblast cell line, 
where little metabolism and active transport will occur, mitigat-
ing the in silico model limitations. When simulating metabolical-
ly competent cell lines, such as HepaRG, it should be assessed 
whether the test chemical is metabolized or whether it is a sub-
strate of specific transporters present in the cell line (Clerbaux et 
al., 2019). Furthermore, being a dynamic model capable of pre-
dicting different dose metrics (final concentration, Cmax, etc.) in 
an in vitro assay, the VCBA can be used to integrate toxicity data 
obtained by multiple approaches. 

In general, the use of the VCBA allows increased confidence in 
the use of in vitro models for chemical risk assessment.
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