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Abstract: Photodynamic therapy (PDT) is a clinically
approved procedure that can exert a curative action
against malignant cells. The treatment implies the admin-
istration of a photoactive molecular species that, upon
absorption of visible or near infrared light, sensitizes the
formation of reactive oxygen species. These species are
cytotoxic and lead to tumor cell death, damage vascu-
lature, and induce inflammation. Clinical investigations
demonstrated that PDT is curative and does not compro-
mise other treatment options. One of the major limita-
tions of the original method was the low selectivity of
the photoactive compounds for malignant over healthy
tissues. The development of conjugates with antibodies
has endowed photosensitizing molecules with targeting
capability, so that the compounds are delivered with
unprecedented precision to the site of action. Given their
fluorescence emission capability, these supramolecular
species are intrinsically theranostic agents.
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Introduction

Light and health. These two words have been related
for 3,000 years since the Greeks introduced heliotherapy,
namely, the use of the sun as a therapeutic agent (Figure 1)
[1]. Although the potential of light has been long recog-
nized, it is only at the end of the 19th century that its
therapeutic potential was fully proved when Finsen
demonstrated the efficacy of phototherapy in the treat-
ment of Lupus vulgaris [2], a tubercular condition of the
skin. For this, he was awarded the Nobel Prize in Phy-
siology or Medicine in 1903.

At the beginning of the 20th century, Raab and von
Tappeiner were investigating the effects of acridine dyes
on protozoa when, during a thunderstorm, the protozoa
died. After this episode, they hypothesized that the light-
mediated cytotoxicity of these dyes was caused by the
transfer of energy from light to the chemical (called
photosensitizer [PS]) [3].

A few years later, von Tappeiner and the dermatolo-
gist Jesionek demonstrated the first therapeutic medical
application of this phototoxicity using eosin and white
light in the treatment of skin tumors [4]. Shortly after,
von Tappeiner and Jodlbauer demonstrated that oxygen
was required to induce this photosensitization reaction
[5], and in 1907, they introduced the term “photodynamic
action” [6] to describe this phenomenon at the founda-
tion of the photodynamic treatment.

In the battle against microbes, the initial promising
results of the photodynamic effect have not been consid-
ered for further developments due to the introduction of
antibiotics in the 1940s. It is worth to note that in the last
few years, the increasing severity of the antimicrobial
drug resistance problem has drawn the attention of gov-
ernments and several international organizations. The
urgency to find alternative ways to tackle bacterial infec-
tions has led to a progressive reintroduction of the photo-
dynamic effect as a potential and efficient antimicrobial
treatment since one of its advantages is that it does not
induce drug resistance [7-15].

However, despite this recently renewed interest in
the photodynamic treatment against microbial infections,
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Figure 1: Historical development of photodynamic therapy.

most advancements in PDT occurred in relation to the
treatment of tumors and noninfectious diseases (such as
vitiligo and others) [16,17]. Since tumor cells exhibited
significantly greater uptake and affinity for porphyrins
and porphyrin derivatives compared to normal tissues
[18], these photosensitizing molecules were introduced
to detect otherwise invisible malignancies by exciting their
red fluorescence emission.

It was only in 1972 that the first antitumor treatment
with photo-activated PS was demonstrated by Diamond
et al. Specifically, it was shown that injection of hem-
atoporphyrin (Hp) into mice with subcutaneous brain
tumors, followed by 24 h light exposure, induced necrosis
of the malignant cells [19]. The demonstration of its
potential applications for cancer treatment quickly led
to a series of therapeutic medical trials, in which clinical
PDT was introduced. Kelly and Snell were the first in 1976
to report the use of Hp derivative (HpD) in humans for the
treatment of bladder cancer via photo-activation of the
PS [20], paving the way for the development of PDT as an
effective anticancer modality.

After further successes in its clinical application, the
development of photodynamic therapy culminated in
1993, when the first commercial PS agent, an Hp deriva-
tive, was developed and put on the market with the brand
name Photofrin [2]. Being the first PS to gain approval for
clinical PDT, Photofrin carried some disadvantages (e.g.,
prolonged patient photosensitivity), which prompted the
development of second- and third-generation photosen-
sitizers [2].

The PS is one of the three components needed to
induce the photodynamic effect, together with visible light
and molecular oxygen (Figure 2). Once the photosensi-
tizing molecule is administered to the target structure,
a source of nonionizing light with a suitable wavelength
excites the PS, whose various interactions with oxygen
naturally occurring in the biological environment lead
to the production of reactive oxygen species (ROS) such
as free radicals and singlet oxygen [14]. These reactive
species oxidize different types of biomolecules (nucleic
acids, lipids, and proteins) inside the target cells, causing
partial or complete destruction of sensitive structures.
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Figure 2: Diagram of photophysical and photochemical reactions
during PDT. PS absorbs photons from a light source, and in its triplet
excited state reacts with molecular oxygen, producing reacting
species which then cause cell death.

Damages to these structures are crucial to optimize the
cytotoxic efficiency of PDT [21].

Compared to other existing cancer treatments, PDT
presents some remarkable advantages (Figure 3) and can
be used in both outpatient and surgical procedures, with
the first one being the most often performed.

Thanks to dedicated laser or LED sources, light can
be directed very precisely on the malignant tissue. Fur-
thermore, PDT requires short treatment time, and usually
few or no scars remain. Unlike radiotherapy, PDT can be
repeated at the same location many times, and it is gener-
ally less expensive than other cancer treatments [16]. In
treating certain kinds of cancers and precancers, PDT
has proved to be a very powerful practice, which can
work as well as surgery or radiation therapy [22].

Admittedly, PDT also has some adverse effects. The
generation of ROS causes oxidative stress and local
hypoxia (resulting in a decrease in pH) [23], and the
induced inflammatory reactions release cytokines [24].
During and after PDT, these lead to the sensation of
discomfort and pain (such as burning, prickling, and
stinging) [24]. When treating large areas, pain can be
reduced by using daylight PDT instead of conventional
PDT or by increasing progressively the irradiance [23,24].
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PDT for cancer

Advantages

Disadvantages

* No long-term side effects

* Few or no scars remain

* Very precise

e Little invasiveness

* Qutpatient and surgical procedures

* Takes a short time

* Can be repeated at the same location many times
* Cheaper than other cancer treatments

* (Can only treat areas that can be reached by light
* Cannot treat disseminated cancer metastasis

* Accurate light delivery is crucial

* Tissue oxygenation is crucial

* Photosensitivity after treatment

* Pain

* Inflammation

* Allergic reactions

*  Flu-like symptoms

* Nerve palsy, transient amnesia

Figure 3: Advantages and disadvantages of antitumor PDT.

After PDT, common inflammation (such as erythema)
or uncommon (such as crusting, infection, scarring, and
urticarial reaction) adverse effects may appear. Other
uncommon adverse effects of PDT are changes in hair
growth (both increase and loss), dyspigmentation, and
allergic reactions [24].

Some rare adverse effects of PDT comprise nerve
palsy, transient amnesia, hypertension (observed in
patients with known hypertension), and systemic flu-like
symptoms (observed in immunosuppressed patients) [24].

PDT can even lead to skin cancer, but its role is not
fully understood because in reported cases patients often
have a predisposition to skin cancer [23]. The concept of
an immunocompromised district can explain the devel-
opment of skin cancer: the area exposed to PDT light
undergoes immune dysregulation that can lead to less
resistance than the surrounding areas [23].

Even if PDT will never replace them due to its limita-
tions (Figure 3) [16], it will probably play an increasingly
adjuvant action. In some countries, PDT has become the
leading modality for the treatment of nonmelanoma skin
cancer [25].

Most PSs are fluorescent, and thus, they combine
therapeutic and diagnostic properties, which make them
intrinsically theranostic agents [21,26,27].

In PDT, most PSs are administered systemically
through direct injection in the body: even if these mole-
cules preferentially accumulate in the malignant cells,
they show a lack of specificity to target cancer cells. In
these cases, an accurate application of light is necessary
to act only on the interested tissues.

To enhance the selectivity against cancer cells and
preserve the integrity of surrounding normal tissue, PS

with improved molecular-targeting properties has been
developed by exploiting the conjugation of PS with tar-
geting moieties.

In particular, monoclonal antibodies (mAbs) proved
to be effective targeting carriers for cancer therapy because
of their capability to address tumor cells overexpressing
antigens on the plasma membrane [28].

In 1983, Levy developed an anticancer treatment
that combined the phototoxic effects of PSs and the
target-seeking ability of antibodies and then named
photo-immunotherapy (PIT) [29]. This technique, derived
from PDT, uses PSs associated with mAbs to allow
higher accuracy in the treatment: the photo-immuno-
conjugate (PIC) improves the selectivity of the PS to
act on targeted cells with minimal effects on the sur-
rounding healthy cells, as demonstrated in several pre-
clinical and clinical studies [16]. Nowadays, several
mAbs, among the ones approved for therapeutic use
by FDA, are used in PIT to target tumor-associated pro-
teins such as CD20 (rituximab, ibritumomab tiuxetan,
and tositumomab), CD33 (gemtuzumab), CD52 (alemtu-
zumab), HER2/neu (trastuzumab), and EGFR (cetux-
imab, panitumumab) [18].

The aim of this short review is to summarize the
basic principles and provide a concise selection of recent
advances in PIT, considering in particular, the develop-
ment of constructs based on PS nongenetically fused
to mAbs. Excellent reviews have recently provided a
detailed description of the synthetic strategies that have
been proposed, and the reader is referred to them for
these aspects [30—33]. The biological and clinical aspects
of PDT have been discussed in recent reviews as well
[21,34-36].
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Basic principles of photodynamic
effect and the induced cellular
damages

As mentioned earlier, the photodynamic effect requires
three main components: the PS, visible light, and mole-
cular oxygen (O,). Each of these elements is nontoxic
by itself: only when combined together, they initiate a
photochemical reaction that culminates in the produc-
tion of cytotoxic compounds that cause irreversible cel-
lular damage and, consequently, tumor reduction or
elimination.

PDT can be described as a two-step process. First,
the PS is administered to the patient, leading to signifi-
cant accumulation in malignant cells after some time.
Subsequently, the area of interest is irradiated by visible
radiation at a wavelength that matches the absorption
properties of the PS [37]. Once the PS is excited, it inter-
acts with the surroundings, made up of different types of
biomolecules, and with molecular oxygen [34]. These
interactions can follow two diverse pathways, named
Type I and Type II reactions [38].

In Type I processes, electron transfer from the excited
PS to molecular oxygen or biomolecules such as nucleic
acid, lipids, and proteins leads to the formation of reac-
tive oxygen species (ROS). The local generation of these
species can cause cell damage and death [34]. The reac-
tion through which the PS in its excited triplet state trans-
fers its energy to molecular oxygen (02(X3Zg), or simply
%0,) forming singlet oxygen (0,(a'Ag), or simply '0,) is
commonly known as Type II process [34] and is the
most common pathway in PDT [34].

Once formed in the cell environment, ROS and singlet
oxygen induce extensive damage to proteins, lipids, and
other biomolecules in the irradiated area. This causes direct
death of tumor cells through different types of pathways,
depending on the intracellular location of the PS [39].

The Type I and Type II processes are commonly
represented with an extended Jablonski diagram as shown
in Figure 4. A photon of proper wavelength is absorbed
by the ground state PS, which is thus promoted to a
short-lived excited state (S,,). From S,,, the PS undergoes
rapid energy loss through vibrational relaxation (VR)
and internal conversion (IC) to the first excited state
singlet state (S;). S; is an unstable energy level (with
lifetime in the range 107°-107" s), which quickly relaxes
to the ground state via the generation of heat or emis-
sion of light (fluorescence).
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Alternatively, the lower-energy, long-lived triplet state
(T;) can be populated from S, via a process named inter-
system crossing [40]. Since T, is long lived (~107° for air
equilibrated solutions), it can interact with surrounding
molecules in the cell environment, including cell mem-
brane components and molecular oxygen [38].

In Type I reactions, PS in the excited singlet state S,
or in the triplet state T, interacts with substrates that can
be oxidized or reduced.

In Type II processes, the T, state of the PS directly
interacts with molecular oxygen, naturally occurring in
the cell environment in its ground triplet state >0,. The
resulting Dexter-type energy transfer generates singlet
oxygen (0,(b'Z,) or 0,(a'Ay)) and at the same time depopu-
lates the PS excited triplet state [2].

The Oz(blzg) (157 kJ/mol) state is extremely short
lived, and it quickly relaxes to the lower energy state
0,(a'Ag) (or simply '0,) (94kJ/mol, with a lifetime of
107°-10>s, depending on the environment). The oxi-
dizing species '0, is considered to be the principal cyto-
toxic agent in PDT [2].

Although '0, is highly reactive, its action is limited to
a distance of ~100 nm from the site of sensitization, given
its short lifetime (=3.5 ps) [38]. Indeed, the distance tra-
veled in water by free-diffusing singlet oxygen during
its lifetime is quite short in comparison to the typical
scale of the cell environment. Therefore, an effective
way to enhance 'O, cytotoxic activity is to deliver the
photosensitizer as close as possible to sensitive molecular
species in the targeted tumor cells.

In the cell environment, singlet oxygen can react
with different structures and organelles such as mito-
chondria, tubulin, lysosomes [41], vesicles, and mem-
branes, where the molecular components most involved
in the photo-induced damages are proteins, DNA, and
lipids [42]. In the case of proteins at physiological pH,
10, reacts at the significant rate constants (10’ M~'s™)
with high electron density amino acids such as cysteine,
histidine, methionine, tyrosine, and tryptophan [43]. These
reactions compromise the functionality of proteins, leading
to impairment of normal cell reactions. Due to its reduc-
tion potential, the oxidative activity of singlet oxygen on
nucleic acids occurs preferentially on guanine, implying
consequent damage of the double bonds in C4 and C8 of
the purine ring. Finally, singlet oxygen is electrophilic
and therefore reacts with unsaturated lipids to form highly
reactive compounds (lipid hydroperoxides), which initiate
chain reactions of free radicals, leading to extensive cyto-
toxic damage.



130 —— Andrea Mussini et al.

T zovrR__ IC
3 NN

DE GRUYTER

Cell death

S
VR ISC
S <
1
Tl

Absorption|  Fluorescence I
Light Phosphorescence

\ ¥ ¥

o

Energy

Figure 4: Extended Jablonski diagram showing the photophysical and photochemical processes relevant to PDT pathways. The PS in the
ground state absorbs a photon and is promoted to an excited singlet state, S,,, from which it undergoes nonradiative relaxations (vibrational
relaxations [VR] and internal conversion [IC]) to the lowest vibrational substrate of the lowest electronically excites singlet state. The

molecule may undergo intersystem crossing (ISC) to the triplet state. The triplet state of PS can interact with oxygen by two mechanisms,

named Type | and Type II.

The cytotoxic action derived from the extensive damages
to molecular species by photoinduced ROS may lead to
different cell death pathways. These include apoptosis,
necrosis, or autophagy. Some studies suggest that the main
route of cell death caused by PDT is apoptosis, which can
occur through two different pathways: an extrinsic process
(through death receptor [DR]) and an intrinsic process
(through mitochondrial pathways) [39,44]. It was proposed
that different doses of PDT can result in different types of
cell death, and high dose (high light fluence and/or high
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PS concentration) leads to necrosis, whereas low dose
leads to apoptosis [45]. Besides damages to tumor cells,
the cytotoxic action of PDT results in vascular damages
and activation of an immune response (Figure 5), which
address the antigens and the numerous molecules that
are released after the cell damage and destruction [44].

It is important to stress the fact that unless the photo-
dynamic action is confined to the tumor cells, similar but
unwanted damages may be observed also in surrounding
healthy tissues.

Immune
system
response

Necrosis

g,
S

Figure 5: Effect of PDT on tumor cells. After irradiation, cells undergo one of the three main pathways of cell death; then, the released

molecules activate the immune response.
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Figure 6: Absorption coefficient as a function of wavelength for
several tissue constituents. Reproduced from Algorri et al. [47].

Photosensitizers

In principle, an ideal PS should be endowed with the
following properties [46]:

e Strong absorption (with a high absorption coeffi-
cient) in the red or near-infrared (650-800 nm), where
penetration in tissues is deeper (PDT window in Figure 6).

¢ High quantum yield of triplet state formation (®ry),
the energy of the triplet state above ~94 kJ/mol, long life-
time of the triplet state (77 in the long ps range), and high
quantum yield of singlet oxygen formation (@,).

¢ Low toxicity in the dark, i.e., in the absence of light,
the PS must not be harmful.

¢ High accumulation in the target area.

¢ Excellent biocompatibility securing a rapid dis-
posal by the body.

e High chemical stability and low photobleaching (to
allow sustained photoinduced singlet oxygen production).

Table 1: Clinically approved photosensitizers [53]

Targeted photoimmunotherapy for cancer = 131

The first generation of PSs consisted of hematopor-
phyrin derivatives (HpDs). As previously recalled, in
1993, a HpD called Photofrin® (porfimer sodium) was
approved for clinical use, and it was used for several
types of cancer despite its disadvantages: (i) low chemical
purity; (ii) intense accumulation in the skin causing a pro-
longed photosensitivity (even 2-3 months after adminis-
tration); and (iii) the wavelengths range of its absorption,
which does not allow a good penetration into tissues [48].

Motivated by these drawbacks, an intense research
activity was undertaken to develop new photosensitizing
agents with defined chemical identity, improved photo-
physical characteristics, and enhanced tumor selectivity.

Second-generation PSs have higher chemical purity,
the higher quantum yield of singlet oxygen formation,
and have higher tissue penetration (thanks to their
absorption peaks falling in the red portion of the visible
spectrum or in the near infrared). Second-generation
PSs were developed following different synthetic strate-
gies, focusing on the modification of the macrocycle or
the substituents, or considering different molecular archi-
tectures [49,50]. This has led to the development of several
molecular families, including chlorins (Foscan®), metallo-
porphyrins (Llutrin®, Lutex®), verteporphin (Visudyne®),
pheophorbides (Tookad®), phtalocyanines, porphy-
cenes, protoporhyrin IX precursor (Hexvix®, Metvix®,
Levulan®), cyanines, dipyrromethenes, hypericin, phe-
nothiazines (methylene blue, toluidine blue), purpurins
(Purlytin®), and xanthenes (Rose Bengal) [51]. Other
compounds comprise also new structures based on BODIPY,
squaraine, and fullerene cages.

In spite of the numerous types of photosensitive com-
pounds that have been discovered and developed, only a
small number of photosensitizers are clinically approved,
mostly based on the tetrapyrrole structure (Table 1). Some

Name Approved country Cancer type

Photofrin Worldwide Lung, gastric, bladder, cervical, and esophageal cancers
Ameluz/Levulan EMEA, USA, Austria, China Actinic keratosis, Human Papilloma Virus

Metvix EMEA, USA, Canada Actinic keratosis, basal cell carcinoma

Cysview EMEA, USA Bladder cancer

Foscan-Temoporfin
Visudyne -Verteporfin

EMEA, Norway, Iceland
Norway, China

Laserphyrin-Talaporfin Japan
Photochlor USA

Photosens Russia
Hemoporfin China

Neck cancer, head cancer

Age-related macular degeneration, basal cell carcinoma, lung

Lung cancer, glioma

Basal cell carcinoma, lung, head and neck cancers

Age-related macular degeneration, breast, lung, stomach, skin cancers
Prader-Willi syndrome
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of them were proposed for palliative treatment, such as
Foscan® that was approved in 2001 for the treatment of
advanced head and neck cancer [52].

Spectral properties (absorption and fluorescence emis-
sion) for selected PS molecules are reported in Figure 7.

Porphyrins play important biological roles (e.g., they
are involved in oxygen transport), and they find applica-
tions in many fields, from medicine to imaging. They
contain four 5-membered heterocyclic (pyrrole) rings,
linked in a highly conjugated cyclic array with 22 nt
electrons, resulting in a characteristic absorption in the
visible spectrum (from the Greek porphyra, purple) [54].
Their typical absorption spectrum consists of an intense
and narrow absorption band at approximately 400 nm
(Soret or B band) and less intense Q bands at about
500-650 nm. Their typical fluorescence quantum yield
ranges between 0.1 and 0.3, and they possess high singlet
oxygen yields [54].

Chlorophyll derivatives exhibit the basic structural
skeleton of chlorin [55]. Compared to porphyrins, chlorins
display 18 m electrons delocalized system [54] and two
hydrogen atoms in the pyrrole ring, causing a lower
solubility in an aqueous environment [56] and a red
shift of the absorption bands. Moreover, chlorins show
a higher molar extinction coefficient than porphyrins in
the red, and their Q bands are at longer wavelengths
(500-700 nm) [33].

Phthalocyanines have a structure deriving from the
cyclic condensation of four isoindole units linked together
by nitrogen atoms. Some of the advantages are simplicity
of synthesis, availability of pure compounds, and high
absorption in the red region [57]. They usually have
18 m electrons available [54]. An example is IRDye 700DX,
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a water-soluble phthalocyanine derivative, often chosen
for its strong photocytotoxicity when brought in close
vicinity of the cellular membrane.

Despite the therapeutic achievements accomplished
in the treatment of certain types of cancer with the
second-generation PSs, their lack of specificity resulted
in poor targeting capabilities toward malignant cells,
with negative consequences such as a long time for the
drug to reach the tumor area, unspecific accumulation in
healthy surrounding cells, and the need to use a high
dose of PS to obtain a significant therapeutic effect
[58,59]. To increase selectivity, second-generation PSs
were combined with specific target molecules such as
surface markers or antibodies directed to specific anti-
gens [28,39].

Targeting tumor cells with
antibodies

Photo-immunotherapy (PIT) is based on the use of photo-
immunoconjugates (PICs), delivery systems where con-
jugation of a PS to specific antibodies enables the recog-
nition of and binding to cancer-associated antigens [30],
combining the advantages of the photodynamic effect
with the high specificity of antibody molecules. PDT
together with immunotherapy not only allows a higher
selective killing of targeted cancer cells but also increases
the immune-stimulatory response triggering innate and
adaptive immune reactions related to specific cell death
pathways [60].

(b)
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Figure 7: Representative absorption and fluorescence emission spectra by selected photosensitizing molecules. Molar absorption coeffi-
cients (a) and normalized fluorescence emission (b) spectra for protoporphyrin IX dimethyl ester in chloroform (black), zinc phthalocyanine
in pyridine (red), Chlorin e6 in ethanol (green), and rose bengal in basic ethanol (blue).
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The overexpression of certain receptors on the cell
surface is correlated with carcinogenic transformation
and proliferation of malignant cells. The inhibition of
cell growth and tumor spreading can be obtained by
targeting those receptors via tailored PICs specifically
designed for the malignancy under treatment [28]. In
PIT, the array of PS delivery structures spans from mono-
clonal antibodies (mAbs) to nanobodies (functional active
sites of antibodies) [28], each of them able to recognize a
specific tumor-associated cell surface antigen.

In clinical treatments, antibodies are used for their
high affinity, i.e., low dissociation constants (Ky in the
order of nM), and for a wide variety of highly, or exclu-
sively, expressed antigens in many tumor types, which
have a relevant role in promoting metastasis, angiogen-
esis, proliferation, and drug resistance [28].

Nevertheless, the overall success of PIT depends not
only on the ability of the antibody to target its antigen but
also on the cytotoxic action of the PS once conjugated to
the carrier. Examples of fully functional constructs that
have arrived at the clinical or preclinical phase comprise
cetuximab, panitumumab, and trastuzumab conjugated
with IRDye700DX [28].

Interestingly, in spite of the large number of avail-
able PSs, just a few of them have been used in PIT. In
particular, as shown in the pie chart in Figure 8, IRDye
700DX and chlorin e6 were chosen in around 63% of the
photoactive mAb-PS complexes reported in the literature
examined in this review. Representative compounds are
also reported in Figure 8.

Various strategies have been developed over the
years to produce antibody conjugates [31]. Some methods
of direct conjugation of the PS to an antibody are as
follows:
¢ Vialysines: The lysine residues present on the antibody

can bind the activated PSs with an isothiocyanate
group (NCS) or succinimidyl ester (NHS) [30,33].

e Via cysteines: The thiol groups of cysteine residues on
the antibody can be used to bind PSs modified with a
maleimide or succinimide group. Cys offer more pre-
dictable and suitable conjugation sites than lysines
due to their lower abundance [43].

e Via carbodiimide coupling: Carbodiimide reagents (as
EDC and DCC) are used to activate the carboxyl groups
present on the PS that subsequently are coupled with
the amino of the antibody [28,33,59].

e Via a “click” path (or CuAAC, copper-azide-catalyzed
alkyne cycloaddition reaction) [30,31,33,59,61].

A possible problem arising from these approaches
is that conjugation may occur at the antibody—antigen
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recognition site, and in this case, the targeting activity
(immunoreactivity) could be inhibited or even lost. One
strategy to overcome this problem is to genetically modify
the antibody and mutate potentially reactive groups (Lys,
Cys,...) located near the binding site, although this
requires to check whether the removal of these amino
acids from the antigen-binding site affects the ability of
the antibody to bind the epitope [30].

Another critical feature is the possible influence of a
high degrees of labeling on mAb immunoreactivity [30].
In particular, the number of PSs per antibody (degree of
labeling, DOL) is difficult to control and therefore often
mixtures of PICs with heterogeneous compositions (both
in terms of DOL and conjugation position) are obtained,
also different from batch to batch. However, well-defined
protocols, with strictly controlled reagent concentrations,
solvent, and reaction times, allow to achieve a certain
degree of reproducibility [59].

To improve the intracellular accumulation of PICs in
malignant cells, a charge excess on the construct can be
exploited. Cationic PICs were found to have a 17 times
higher uptake efficiency than free PS and 12 times higher
than anionic ones. This larger accumulation of cationic
PICs is due to their interaction with the overall negative
charge of the cell membrane of cancer cells (malignant
cells have a more negative charge than healthy cells) [30].
However, it is worth noting that several factors determine
the effectiveness of the construct. On the one hand,
binding to a specific site of the cell membrane seems
to be the crucial feature to induce the cellular death,
more important than the specific intracellular location
of the PIC, as shown by studies using trastuzumab-con-
jugated to a phthalocyanine [45]. On the other hand, in
vitro studies showed that PSs conjugated with some
internalizing mAbs seem to be able to produce higher
photocytotoxic effects than PSs conjugated with nonin-
ternalizing mAbs [30].

Cancer cell lines and molecular
targets

A wide array of different cell lines has been examined to
assess the photosensitizing efficiency and targeting cap-
abilities of PICs. Figure 9a sorts these cancer lines by their
occurrence in the examined literature. The most investi-
gated cancer type in PIT studies is breast cancer (12.4%),
followed by malignant pleural mesothelioma (MPM; 8.8%)
and colon and gastric cancer (8 and 6.6% respectively).
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The molecular targets of PICs are cancer-associated recognized by the PIT agents, whose photo-activation
antigens resulting from an aberrant overexpression of can inhibit or halt cancer progression by triggering cell
nonmutated proteins [62]; these molecular targets are death mechanisms. Moreover, direct damage on cancer
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The pie chart shows that the most recurrent antigen in the examined PIT studies is EGFR, immediately followed by HER2, CEA, EpCAM, CD44,
and CA125. Receptors with less than 2% occurrence account for almost 40% of the analyzed papers, indicating that a variety of molecular
targets has been considered.
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cells induced by reactive oxygen species and produced
during PIT can provoke an inflammatory reaction at the
targeted tumor site [63]. Consequent stimulation of the
immune response of the organism increases its beneficial
effects.

Tumor-associated antigens targeted by PICs are usually
presented to the extracellular space on the plasma mem-
brane: in general, once a mAb-based conjugate is bound
to the target, it is often retained on the plasma mem-
brane due to its molecular weight (110-140 kDa) [30].
On the other hand, PICs based on antibody fragments
and nanobodies are likely to be internalized thanks to
the presence of receptor-mediated endocytosis [30]. In
many cases, antibodies are used to decorate the external
surface of liposomes and nanoparticles, providing them
with the aforementioned targeting capabilities.

Since the range of antigens that are exclusively or
highly expressed in tumors is very broad, the variegate
arsenal of PICs for targeting different cancer cell types
has experienced a remarkable development in the past
few years. The analysis of the literature evidenced that
the most common membrane receptors exploited as tar-
gets are EGFR, HER2, CEA, EpCAM, CD44, and CA125 (see
Figure 9b). In the following, we briefly summarize some
recent studies on PICs targeting these receptors.

Cancer antigen 125 (CA125), also called mucin 16
(MUC16), is a transmembrane glycoprotein of the mucin
family. Its extracellular domain includes many highly
conserved tandem repeats, and two of these regions
(0C125 and M11) are recognized by anti-CA125 antibodies
[64]. CA125 is overexpressed in ovarian cancer and also
expressed on the epithelial surface of various organs,
including the respiratory tract [65]. It is a commonly
used marker for ovarian cancer diagnosis, response to
treatment, and prediction of recurrence [64].

Binding of CA125 receptor was achieved by the anti-
body OC125 [66,67] and its fragment F(ab’), [68-72].

In PICs against CA125, the most used PS is chlorin e6
[66,67,69-72], but hematoporphyrin [68] was also used.
A study combining PIT with a chemotherapeutic agent
(cisplatin) demonstrated increased cytotoxicity [70].

By comparing cationic and anionic PICs, it was found
that cationic ones have higher tumor selectivity, lead to a
greater cellular uptake of PSs with larger tumor reduc-
tion, and can stimulate endocytosis and lysosomal degra-
dation of the PIC [69,71,72].

A second target that has been studied in detail is a
cluster of differentiation 44 (CD44). CD44 is a transmem-
brane glycoprotein involved in cell interaction, cell adhe-
sion, and migration. It exists in various forms generated
by alternative splicing. CD44 acts as a receptor for a
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variety of molecules such as hyaluronic acid, osteo-
pontin, and collagen. It is expressed in many mammalian
cells and overexpressed in many tumor-regulating cell
metastasis, including colon and stomach cancer [73].

The most used antibody in the recognition of the CD44
receptor is IM7 [74-79]. In addition, generic antibodies
[80—-82] and the BIWA 4 antibody [83] were also used.

The isoform CD44v8-10 has been determined as a
promising biomarker. Therefore, an anti-CD44v antibody
was linked to methylene blue, and its effectiveness in PIT
against gastric cancer was demonstrated [84].

On the PS side, IRDye 700DX was adopted in several
PIT studies against CD44-expressing cells [74-81]. In
addition to other phthalocyanines [83], the use of PSs
of the chlorophyll family, chlorine [83], and chlorine e6
[82] was also reported.

In one case, the PS was not directly bound to the
antibody, but the PIC was obtained by conjugating the
PS to a biotinylated antibody using neutravidin [80].

Some studies have shown that it is possible to increase
the effectiveness of PIT by combining the action of PICs
with other molecules. Examples include the short-term
interleukin-15 (a cytokine that activates natural killer
and B- and T-cells) [74]; the PD-1 blockade (it enhanced
the preexisting tumor antigen-specific T-cell response)
[76,78]; a systemic CTLA4 immune checkpoint inhibitor
[75]; and a second PIC (with an anti-CD25 antibody) [77].

Finally, by running blood through a thin extracor-
poreal tube, PIT can be used to eliminate circulating
cancer cells from the bloodstream [82].

A third molecular target is the carcinoembryonic
antigen (CEA), a glycoprotein involved in cell adhesion
and immunologically characterized as CD66 [85]. It can
be found at aberrant levels in patients with primary color-
ectal cancer or other malignancies; it seems to play a
crucial role in important cellular functions such as cell
proliferation and protection against apoptosis [28].

The use of several antibodies to target CEA in PIT has
been reported: 35A7 [86], C2-45 [87], F11-39 [88], M5A
[89], single-chain Fvs MFE-23 [37], as well as other gen-
eric antibodies [90-94].

A variety of PSs have been introduced in these PICs.
For the porphyrin family, benzoporphyrin [94], hemato-
porphyrin [93], photofrin II [94], porphyrin [86,88], and
verteporfin [37] was reported. Other PSs include pyro-
pheophorbide-a [37] for the chlorophyll family and IRDye
700DX [87,89-92] for the phthalocyanine family.

Phototoxicity and predominant localization on the
plasma membrane of PICs were found to be equivalent
after 1 and 6 h of incubation with CEA-positive tumor
cells. In the same study, PICs unexpectedly maintained
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significant phototoxicity even under hypoxic conditions
[87]. Intravenous administration of PICs leads them to
accumulate mainly in the liver and then in the tumor
area, while the intratumoral administration of PIC results
in longer retention in the tumor without accumulation in
normal tissues [93].

Repeated PIT treatment arrested the cancer growth for
a longer period of time than a one-time PIT treatment [89].

Perhaps, the most studied molecular target is the epi-
dermal growth factor receptor (EGFR, also called ErbB1 or
HER1). EGFR is a transmembrane protein that binds spe-
cific ligands, including the epidermal growth factor (EGF).
Binding leads to a series of conformational changes
that activate specific EGFR signaling pathways, going
from cell proliferation to the blocking of apoptosis [95].
It is the most widely utilized membrane receptor and the
first molecular target against which mAbs (such as cetux-
imab and panitumumab) were developed for anticancer
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therapy. Playing a crucial role in both normal and can-
cerous cells, it has been used in clinical practice for the
treatment of metastatic colorectal and head and neck
cancer. It is overexpressed in many cancers, including
head and neck, breast, lung, colorectal, prostate, kidney,
pancreas, ovary, and bladder [95].

Approved antibodies (cetuximab [96-114], panitu-
mumab [102,111,115-147], and trastuzumab [148]) have
been used to develop PICs to target cancer cells that over-
express the EGFR receptor.

A comparative study on two monoclonal antibodies
targeting EGFR and showing internalization (Figure 10)
demonstrated lower antitumor efficacy in vivo (lower
accumulation into the tumors and more rapid hepatic
catabolism) of PICs based on cetuximab compared to
those using panitumumab [102].

Additional antibodies that have been evaluated are
425 [83,149,150], 7D12 [109,151,152], A225 [153], C225

merge magnified

Figure 10: Cellular internalization of the PIC. The EGFR-positive A431 and MDAMB468-luc cells were incubated with cetuximab-IR700
(cet-IR700) or panitumumab-IR700 (pan-IR700). Immunostaining was performed with phalloidin (actin membrane detection, green) and
LysoTracker (lysosome detection, red). After 6 h of incubation, PICs were internalized into the lysosome (colocalization with lysotracker).

Scale bar = 25 pm. Reproduced from Sato et al. [102].
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[154-156], can225 [157], and other generic antibodies
[94,158,159]. Some studies have exploited the greater per-
meability of antibody fragments [150,151,160] or affibo-
dies [161].

The most commonly used PS in PIT against EGFR
receptor is IRDye 700DX [96-100,102,109,111,115-118,
120-124,126-129,134-149,151,152,157,160-164]. Porphyrins
used in PICs are benzoporphyrin [94,101,105,106,108,110,
112,153-155] and photofrin II [94]. For the chlorophyll
family, the following PSs were used: chlorin [83], chlorin
e6 [103,114,150,156,158,159], and pyropheophorbide-a
[104]. Additional PSs include Cy5.5 [156], indocyanine
green [125], and IRDye 800CW [100,123,133]. Finally, the
use of antibody-labeled nanoparticles [108,112,159], micelles
[114,151], or liposomes [106] has been also explored. A study
in which a PS was encapsulated in a viral envelope and
tagged with an antibody showed that the complex was
internalized [158].

A greater antitumor efficacy was obtained by com-
bining the action of PICs that target different receptors
[131,143,149] or by combining the action of a PIC with a
chemotherapeutic agent such as cisplatin and paclitaxel
[103], doxorubicin [104], or irinotecan [108].
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Another strategy used to destroy tumor cells is frac-
tional administration of PIC followed by repeated and
systematic near IR light irradiation [137] or PIC dose split-
ting and repeated use of light exposures [100] because
PICs penetrate deeper into the tissue, thus increasing the
cytotoxic efficacy after the second session of PIT [99].

Due to the localization of the antigen—-PIC complex,
light activation may induce physical stress within the cell
membrane leading to an increase in the transmembrane
water flow, which then causes cell necrosis [111].

As exemplified in Figure 11, the massive entry of sol-
vent molecules is responsible for membrane swelling and
rupture with the release of intracytoplasmic contents into
the extracellular space. Time-lapse fluorescence imaging
of cells expressing GFP, allowed to visualize fast disper-
sion of the fluorescent protein upon rupture of the cell
membrane [98].

The effectiveness of PIT depends not only on the
density of the receptors but also on the intrinsic biological
properties of the tumor cell lines [113]. PIT has distinct
effects on cells with different shapes (spindle shaped
and spherical shaped), where the adhesive cells demon-
strated region-specific cell membrane rupture occurring

57.6 sec

Figure 11: Cartoon visualization of the photoinduced damages on the cell membrane and the subsequent entry of solvent molecules upon
permeabilization. The bottom line shows time-lapse images for cellular cytotoxicity induced by NIR-PIT. Reproduced from ref. [165]. https://
pubs.acs.org/doi/10.1021/acs.accounts.9b00273. Further permission related to the material excerpted should be directed to the ACS.
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first on the distal free edge of the cell near the site of
adhesion [117]. Due to the effect of PIT, rapid cell expan-
sion may be followed by rupture of the membrane (indu-
cing a rapid decrease in the blood flow) [116] or the cell
membrane can become highly permeable to larger mole-
cules as bubbles and ruptures form on it [98].

Hours after PIT, the tumor vessels become supra-
physiologically permeable, and circulating PICs can readily
leak into the already-treated tumor space where it can
bind with viable cancer cells, and this is the so-called
super enhanced permeability and retention (SUPR) effect
in which PIT induces the death of cancer cells leading to
an immediate and dramatic increase in vascular perme-
ability with consequent accumulation of nanomaterials
inside the tumor treated with PIT. Due to the increase in
vascular permeability immediately after PIT, PICs can
access more tumor areas after treatment with PIT [145].
Repeated exposures of near IR light starting 3h after
the initial PIT produced superior results than single-light
exposure regimes and equal to or greater than longer NIR
light exposures [139]. After PIT, there is a limited time-
window during which nanosized particles (as liposome-
containing daunorubicin) could be administered to aug-
ment the effects of PIT [133]. The SUPR effect allowed for
a fivefold increase in the accumulation of a liposomal
chemotherapy (DaunoXome), leading to more effective
therapy than PIT alone or daunorubicin [130]. In addition,
PIT greatly reduces the speed of the blood, while the blood
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vessel is not damaged or thrombosed. The low blood flow
speed implies a long time of circulation of the drug, and
the dilated central vessels can lead to a slowdown of the
peripheral flow and an increase in the volume of the drug
pool in tumor vessels [127].

The use of imaging markers to follow, in real-time or
in the early stages after PIT, enabled the visualization of
the efficacy of the treatment and the cell death. The fluor-
escent localization showed that, in tumor tissue, PIC con-
centration increased during the 60-minute time window
after injection [136] and that the amount of PIC peaked
at 24-48h after injection [97]. Studies on luciferase—
luciferin indicate therapeutic effects in the early phase
as well as in the late phase after PIT, while GFP fluores-
cence imaging (Figure 12) is able to report therapeutic
effects on longer time scales [119].

EpCAM

The epithelial cell adhesion molecule (EpCAM) is expressed
in a wide range of human carcinomas and therefore
is considered a potential target for cancer treatments.
EpCAM, also called CD326, is a transmembrane glyco-
protein involved in cell signaling, proliferation, and
differentiation. It was originally identified as a tumor-
associated antigen due to overexpression in rapidly

2 days

Figure 12: /n vivo monitoring of photoimmunotherapy effects. Real-time images of A431-luc-GFP tumor-bearing mice. Before NIR-PIT
panitumumab-IR700 (red) accumulates in the tumor. Inmediately after irradiation, the fluorescence decreases, while after 48 h, it shows an
increase (probably due to the injection of PICs into the tumor region). Luciferase-luciferin photon counting (color gradient) gradually
decreased, indicating progressively cell death. Immediately after irradiation, GFP fluorescence (green) is almost constant, but after 48 h, it
shows a strong decrease (suggesting cell death). Reprinted with permission from Maruoka et al. [119]. Copyright 2017 American Chemical

Society.
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growing epithelial tumors, being highly expressed in
carcinomas [166].

A human EpCAM-targeting monoclonal antibody (3-17 1)
has been used in combination with the photosensitizer
TPCS2a for a photochemical internalization approach
[167]. In vitro experiments showed that 3-171 is a good
candidate for the diagnosis of EpCAM-positive tumors,
potentially relevant for antibody-drug conjugations.
Other PICs able to recognize EpCAM have been engi-
neered with the 17.1A antibody [86,168-170], some
generic whole antibodies [80,171,172], or the scFv anti-
body [149].

Different PSs were used for PIT against cells expres-
sing the EpCAM antigen including porphyrin [86,173],
chlorin e6 [168-170], the phthalocyanine IRDye 700DX
[80,149,171], and mitoxantrone [172].

In addition to being directly conjugated to antibo-
dies, PSs have been bound via a linker molecule (neu-
travidin) [80] or incorporated into nanoparticle-based
micelles [172].

NCI-N87 (HER2-positive)
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HER2

HER?2, also called Erb2, is a transmembrane glycopro-
tein expressed in many tissues, and it facilitates cell
growth. HER2 plays a role in the development of carcino-
genic diseases, and it is overexpressed in approxi-
mately 15-30% of breast cancers. Furthermore, it was
found that such an overexpression occurs also in other
cancers, including ovary, bladder, lung, colon, head,
and neck [174].

The most common strategy for targeting the HER2
antigen on cancer cells is to use the clinically approved
antibody trastuzumab [98,99,111,117,123,124,141,143,144,
148,154,163,175-195]. Other antibodies used against
HER2 are pertuzumab [186] and C6.5 [37,196,197]. Affi-
bodies were employed to increase the concentration of
the drug at the tumor site, exploiting the higher per-
meability to small ligands [198-201].

The more commonly employed PS in constructs
against HER2 is IRDye 700DX [98,99,111,119,123,124,141,
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Figure 13: PICs targeting the cell receptor with different antibodies. Both trastuzumab-Alexa488 (green) and pertuzumab-IR700 (red) target
HER2. After 3 h of incubation, their fluorescence is localized on the cell surface of the HER2-positive NCI-N87 cells (left) but not in the HER2-
negative NIH/3T3 (right). DIC: differential interference contrast. Scale bar =50 pm. Figure reproduced under a Creative Commons Attribution

3.0 License from ref. [186].
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143,144,148,175,177-179,181,185-193,198,201], although
a variety of other compounds were also used.

The combined action of two PICs targeting different
receptors [143] or the same receptor but with different
antibodies [186,202] demonstrated improved efficacy. As
an example, Figure 13 shows that PICs based on mono-
clonal antibodies recognizing different epitopes of HER2
can only target cells expressing the specific antigen recog-
nized by the antibodies.

Also for this case, the cytotoxic effect of PIT was also
combined with the chemotherapeutic agent (5-fluoro-
uracil [188], doxorubicin [203], and rapamycin [184]) or
the cytotoxic agent (maytansinoid [185]).

Targeting of HER2-negative cancer cells was also
obtained with an adenoviral vector that transduced HER2-
extracellular domain into HER2-negative human cancer
cells [191].

Interestingly, improved cell killing was reported after
a second PIT session because the first PIT session kills
primarily cells on the surface of the tumor but, due to
increased vascular permeability, PICs administered imme-
diately after PIT penetrated deeper into the tissue [99].

Light activation of HER2-bound PIC causes confor-
mational changes in the shape of the antigen—-antibody
complex that induces physical stress within the cell
membrane, leading to an increase in the transmembrane
water flow, which eventually causes the cell bursting
[111]. Although plasma membrane perforations caused
by PIT may be minimal, this damage is irreversible
and worsens over time causing the cell death [179]. After
PIT, the cell membrane forms bubbles and ruptures,
becoming highly permeable to larger molecules and the
release of molecular patterns associated with the damage
induces maturation of dendritic cells [98]. After PIT, in
adhesive cells with different shapes (spindle shaped,
spherical shaped), peripheral portions of the cell mem-
brane near the site of adhesion are particularly vulner-
able to the effects of PIT (likely because these sites exhibit
higher baseline surface tension) [117].

Conclusion

The development of photoimmunoconjugates, delivery
supramolecular systems endowed with targeting capability
and photosensitizing properties, has allowed an important
step forward in PDT, providing unprecedented tissue and
cellular selectivity, and improved phototoxic action.

DE GRUYTER

Thanks to the interaction between the antibody and
the target antigen molecule, PICs are brought in close vici-
nity of sensitive cellular components that are damaged
when the PS is excited by the visible light, thus leading
to enhanced phototoxicity relative to the photosensitizer
devoid of any targeting functionality.

The concomitant stimulation of the immune-stimula-
tory response triggering innate and adaptive immune
reactions related to specific cell death pathways potenti-
ates the direct photoinduced damages and open perspec-
tives for the development of personalized, cancer-specific
therapy.
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