
 

 

 

 

Abstract— This paper proposes an original framework for 

modelling and verification (M&V) of starvation-free mutual 

exclusion algorithms based on weak semaphores, that are 

without a built-in waiting-process queue. The goal is to support 

the implementation of light-weight starvation-free semaphores 

useful in general concurrent systems including cyber physical 

systems. The M&V approach depends on UPPAAL. First known 

weak semaphores are modelled. Then they are exploited for 

model checking classic algorithms. Known properties are 

retrieved but subtle new ones are discovered. As part of the 

developed approach, a new algorithm is proposed which uses 

two semaphores of the weakest type, N bits (N being the 

number of processes) and a counter. This algorithm too is 

proved to be correct. 

I. INTRODUCTION 

UTUAL exclusion is the well-known problem of 

synchronizing a group of concurrent processes (or 

threads) sharing some data variables, so as to avoid 

interferences on shared data. The problem is to ensure that 

processes can enter their critical section (i.e., a block of 

instructions accessing/modifying the shared data) one at a 

time. To be acceptable, though, a mutual exclusion 

algorithm should be also starvation-free, that is a process 

waiting to enter its own critical section should experiment a 

bounded waiting time. This in turn favors process fairness.  

Commonly, mutual exclusion can be based on semaphores 

or on monitor locks. This paper focuses on starvation-free 

mutual exclusion algorithms based on weak semaphores, i.e., 

semaphores without an in-built process waiting queue 

ensuring a first-in-first-out awakening policy.  

The results of this paper can be exploited for 

implementing light-weight starvation-free semaphores, 

useful in general concurrent applications and cyber physical 

systems (e.g., [1]), and also in distributed shared memory 

systems where it is challenging to build a classical queue-

based semaphore when the processes belong to distinct 

physical computation nodes (address spaces). 

The goal is to propose an original approach based on 

Timed Automata (TA) in the context of the UPPAAL toolbox 

[2], for modelling and verification through model checking 

[3] of any mutual exclusion algorithm designed on top of 

                                                           
 This work was not supported by any organization 

weak semaphores. The goal is similar to that described in [4] 

where an approach based on the use of the PVS theorem 

prover was developed. This paper argues that the use of a 

toolbox like UPPAAL can be preferable as a proving 

framework because it avoids the mathematical formalization 

necessary to specify and check properties of an algorithm. In 

addition the approach permits to disclose subtle aspects of a 

modelled algorithm, e.g., related to timing, which are 

normally out of reach of a theorem prover. 

The modelling and verification (M&V) approach is 

applied to known classic algorithms, e.g. [5]-[8], of which 

are confirmed known properties. Nevertheless, some new 

properties (e.g., the existence of a zeno-cycle and of a time-

sensitive behavior which affects the kind of the weak 

semaphores which can be used) are disclosed which were 

not previously documented in the literature. As a part of the 

accomplished work a novel algorithm based on the Morris 

one [5] is proposed which rests only on two weak 

semaphores, one counter and N bits. This algorithm too is 

proved to be starvation-free. 

The developed proving framework can provide some new 

arguments on the E. Dijkstra conjecture [9] about the 

impossibility to build a starvation-free semaphore using only 

weak semaphores. 

The paper is structured as follows. First an overview of 

the UPPAAL M&V concepts is furnished. Then the three 

known types of weak semaphores are introduced and 

modelled into UPPAAL. After that, a common vision [4] of 

classic starvation-free mutual exclusion algorithms is 

discussed. Then the developed M&V approach is applied to 

classic algorithms as well as to a new one proposed in this 

paper. A comparison of the algorithms properties is finally 

presented. Some indications about on-going and future work 

are given in the conclusions. 

II. UPPAAL CONCEPTS 

UPPAAL [2] is a popular and efficient toolbox based on 

Timed Automata (TA) [10] suited for modelling and 

verification of real-time systems. A timed automaton is a 

finite automaton augmented with a set   of real-valued 

variables named clocks. Clocks model the time elapsing and 

are assumed to grow synchronously at the same pace of the 

hidden system time. Constraints, of the form     or 
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      where   and   are clocks,   is a non-negative 

integer and              , are called clock constraints 

and can be introduced to restrict the behavior of the 

automaton. A set of clock constraints used to label an edge it 

is called a guard and determines the possible values which 

can be assumed by the involved clocks for the corresponding 

state transition to be allowed. Clock constraints of the type     can also be used to label locations and are called 

invariants. An automaton can stay in a location as long as 

the clocks satisfy the location invariant attached to the 

location. Additionally, edges can be labeled by a set of 

clocks, which are reset as the corresponding transition is 

taken, and by an action label. 

TA can be composed to form a network of concurrent TA 

whose semantics is based on interleaving of actions as well 

as hand-shake synchronizations. UPPAAL adopts the notion 

of a channel for input and output action synchronization and 

uses a CSP-like notation. The edge of automaton labeled 

with ch! (output action), where ch is a channel, matches 

with an edge of another automaton labeled with ch? (input 

action). At a given time it may exist more than one pair of 

enabled and matched edges in which case a choice is made 

non-deterministically. Taking a transition (edge) in an 

automaton denotes an atomic action in the TA concurrent 

model. Moreover, the update of a sender is executed before 

that of a receiver.  

The UPPAAL model-checker generates on-the-fly the state 

graph of a network of TA (see, e.g., [11]) for checking 

formulas as in the following: 

-      (Possibly  , i.e., a state exists where   holds) 

-       (Invariantly  , equivalent to:             ) 

-       (Potentially Always  , i.e. a state path exists over 

which   always holds) 

-      (Always eventually   , equivalent to:              ) 

-       (   always leads-to  , equivalent to:                   ) 

where   and   are state properties, e.g., clock constraints 

or boolean expressions over predicates on locations.  

In addition to the support for classic TA, UPPAAL 

provides integer variables with a bounded set of values, 

arrays and structs, and a notion of automata templates which 

can be instantiated multiple times by specifying different 

values for their parameters.  

Locations can also be labeled as being committed (C) or 

urgent (U) both of which must be abandoned with no time 

passing. Committed locations have precedence over urgent 

locations. UPPAAL provides also broadcast synchronizations. 

Channels can be declared to be urgent. An enabled 

synchronization on a urgent channel is required to occur 

without time passage. 

Finally, it is worth mentioning the possibility of building a 

counterexample (i.e., diagnostic trace) of a not satisfied 

property, which can be analyzed in the simulator of the 

toolbox.  

III. MODELLING WEAK SEMAPHORES 

A semaphore is an abstract object which hides an integer 

variable which can only be modified by the two atomic 

operations P and V. Fig. 1 shows an UPPAAL model of a 

basic plain binary semaphore, whose value can be 0 or 1. 

The P/V operations are modelled through a matrix of 

channels. The first index s specifies the semaphore id. The 

second one carries the id of the requesting process. The 

model in Fig. 1 makes a non-deterministic selection of the 

requesting process at a P or V synchronization. A not chosen 

process rests blocked on the requesting P! or V! operation. 

Of course the model in Fig. 1 is unfair: at the time of a V, 

if more processes are blocked on the P! synchronization on 

the same semaphore, one of them is chosen not-

deterministically to proceed. It is also possible for the V-

executor process to compete and reacquire immediately the 

semaphore. Therefore, every process can experiment an 

unbounded waiting. It is known that to turn an unfair 

semaphore into a fair one a queue can be added to the 

semaphore where processes which find the semaphore red 

(0) at the time of a P are stored in first-in-first-out order and 

then awaken in the same order at a subsequent V. 

A challenging research goal in the literature is to achieve 

a fair semaphore using only a minimum number of unfair 

semaphores. In the case when the queue is replaced by a set, 

the semaphore becomes unfair and it is often referred to as a 

buffered [4] or blocked-set semaphore [12]. A third version 

of weak semaphore is the so called polite semaphore 

proposed in [4]. A polite semaphore is similar to a plain 

semaphore but forbids the process which executes a V 

operation to reacquire immediately the semaphore.  

The three types of weak semaphores can be modelled in 

UPPAAL as shown in the Fig. from 2 to 4 where for 

generality a P operation is supposed to be immediately 

followed by a GO synchronization to unblock the P-

requester process. A V operation, being not blocking, never 

requires to be followed by a GO synchronization.  

  
Fig. 1. A plain binary semaphore 

automaton 
Fig. 2. Adopted PlainBinary-

Semaphore automaton 

Models in the Fig. 2 to 4 represent formal definitions of 

basic weak semaphores. Their correctness can be checked as 

follows. In the polite model in Fig. 3, the local variable 

last stores the id of the V-executor. The default value of 
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last is NONE. At the time of a P, if the semaphore is green 

(1) and the process id is different from last, atomically the 

semaphore is turned to red (0) and the process (held in the 

this local variable) immediately receives the GO signal. 

Would the semaphore be red, or its id coincides with the 

last value, the process partially executes the P operation 

by incrementing the (local) counter cnt of blocked 

processes. A blocked process can be awaken by a GO 

synchronization raised in the right edge of Fig. 3, which 

completes its P operation by turning red the semaphore, 

decrementing the cnt variable and by assigning NONE to 

last. A subsequent V operation can (non-deterministically, 

as for a plain semaphore) unblock a waiting process, 

provided its id is different from last, or permit to a newly 

arrived process different from last to acquire the 

semaphore through a P operation. 

 

 

Fig. 3. PoliteBinarySemaphore automaton 

 
 

Fig. 4 BufferedBinarySemaphore automaton 

 

If s is a polite binary semaphore, the following invariants 

hold: 

 

1) A[] s.last!=NONE imply s.cnt>0 

2) A[] s.last==NONE || s.cnt>0 

 

Due to the invariant 1) it was omitted in the right edge 

with a GO synchronization of Fig. 3 the test cnt>0 in the 

edge guard. 

In the buffered semaphore model in Fig. 4 the buffer was 

purposely achieved implicitly in UPPAAL by the waiting 

locations of the set of processes which have just executed 

the P! operation and found red the semaphore. The number 

of such blocked processes is stored in the variable cp. At the 

time of a V!, if there are blocked processes, the semaphore 

is not turned to 1 and one of such processes is chosen non 

deterministically and receives the synchronization on the 

corresponding GO channel. It should be noted that both 

polite and buffered models exclude the V-executor to 

reacquire immediately the semaphore. But the buffered 

semaphore is stronger than the polite because at the time of a 

V operation, only one already blocked process can receive 

the semaphore pass. Fig. 5 summarizes global declarations 

of an UPPAAL model which makes use of any semaphore 

model in the Fig. from 2 to 4. 

 
const int N=…;//number of processes 
const int SEM=…;//number of weak semaphores 
const int NONE=-1; 

 

typedef int[0,N-1] pid; 

typedef int[0,SEM-1] sid; 

 

//semaphore IDs 

… 
//semaphore channels 

urgent chan P[sid][pid]; 

urgent chan GO[sid][pid]; 

urgent chan V[sid][pid]; 

 

Fig. 5 Common global declarations for weak semaphores 

 

Since a location without a clock invariant can disrupt 

liveness of an UPPAAL model being possible to remain in the 

location an arbitrary (potentially infinite) time, semaphore 

channels were declared as urgent. This way, without hurting 

model non-determinism, when a given operation is enabled 

it will be allowed to occur without time passage. This 

measure was adopted as a way to realize in UPPAAL the 

finite delay property [12] or weak fairness [4] of processes 

in a concurrent model, which requires a continuously 

enabled action eventually happens. 

As a final remark, all the models in the Fig. from 2 to 4 

can be implemented in a concurrent programming language 

(e.g., Java) using busy-waiting. 

IV. MODEL CHECKING STARVATION-FREE MUTUAL 

EXCLUSION ALGORITHMS BASED ON WEAK SEMAPHORES 

If S is a fair binary semaphore initialized to 1, the usual 

pattern for achieving mutual exclusion among N (>2) 

competing processes accessing some shared data is the 

following: 

 

process(p)=loop NCS; P(S); CS; V(S); endloop. 
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A problem which has received the attention of many 

researchers consists in the possibility of building a sound fair 

semaphore using only a minimal number of weak 

semaphores. Starting from late seventies some starvation-

free mutual exclusion algorithms were proposed, though 

without an adequate proof of their correctness. Recently, in 

[4] a very interesting proof system based on the PVS 

theorem prover was defined and used to establish the 

correctness of three fundamental algorithms proposed in [5]-

[7].  

This paper claims that the approach and the results 

described in [4] are still unsatisfactory and that some 

properties exist to be discovered about those and other 

algorithms. A fundamental step in [4] was the identification 

of an abstract algorithm which facilitates the interpretation 

and analysis of the three mentioned algorithms.  

The abstract algorithm is founded on the elevator 

metaphor: “While there are interested processes they enter 
the elevator at the first floor. When there are no processes 

arriving anymore, the elevator goes to the second floor and 

lets its occupants into CS, one by one. When the elevator is 

empty, it goes down again. When the elevator is not at the 

first floor, arriving processes have to wait. After CS, the 

processes go down by stairs.”  
The abstract algorithm uses 4 integer variables: ne, nm, 

se and sm. The first two variables model respectively the 
number of processes at the first floor waiting for the 
elevator, and the number of occupants within the elevator. 
The last two variables model respectively the doors at the 
first and second floor. Initially all variables are set to 0 
except for the se which is set to 1. The abstract algorithm is 
reproduced in Fig. 6 where atomic actions are enclosed 
within <…>. 

 
process(p)= 
loop 
  NCS; 
  <ne++> 
  <await se greater-than 0; nm++; ne--; 
   if ne==0 then sm++; se--; endif;> 
  <await sm greater-than 0; sm--; nm--;> 
  CS; 
  <if nm greater-than 0 then sm++; else se++; endif;> 
endloop. 

Fig. 6 Mutual exclusion abstract algorithm 

Correctness of the abstract algorithm can be verified in 

UPPAAL by deriving a corresponding native model like that 

shown in Fig. 7. Such a model only depends on the 

concurrency model of UPPAAL and in particular on the 

atomic actions labelling the various edges. The model 

consists of two TA: the Process(const pid p) (see 

Fig. 7) and the Synch(ronizer (see Fig. 8). The Process 

automaton embodies the mutex algorithm and is instantiated 

N (e.g., N=4) times.  

 

Fig. 8 The Synch automaton 

 

All these instances share the algorithm variables, declared 

globally. Only one instance instead exists for the 

synchronizer. Each process instance p uses a clock x[p] to 

measure the waiting time before entering the critical section 

and the duration of the critical section. 

The synchronizer is always ready to send a signal over the 

urgent unicast channel synch. Such a signal is a key to 

ensure progress to the model in Fig. 7 where some normal 

locations without clock invariants like start and end, are 

used.  

Also the NCS location is without clock invariant, to mirror 

the fact that the non-critical section lasts an arbitrary number 

(also 0) of time units. 

The entry protocol of the mutex algorithm is played from 

the start to the end location. The exit protocol is coded 

on the arcs outgoing the CS location. 

The following queries were used for property checking of 

the abstract algorithm. 

 
1) A[] !deadlock            satisfied 

2) A[] forall(i:pid) forall(j:pid)  

 Process(i).CS && Process(j).CS 

 imply j==i               satisfied 

3) Process(0).start --> Process(0).CS  

                  not satisfied 

4) A[] forall(i:pid) Process(i).end 

 imply x[i]<=2*(N-1)*D         satisfied 

5) A[] forall(i:pid) Process(i).end 

 imply x[i]<=2*(N-1)*D-1     not satisfied 

 

Queries 1) and 2) check safety properties. Query 3) 

verifies a liveness property. Queries 4) and 5) check a 

bounded liveness property.  

Satisfaction of query 1) guarantees the model has no 

deadlock (predefined keyword in UPPAAL). Query 2) ensures 

only one process at a time can be in the critical section. 

Query 3) checks if any process which finds itself in the 

start location eventually reaches the CS (critical section) 

location. Noteworthy, this property is not satisfied. Queries 

4) and 5) check about the waiting time of each process 

 

Fig. 7 UPPAAL Process automaton 
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before entering CS (whose duration is supposed to be at 

most D time units). 

Note that clock x[p] is reset on entering start and on 

exiting end. It is confirmed that every process p has an 

overtaking factor of 2, i.e., its blocking time is determined 

by all the other processes which enter two times their CS 

before p can enter its CS. 

Absence of liveness (query 3) is a direct consequence of 

the fact that the model has a zeno-cycle, i.e., it is possible for 

any process to (re)enter the CS an infinite number of times 

before any other process can enter its CS, by consuming 0 

time. The zeno-cycle mirrors the fact that the critical section 

as well as the non-critical section can have a 0 duration, 

and that nothing forbids (non-determinism) the same process 

to always get the synch signals. 

The zeno-cycle can be eliminated by guaranteeing the 

critical section necessarily consumes a finite (although very 

small) duration (the guard x[p]>0 can be added to both 

edges exiting from the CS location). However, the existence 

of the zeno-cycle does not prevent the model checker to 

determine the worst-case waiting time of processes, in which 

case UPPAAL considers scenarios (behaviors) on the state 

graph where time is really advancing. 

It should be noted that the presence of a zeno-cycle 

naturally expresses an intrinsic feature of the 

algorithm/model design. A different design can be without 

any zeno-cycle, independently from any consideration about 

timing. 

The following invariants also hold for the model of Fig. 7:  

 

A[] se==1 imply sm==0,  

A[] sm==1 imply se==0,  

 

which express functionality concerns of the abstract 

algorithm. 

In [4] it is shown as some classic starvation-free mutual 

exclusion algorithms based on weak semaphores can be 

regarded as different interpretations of the abstract 

algorithm, where atomic operations are achieved by using a 

few unfair binary semaphores.  

For brevity, in the following only the Morris algorithm [5] 

will be detailed. For the other studied algorithms, though, 

the experimental analysis will be synthetically reported. 

A. Morris Algorithm 

Fig. 9 recapitulates the Morris algorithm which can be 

viewed as a concrete instance of the abstract algorithm of 

Fig. 6. The Morris algorithm uses three weak semaphores: 

sb, protecting specifically the ne counter holding the 

number of processes awaiting the elevator at the first floor, 

se and sm respectively controlling the door at the first and 

the second floor. They act as a split binary semaphore. 

Initially, sb and se are set to 1, sm to 0.  

The initial values of the other variables are as in the 

abstract algorithm. 

process(p)= 

 loop 

  NCS; 

  P(sb); ne++; V(sb); 

  P(se); nm++; P(sb); ne--; 

  if ne>0 then V(sb); V(se); 

  else V(sb); V(sm); endif; 

  P(sm); nm--; CS; 

  if nm>0 then V(sm); else V(se); endif; 

 endloop. 

Fig. 9 The Morris mutual exclusion algorithm 

 

In Fig. 10 it is depicted an UPPAAL Process automaton 

corresponding to the algorithm in Fig. 9.  

In this case, the use of urgent semaphore channels avoids 

the recourse to other channels like synch of Fig. 8 in order 

to guarantee model progress. The model in Fig. 10 was 

model checked using the same queries 1) to 5) previously 

discussed for the abstract algorithm, and using for the se 

and sm semaphores the PlainBinarySemaphore 

template (Fig. 2) and separately checking the model 

behavior when the sb semaphore is implemented 

respectively as a plain, polite, or buffered binary semaphore, 

i.e., passing from the weakest to the strongest unfair 

semaphore. 

In [4] a proof system was built to demonstrate that the 

Morris algorithm is correct, i.e., it is without deadlock, it 

ensures mutual exclusion and it guarantees a bounded 

waiting time (with an overtaking factor of 2) for the blocked 

processes, for the sole case sb-buffered semaphore, se, sm-

plain semaphores. From our analysis based on model 

checking it emerged that the Morris algorithm, even with sb 

being a buffered semaphore, always has a zeno-cycle which 

means, under the hypothesis of zero time duration of any 

action in the algorithm, that the overtaking factor for a 

blocked process is unbounded. Only when the critical 

section is supposed to consume even a very small time 

duration, the zeno-cycle disappears. Moreover, in the 

presence of timing of the critical section, the overtaking 

factor is effectively 2 as for the abstract algorithm but for 

any implementation of the sb semaphore. In other words, 

model checking the Morris algorithm, in the presence of 

 

Fig. 10 UPPAAL Process model corresponding to the Morris algorithm 

of Fig. 9 
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timing, confirmed that the algorithm is correct with three 

plain binary semaphores, contrary to what is stated in [4] 

and [12]. 

The study of the Morris algorithm suggested to us the 

design of a simple variation of the algorithm based on two 

plain semaphores (the se and sm semaphores of the Morris 

algorithm), N bits and the nm counter. The algorithm is 

proposed in Fig. 11 and modelled in UPPAAL as in Fig. 12. It 

avoids the sb semaphore and uses instead an array e of N 

booleans, each element being associated to a distinct 

process.  

 

process(p)= 

 loop 

  NCS; 

  e[p]=true; 

  P(se); nm++; e[p]=false; 

  if ne() then V(se); 

  else V(sm); endif; 

  P(sm); nm--; CS; 

  if nm>0 then V(sm); else V(se); endif; 

 endloop. 

Fig. 11 Proposed variation of the Morris algorithm 

 

The array e replaces the ne counter of the abstract 

algorithm. Each process p sets e[p] to true when it starts 

waiting for the elevator at the first floor, and resets it to false 

when it enters the elevator, at which time the nm counter is 

incremented. Since each process manages its own element in 

the array e, no interference can ever occur on e. The test 

about the existence of other processes which want to enter 

the elevator at the first floor, previously based on the counter 

ne, it is now based on checking if there are some true 

elements in the array e (the check is actually delegated to a 

function ne() which returns true if some element in the 

array is true, false otherwise). Of course, a true value in e 

can be found in the current test or it will be sensed the next 

time. 

Model checking the model in Fig. 12 confirmed that all 

the five queries proposed for the abstract algorithm are now 

satisfied. Also the liveness property (query 3) now holds, 

i.e., the new algorithm is without any zeno-cycle, and 

correctly operates even when timing is ignored. 

 

B. Algorithms Comparison 

During the development of the modelling and verification 

approach described in this paper, besides the Morris 

algorithm, other starvation-free mutual exclusion algorithms 

based on weak semaphores were studied. Model checking 

results summarized in the Table 1 confirm known results in 

the literature and in some cases are more detailed. In the 

column of the semaphore types, the weakest admissible 

types for the algorithm are shown. More stronger versions 

could, but unnecessarily, be used. For instance, the sb (as in 

the Morris algorithm) semaphore of the Udding algorithm 

must be buffered. The other two semaphores can be plain. 

The Udding algorithm is no longer starvation-free if sb is 

implemented with a polite semaphore. 

Analysis results concerning the Martin & Burch algorithm 

[6] coincide with those formally identified in [4]. The Haldar 

& Subramanian algorithm which relies on two semaphores 

and 2 bits [8] was also investigated in [13]. The weak 

semaphore type the authors assumed corresponds to a 

buffered one and the overtaking factor was indicated as 

TABLE I. 

MODEL CHECKING RESULTS OF MUTUAL EXCLUSION ALGORITHMS. 

Algorithm No of weak 

semaphores 

Semaphore types Zeno-cycle Overtaking 

factor 

Morris 3 3 plain yes 2 

Morris variation proposed in this paper 2 2 plain no 2 

Udding 3 1 buffered – 2 plain yes 2 

Martin & Burch 2 1 polite – 1 plain yes 2 

Haldar & Subramanian 2 2 polite yes lesser than 2 

 

 

Fig. 12 Variation of the Morris algorithm based on two plain semaphores, N bits and the sole nm counter 
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being 2. However, the model checking approach developed 

in this work has shown that two polite semaphores suffice 

and that the waiting time of a process interested in entering 

its critical section is exactly 2*(N-1)*D-D, i.e., one 

critical section lesser than the other algorithms. 

As it emerges from Table 1, the Morris variation 

algorithm proposed in this paper outperforms classic known 

algorithms. With respect to the Haldar & Subramanian 

algorithm, our algorithm uses only 2 binary semaphores of 

the weakest type (plain) although it uses some more memory 

(N bits plus the nm counter vs. 2 bits of the Haldar & 

Subramanian algorithm). Moreover, the proposed algorithm 

is the only one which is without zeno-cycles. 

 

V. CONCLUSIONS 

The Dijkstra conjecture [9] about the impossibility of 

building a fair semaphore using a few weak semaphores was 

confuted by the development of algorithms proposed by 

Morris [5], Martin & Burch [6], Udding [7] etc. However the 

correctness proof of such algorithms was only partially 

provided, also considering the methodological approach 

proposed in [12] or the proof framework developed in [4] 

which does not allow a full analysis of mutual exclusion 

algorithms in the presence of the timing dimension.  

In this paper an original proving framework based on 

timed automata (TA) and the UPPAAL toolbox is proposed 

which permits modelling and full verification of the 

properties of starvation-free mutual exclusion algorithms 

based on weak semaphores, also in the presence of the 

timing dimension.  

The approach models the three known types of weak 

semaphores: plain (the weakest type), polite and buffered 

(the strongest type). It is worthy of note that in its 

description, the Dijkstra conjecture implicitly refers to the 

use of buffered semaphores.  

A key factor of the proposed approach is its modelling 

and analysis flexibility, being it possible to transparently 

replace a semaphore type with another one thus enabling a 

thorough study of a given algorithm.  

The application of the approach confirms known 

properties of classic algorithms, but has the potential to 

discover subtle features of the considered algorithms such as 

the existence of a zeno-cycle or of a time-sensitive behavior 

which influences the kind of weak semaphores which can be 

actually used. All known algorithms suffer of a zeno-cycle, 

in the light of which the overtaking factor of a waiting 

process is (theorically) unbounded. However, when the 

critical section consumes an even infinitesimal time, the 

bounded waiting time and overtaking factor of the classic 

algorithms is effectively guaranteed. In this hypothesis the 

Morris algorithm is correct with three plain semaphores. 

As part of this work, a variation of the Morris algorithm 

was designed which intrinsically eliminates any zeno-cycle, 

rests only on two plain semaphores and replaces a counter of 

the Morris algorithm with N bits. This new algorithm too 

was proved to be correct. 

The paper contribution enables the implementation of 

light-weight starvation-free semaphores which can be 

exploited in general concurrent systems including cyber 

physical systems.  

 

Prosecution of the research is geared at: 

 

• Modelling and analysis of other mutual exclusion 

algorithms designed in terms of weak semaphores. 

• Implementing weak semaphores and fair semaphores 

corresponding to mutual exclusion algorithms, in a 

concurrent programming language, e.g., Java. 

• Experimenting with the use of weak semaphores in 

practical systems programming and in the development 

of cyber physical systems. 

• Exploiting light-weight starvation-free semaphores in 

distributed shared memory systems, e.g., based on Java 

and the Terracotta middleware [14] which provides the 

vision of a “network heap” where shared data can be 

accessed by threads belonging to distributed JVMs. 
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