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New formulations for prediction of velocity at limit

of deposition in storm sewer based on a stochastic

technique

Ali Tafarojnoruz and Ahmad Sharafati
ABSTRACT
Sedimentation in storm sewer strongly depends on velocity at limit of deposition. This study provides

application of a novel stochastic-based model to predict the densimetric Froude number in sewer

pipes. In this way, the Generalized Likelihood Uncertainty Estimation (GLUE) is used to develop two

parametric equations, called GLUE based four-parameter (GBFP) and GLUE based two-parameter

(GBTP) models to enhance the prediction accuracy of the velocity at the limit of deposition. A number

of performance indices are calculated in training and testing phases to compare the developed

models with the conventional regression-based equations available in the literature. Based on the

obtained performance indices and some graphical techniques, the research findings confirm that a

significant enhancement in prediction performance is achieved through the proposed GBTP

compared with the previously developed formulas in the literature. To make a quantified comparison

between the established and literature models, an index, called improvement index (IM), is

computed. This index is a resultant of all the selected indices, and this indicator demonstrates that

GBTP is capable of providing the most performance improvement in both training (IMtrain ¼ 9:2%) and

testing (IMtest ¼ 11:3%) phases, comparing with a well-known formula in this context.

Key words | densimetric froude number, generalized likelihood uncertainty estimation, prediction,

storm sewer

HIGHLIGHTS

• The stochastic based model is developed predict the densimetric Froude number in

storm sewer.

• GLUE approach is used as a parameters estimator prior the parametric formulas.

• The proposed model is validated against literature formulas.

• The proposed stochastic based model is exhibited a reliable and robust prediction

methodology.
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INTRODUCTION
Dry weather seasons may lead to a decrease of flow rate and
water level, causing deposition of solid materials in many

storm sewer networks. If the deposits remain for a relatively
long duration within the sewer system, sediment character-
istics change, and the deposits may permanently become

consolidated. This phenomenon not only influences the
sewer hydraulic resistance, flow properties, and the capacity
of sediment motion, it may also significantly reduce the
flood conveyance capacity of the sewer system and even in
sever condition it might lead to network deterioration (Ab.

Ghani & Md. Azamathulla ; Ebtehaj Bonakdari et al.
).

Hydraulic designers usually take into account two main

criteria in the design of sewer systems. These criteria are
defined based on low discharge and high flow conditions:
the sewer should convey the design floods; while, the
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sediment deposition in the network should be minimized

during the low flow seasons. Combined sewer systems,
which carry rainfall and wastewater, are mostly designed
based on frequency and intensity of rainfall and runoff to

flush out the deposited sediment of the dry weather periods
(Vongvisessomjai Tingsanchali et al. ).

The earliest and most common attitude of the sewer
design has been identified based on a minimum flow vel-

ocity to scouring of the existing of bed sediment. In this
context, (Camp ) suggested an equation for the mini-
mum velocity to scour the deposited bed sediments as

follows:

VCamp ¼ 1
n
R

1
6
h

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B

ρs
ρ
� 1

� �
d

s
(1)

where B denotes a constant, which is 0.8 for adequate self-
cleansing of sewers; n and d represent the Manning’s rough-
ness coefficient and sediment diameter; ρs and ρ are the
density of sediment and water, and Rh being the hydraulic

radius. Although some researchers followed the idea of the
minimum flow velocity of self-cleansing sewers during the
1950s, another concept of scouring of the deposited sedi-

ments was later developed in 1970s taking into account
the minimum bed shear stress for incipient of sediment
motion (Novak & Nalluri ).

Further studies showed that the mechanism of sediment
transport in sewers is a complex three-dimensional phenom-
enon and additional parameters than those assumed by
(Camp ) should be considered to obtain acceptable

results. It is worthy to note that the overall mechanism of
sediment transport in sewer pipes is almost similar to what
occurs in natural channels. Two main differences in the

mechanism of sediment transport in alluvial channels and
sewers are generally considered. First, the supply amount
of sediments in a natural channel is practically unlimited

and originated from the channel itself. In contrast, in
sewers, the sediment supply rate is derived from the catch-
ment of the sewer network. Second, the effective

roughness of sewers may vary depending on whether the
internal surface of sewer pipes is clean, or it is made up of
deposits of sediment particles (Ab. Ghani ).

The available criteria were modified, and more reliable

design methodologies were suggested based on non-depo-
sition of sediment materials rather than scouring of the
deposited sediment. To this end, several regression-based

equations accounting more parameters have been derived
during the past 40 years. Those parameters, as well as the
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proposed equations, will be described in the following

section.
Owing to the complex nature of some hydraulic

phenomena, researchers in recent decades utilized several

sophisticated artificial intelligent (AI) models to achieve
more accurate predictions than the conventional
regression-based formulas (Sharafati Haghbin et al. ).
For instance, an AI technique, named group method of

data handling (GMDH), has been optimized to estimate
longitudinal dispersion coefficient in rivers (Najafzadeh &
Tafarojnoruz ). Application of other AI methodologies,

like evolutionary polynomial regression (EPR), gene-
expression programming (GEP), and model tree (MT) have
been widely evaluated by researchers in the field of hydrau-

lic engineering to predict sediment transport, scouring
around hydraulic structures, design of riprap stone size,
etc. (Azamathulla & Zakaria ; Azamathulla ;
Guven & Azamathulla ; Najafzadeh Barani et al. ;
Najafzadeh Barani et al. ; Najafzadeh ; Najafzadeh
Tafarojnoruz et al. ; Najafzadeh Rezaie-Balf et al. ;
Kargar Safari et al. ; Sharafati Tafarojnoruz et al. ).

According to (Azamathulla & Ghani ; Azamathulla
Ab. Ghani et al. ; Ebtehaj & Bonakdari ; Ebtehaj &
Bonakdari ; Najafzadeh & Bonakdari ), artificial

neural networks (ANNs), adaptive neuro-fuzzy inference
systems (ANFIS), gene-expression programming (GEP),
and Neuro-Fuzzy GMDH (NF-GMDH) were successfully

utilized to predict velocity at limit of deposition. More
specifically, some investigation devoted to applying Evol-
utionary Polynomial Regression (EPR), support vector
regression (SVR), and the firefly algorithm (FFA) resulted

accurate sediment transport prediction in pipes (Ebtehaj &
Bonakdari ; Montes Berardi et al. ). Authors of
these studies reported significant improvement in the predic-

tion of the selected parameter comparing with the
conventional regression-based formulas. However, some of
the selected AI techniques are not capable of introducing

a precise predictive method for practical purposes or in
some cases; the proposed equation has an extremely compli-
cated mathematical formulation.

Apart from use of a regression-based equation or an AI
technique, some countries defined a single minimum non-
deposition velocity magnitude for design purposes. For
example, in the USA, the minimum velocity within the foul

sewers must be 0.60 m/s; however, a larger value of 0.90 m/s
should be considered in storm sewers. It is interesting to
note that such values vary in other countries. Take the UK

as another example; different values of 0.75 and 1 m/s
were, respectively, adopted for storm and combined sewers.
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A surveyon available studies clarifies that a dozen of such vel-

ocity limits have already defined by different authorities, yet it
is obvious that taking into account a single minimum velocity
looks inadequate and unsafe to design storm sewer pipelines

of various roughness, diameter, gradient and sediment prop-
erties. These criteria may be only acceptable for the design of
small sewer networks (Vongvisessomjai Tingsanchali et al.
; Ebtehaj Bonakdari et al. ).

Thementionedmethods and the available formulas in the
design of non-deposition sediments have been developed
according to the flow and sediment characteristics; while,

engineers usually assess a combination of operation, main-
tenance and construction in the design of a sewer system.
For example, to reduce the construction cost, a limited sedi-

ment disposition may be allowed within the sewer
pipelines. This less conservative design significantly
diminishes the slope of sewer lines and as a result, reduces
the construction cost, even though it requires specific main-

tenance and operation.
All the methodologies, as mentioned earlier (i.e.,

regression-based equations, artificial intelligent techniques,

pre-defined non-deposition velocity values) have been devel-
oped assuming that the ‘sediment transport’ is a
deterministic phenomenon. This hypothesis stands in con-

trast to the physical nature of the sediment transport
process. Most available environmental models are devel-
oped to simulate the mechanism of a system response to

some influencing factors which are not necessarily unique.
In this case, a stochastic methodology may offer a more
reliable relationship between the system inputs and the
model output (Sadegh Shakeri Majd et al. ; Shojaeezadeh
Nikoo et al. ). Sediment transport process, whether in
nature (e.g., rivers, coastal zones, etc.) or in manmade struc-
tures (e.g., pipelines, sewer networks, etc.) is inherently

stochastic. Nevertheless, little research has been already
conducted to take into account the intrinsic property of
bed material motion which may considerably improve sedi-

ment transport prediction (Kleinhans & Van Rijn ;
Dodaro Tafarojnoruz et al. ; Dodaro Tafarojnoruz
et al. ; Sharafati Yasa et al. ).

To quantify the uncertainty of random variables, several
techniques like GLUE; and Sequential Uncertainty Fitting
(SUFI) have already proposed (Beven & Binley ; Abbas-
pour Johnson et al. ). In the field of water resource

engineering and sediment transport, GLUE has been
proven as a useful tool to include the uncertainty in a
wide range of predictions. In particular, in hydrological

models, it may recognize the fundamental limitations in
the rainfall-runoff process (Beven ; Freer Beven et al.
s://iwaponline.com/wst/article-pdf/doi/10.2166/wst.2020.321/711248/wst2020321.pdf
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). For example, the GLUE methodology was employed

to analyze the uncertainty of a fully distributed physically-
based code in terms of streamflow prediction limits in
France (Vázquez Beven et al. ). It has also been applied

to flood estimation by fitting the model and identifying the
model parameters in river flow prediction in Vietnam (Cu
Ball et al. ). The GLUE technique does not assume
only one optimal parameter set in deriving a model: this is

one key issue and merit of this methodology (Duan
Sorooshian et al. ; Beven ). Taking this advantage,
(Sharafati Yasa et al. ) improved the prediction accuracy

of wave-induced scour depth around a pipeline, assuming
the scouring process and the attributable sediment transport
are stochastic phenomena.

Themain objective of the present investigation is to revise
the most common sediment transport mathematical formu-
lation in sewer pipelines utilizing the stochastic technique,
GLUE. Two mathematical structures have been considered

in the present study, which includes the most effective
dimensionless groups. The performance of the new stochastic
formulae in the prediction of non-deposition velocity limit is

evaluated by means of several statistical indices.
DIMENSIONLESS PARAMETERS AND EMPIRICAL
EQUATIONS

Previous studies revealed that cross-sectional flow geometry,
sediment properties, and flow characteristics affect the

velocity at limit ofdeposition (Ab.Ghani ; Vongvisessomjai
Tingsanchali et al. ; Ebtehaj & Bonakdari ). Equation
(2) briefly presents a functional relationship between VL and
the effective parameters through an unknown function, f1:

VL ¼ f1(g, CvL, Rh, λs, d50, ρ, ρs, υ) (2)

where g being acceleration due to gravity; CvL denotes sedi-
ment concentration at limit of deposition; λs is the friction
factor in the presence of sediment motion; d50 represent

median sediment grain size; υ is the kinematic viscosity of
water.

Through the application of the well-known Buckingham

π-theorem along with some mathematical manipulations,
five variables in terms of dimensionless groups are obtained
from Equation (2). The resulted dimensionless parameters

can be expressed as a new unknown function, f2:

VLffiffiffiffiffiffiffiffiffiffiffiffi
gΔd50

p ¼ f2 CvL,
Rh

d50
, λs, Dgr

� �
(3)
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in which VL=
ffiffiffiffiffiffiffiffiffiffiffiffi
gΔd50

p
¼ FdL denotes the densimetric Froude

number at the limit of deposition; Δ ¼ ρs
ρ
� 1 represents the

relative density of sediment in water; and Dgr ¼ d50
gΔ
υ2

� �1=3
is dimensionless grain size. λs is a number around the wall

friction factor under the clear-water condition
λ0 ¼ 8gn2=R1=3

h , even though two other dimensionless par-
ameters, i.e. CvL and Dgr, may slightly affect it. The

following equation is recommended to calculate λs (Ab.
Ghani ):

λs ¼ 1:13 λ0:980 C0:02
vL D0:01

gr (4)

Since the 1990s, several semi-empirical equations have

been proposed to predict FdL adopting all or some of the
dimensionless groups in Equation (3). (Ab. Ghani )
took into account all the governing dimensionless groups

of Equation (3) and proposed Equation (5). Later,
(Vongvisessomjai Tingsanchali et al. ) [Equation (6)],
and (Ebtehaj Bonakdari et al. ) [Equation (7)] assumed

CvL and
Rh

d50
are the main influencing parameters on FdL.

This hypothesis was originally introduced by (Mayerle

Nalluri et al. ) who neglected λs and Dgr aiming at ‘a

quick calculation of FdL.

VLffiffiffiffiffiffiffiffiffiffiffiffi
gΔd50

p ¼ 3:08D�0:09
gr C0:21

vL
Rh

d50

� �0:53

λ�0:21
s (5)

VLffiffiffiffiffiffiffiffiffiffiffiffi
gΔd50

p ¼ 4:31C0:226
vL

Rh

d50

� �0:616

(6)

VLffiffiffiffiffiffiffiffiffiffiffiffi
gΔd50

p ¼ 4:49C0:21
vL

Rh

d50

� �0:54

(7)
Table 1 | Statistical characteristics of the dimensionless parameters of the datasets

Parameter

Training phase

FdL CvL
Rh

d50
λs Dg

Minimum 1.35 0.76 4.46 0.013 5.

Maximum 13.49 1450 188.3 0.053 20

Average 4.09 211.8 49.30 0.026 78

SD 2.19 312.8 52.96 0.009 64

COV 0.54 1.48 1.07 0.355 0.

Note: SD¼ standard deviation; COV¼ coefficient of variation.
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DESCRIPTION OF DATASETS

To develop and evaluate the new model, and comparing its

performance with those available in the literature, a large
number of datasets, including 257 datasets were extracted
from two experimental studies (Ab. Ghani ; Vongvises-
somjai Tingsanchali et al. ). To train the proposed

stochastic model, 193 datasets (approximately 75% of the
entire data) were selected randomly. In comparison, the
64 datasets (25% of the available data) were allocated for

the testing phase and verifying the proposed model.
Table 1 furnishes the range of each dimensionless parameter
employed for training and testing stages while their fre-

quency is presented in Figure 1.
DEVELOPMENT OF GLUE BASED FORMULAS

GLUE is a stochastic approach to measure the model uncer-
tainty, which was first introduced in 1992 (Beven & Binley
). Recently, GLUE has been used as parameters estima-

tor in different engineering fields (Sharafati Yasa et al. ).
To achieve the best parameters set, several random par-
ameters sets would be generated using their probability

distribution functions. Then, the generated parameters sets
are stored as behavioral and non-behavioral samples based
on the behavioral threshold value. To sort the behavioral

samples, it is necessary to compute the re-scaled likelihood
weights (wi

r) of the of ith set of the parameters as follows
(Wang Frankenberger et al. ):

wi
r ¼

wiPk
j¼1 wj

wi ¼ exp � RMSEi

min (RMSE)

� �
8>>><
>>>:

(8)
Testing phase

r FdL CvL
Rh

d50
λs Dgr

06 1.27 5.00 3.86 0.016 5.06

7.6 9.44 1415 188.5 0.053 207.6

.46 4.04 242.9 45.61 0.026 78.83

.73 2.13 326.6 50.14 0.010 67.97

82 0.53 1.34 1.10 0.375 0.86



Figure 1 | Frequency of the experimental datasets in the training and testing phases. (a) CvL , (b)
Rh

d50
, (c) λs, (d) Dgr , (e) FdL.
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where, wi is the likelihood measure of ith behavioral set and

k is the number of behavioral samples. Having considered
the uniform distribution as a prior probability distribution
of each parameter, the posterior distributions of the par-
ameters would be obtained using their re-scaled likelihood

weights (Equation (8)) (Freni Mannina et al. ).
To obtain the GLUE based predictive models, a para-

metric equation is proposed in the form of the following

equation:

VLffiffiffiffiffiffiffiffiffiffiffiffi
gΔd50

p ¼ a1Da2
gr Ca3

vL
Rh

d50

� �a4

λa5s (9)

where a1 ∼ a5 are the random variables estimated using the
GLUE algorithm. This model is named as “GLUE Based
s://iwaponline.com/wst/article-pdf/doi/10.2166/wst.2020.321/711248/wst2020321.pdf
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With Four Parameters (GBFP)” which includes all the

dimensionless parameters (Dgr , CvL,
Rh

d50
, λs).

To develop another alternative GLUE based model with
a simple structure, the employed predictive (input) variables

are ranked using the Gamma Test (GT) technique. GT
selects the best input variables for nonlinear problems
(Sharafati Asadollah et al. ). The best input variables

are selected via computing an index named ϑ� ratio by
means of a nonlinear approach. Consider a given dataset
as the following form:

{(xi , yi), 1 � i � M} (10)

where the xi are the m-dimensional input vectors and yi are
the output values.
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GT is originated from xi in delta function (δ) expressed

as follows:

δM(k) ¼ 1
M

XM
i¼1

jxN[i,k] � xij2 (1 � k � p) (11)

where |…| is the Euclidean distance and xN[i,k] is the kth

(1 � k � p) nearest neighbors for each xi (1 � i � M).
Then the gamma function of the yi would be computed

using the following equation:

γM(k) ¼ 1
2M

XM
i¼1

jyN[i,k] � yij2 (1 � k � p) (12)

where yN[i,k] is the corresponding y for the kth nearest neigh-

bor of xi in δM(k).
An estimate of the model output variance is provided by

gamma statistic (Γ). This statistic would be computed by a

regression line through p points of [δM(k), γM(k)] as follow:

γ ¼ Aδ þ Γ (13)

The gamma statistic can be standardized by measuring

another term, ϑ� ratio, which is defined as:

ϑ� ratio ¼ Γ

σ2(y)
(14)

where σ2(y) is the output variance.
ϑ� ratio is in range of 0 to 1: the zero value indicates

high accuracy in output prediction.

To obtain a simple GLUE based model, the values of
ϑ� ratio from different two variate combinations are rep-
resented in Table 2.
Table 2 | Gamma-test statistics of different combinations of the dimensionless

parameters

Statistic Parameters

Γ ϑ� ratio CvL
Rh

d50
λs Dgr

0.49 0.103 ✓ ✓

0.68 0.144 ✓ ✓

1.06 0.225 ✓ ✓

1.20 0.253 ✓ ✓

1.43 0.302 ✓ ✓

3.94 0.832 ✓ ✓

om https://iwaponline.com/wst/article-pdf/doi/10.2166/wst.2020.321/711248/wst2020321.pdf
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Table 2 indicates that the most influencing parameters

are CvL and
Rh

d50
. The achieved result of GT technique has

good consistency with previous developed two parameters

models (Vongvisessomjai Tingsanchali et al. ; Ebtehaj

Bonakdari et al. ) which employed CvL and
Rh

d50
as the

main effective variables on FdL. Hence, another parametric
equation would be developed as follows:

VLffiffiffiffiffiffiffiffiffiffiffiffi
gΔd50

p ¼ b1C
b2
vL

Rh

d50

� �b3

(15)

where b1 ∼ b3 are the random variables which are estimated

by means of the GLUE algorithm. This model is named as
“GLUE Based With Two Parameters (GBTP)” which com-
prises fewer but the most influencing parameters for quick

predictions.
The prior probability density functions of the random

variables are obtained using the cross-validation method.
Parameters of prior functions are presented in Table 3. To

compute the random variables using the GLUE algorithm,
the posterior probability density functions of the random
variables are obtained by Equation (8) and an approach

which is demonstrated in Figure 2.
DESCRIPTION OF AGREEMENT AND ERROR
INDICES

To make a comparison among proposed GLUE based

models and previous alternative formulas, a number of
agreement and error indices such as Scatter Index (SI),
Mean Absolute Error (MAE), Nash-Sutcliffe coefficient
Table 3 | Parameters of prior distribution of the defined random coefficients

Random coefficients PDF

PDF parameters

(Lower limit) (Upper limit)

a1 Uniform 0 5

a2 �1 0

a3 0 0.4

a4 �1 1

a5 �1 0

b1 0 5

b2 0 0.4

b3 �1 1



2

Figure 2 | Developing the GLUE based model for predicting the densimetric Froude

number.
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(NSE), Legates and McCabe’s Index (LMI), and Coefficient
of determination (R2) are computed as follows:

SI ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
((FdL)Obs,i � (FdL)Sim,i)

2

r !

(FdL)Obs

(16)

MAE ¼ 1
n

Xn

i¼1
j(FdL)Obs,i � (FdL)Sim,ij (17)

NSE ¼ 1�
Pn

i¼1 ((FdL)Obs,i � (FdL)Sim,i)
2

PN
i¼1 ((FdL)Obs,i � (FdL)Obs)

2

2
4

3
5 (18)

LMI ¼ 1�
Pn

i¼1 j(FdL)Obs,i � (FdL)Sim,ijPn
i¼1 j(FdL)Obs,i � (FdL)Obsj

" #
(19)

R2 ¼
Pn

i¼1 ((FdL)Obs,i � (FdL)Obs)((FdL)Sim,i � (FdL)Sim)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1 ((FdL)Obs,i � (FdL)Obs)

2Pn
i¼1 ((FdL)Sim,i � (FdL)Sim)

2
q

0
B@

1
CA

(20)
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where the (FdL)Obs,i and (FdL)Sim,i represent the ith measured

and predicted densimetric Froude numbers at the limit of
deposition, (FdL)Obs and (FdL)Sim are measured and pre-
dicted mean values of the densimetric Froude numbers at

the limit of deposition. n is a total number of the datasets.
The efficiency of the proposed GLUE based models in

comparison to the previous alternative formulas in both
training and testing phases are quantified using Improve-

ment index (IM) as follows (Sharafati Yasa et al. ):

IMtrain ¼ (IMSI
train þ IMMAE

train þ IMNSE
train þ IMLMI

train þ IMR2

train)
5

(21)

IMtest ¼
(IMSI

test þ IMMAE
test þ IMNSE

test þ IMLMI
test þ IMR2

test)
5

(22)

IMSI
train=test ¼

(SIModel
train=test � SIAb: Ghani 1993

train=test )

SIAb: Ghani 1993
train=test

× 100 (23)

IMMAE
train=test ¼

(MAEModel
train=test �MAEAb: Ghani 1993

train=test )

MAEAb: Ghani 1993
train=test

× 100 (24)

IMNSE
train=test ¼

(NSEModel
train=test �NSEAb: Ghani 1993

train=test )

NSEAb: Ghani 1993
train=test

× 100 (25)

IMLMI
train=test ¼

(LMIModel
train=test � LMIAb: Ghani 1993

train=test )

LMIAb: Ghani 1993
train=test

× 100 (26)

IMR2

train=test ¼
(R2Model

train=test � R2Ab: Ghani 1993
train=test )

R2Ab: Ghani1993
train=test

× 100 (27)

where SIModel
train=test, MAEModel

train=test, NSEModel
train=test, LMIModel

train=test, and
R2Model

train=test are, respectively, the computed SI, MAE, NSE,
LMI, and R2of the predictive models (i.e., the new GLUE
based, and the previous formulas (Vongvisessomjai Tingsan-
chali et al. ; Ebtehaj Bonakdari et al. )) in training or

testing phases.
RESULTS AND DISCUSSION

This study aims to propose a novel formulation to provide a
more accurate estimation of the densimetric Froude number

at the limit of deposition in comparison with the available
equations (Ab. Ghani ; Vongvisessomjai Tingsanchali
et al. ; Ebtehaj Bonakdari et al. ). Owing to high ran-

domness of the densimetric Froude number, a stochastic
approach (herein, the GLUE methodology) is utilized to
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tune the defined random variables. Ultimately, the accuracy

of the proposed stochastically models are compared with
the existing well-known formulas.

Development of GLUE based model for simulating the
densimetric Froude number

To obtain the GLUE based models (i.e., GBFP and GBTP
models) for simulating the densimetric Froude number, a
number of parameters (i.e., a1 ∼ a5, and b1 ∼ b3) in

Equations (9) and (15) are defined as random variables.
These variables are estimated by means of the GLUE
Figure 3 | Posterior distributions of the defined random coefficients in 4-Parameter and 2-Par

om https://iwaponline.com/wst/article-pdf/doi/10.2166/wst.2020.321/711248/wst2020321.pdf
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approach, where the uniform distributions are assigned as

their prior distributions (Table 3). The posterior distributions
of the random variables are obtained using the 20,000 simu-
lations (Figure 4) through the GLUE approach (Figure 3).

Figure 3 indicates that the coefficient and exponent of
Dgr in GBFP model (i.e., a1 and a2) have negative skewness
implying that the accuracy of Froude number estimation
would be increased through the larger values of the Dgr par-

ameter, while coefficients of the other variables CvL,
Rh

d50
,

and λs (i.e., a3, a4, a5, and b1, b2, b3) have relatively sym-
metric distributions. This implies that the prediction
ameter GLUE models. (a) a1, (b) a2, (c) a3, (d) a4, (e) a5, (f) b1, (g) b2, (h) b3.



Figure 4 | Comparison between the generated 95PPU band of the GLUE based models and the experimental data in the training phase: (a) GBFP model, (b) GBTP model.
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accuracy of the Froude number increases, taking into

account the mean value of these parameters.
Using the obtained posterior distributions of the random

coefficients, their optimistic values are obtained through the

GLUE method. The proposed GLUE based formulas are
expressed in the form of the following equations:

VLffiffiffiffiffiffiffiffiffiffiffiffi
gΔd50

p ¼ 3:06D�0:26
gr C0:15

vL
Rh

d50

� �0:34

λ�0:42
s (28)
VLffiffiffiffiffiffiffiffiffiffiffiffi
gΔd50

p ¼ 3:39C0:2
vL

Rh

d50

� �0:62

(29)

where Equations (28) and (29) are the proposed GBFP and

GBTP models for predicting the densimetric Froude number
at the limit of deposition.
s://iwaponline.com/wst/article-pdf/doi/10.2166/wst.2020.321/711248/wst2020321.pdf
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Assessing the performance of the GLUE based models

To assess the reliability of the proposed GLUE based
models, the corresponding 95 percent prediction uncer-

tainty (95PPU) bands (i.e., the interval between the 97.5%
and the 2.5% percentiles) are generated using the obtained
20,000 simulations in the training phase (Figure 4). The pre-

diction reliability is measured using the P� factor index: the
percentage of the bracketed experimental data by the 95
PPU band (Sharafati & Azamathulla ).

The P� factor value is an indicator to assess the sto-
chastic models. The minimum acceptable range for the
bracketed data by the 95 PPU band is 50% (Abbaspour
Yang et al. ). In accordance to the GBFP and GBTP

models prediction results in the training phase (Figure 4),
it is clear that significant reliability is achieved in the predict-
ability of both models (P� factor > 97%). In fact, the GBFP

and GBTP models are potent to offer accurate densimetric
Froude number estimations.
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Another uncertainty index, R� factor, is related to the

average thickness of 95 PPU band and standard deviation
of the observed data (Sharafati & Azamathulla ).
Figure 4 clarifies that the uncertainty in predicted densi-

metric Froude number associated with the GBFP model
(R� factor ¼ 1:5) is relatively more than the GBTP model
(R� factor ¼ 1:1).

The scatter plots (Figure 5) illustrate the consistency

between the observed densimetric Froude number and the
predicted values by the proposed GLUE based models as
well as the previous investigations (Vongvisessomjai Tingsan-

chali et al. ; Ebtehaj Bonakdari et al. )). Figure 5
indicates that a significant agreement is observed between
the measured and predicted Froude number values by

means of all the predictive models in both the training
(R2 ¼ 0:939� 0:954) and testing (R2 ¼ 0:928� 0:948)
phases. This agreement is stronger in small Froude numbers
(FdL < 5), whereas the points corresponding to the larger

Froude numbers (FdL > 8) are noticeably more spread.
Besides, the GBTP points are located at the closest regions
to the best-fit line, indicating the best agreement with the

experimental data in training (R2 ¼ 0:954) and testing
(R2 ¼ 0:948) phases in comparison with the other predictive
models. Furthermore, the least agreement with the measured

data is observed using the Ab. Ghani (Ab. Ghani )
equation.

The predictive models were also comparatively evalu-

ated by the Taylor diagram (Figure 6). In this diagram,
several metrics, e.g. correlation coefficient, standard division
and the root mean are considered, simultaneously (Taylor
). From Figure 6, it is clear that in both phases, GBTP

(yellow point) has a slightly shorter distance to the observed
point (cyan point) while the point corresponding to the Ab.
Ghani (Ab. Ghani ) results (blue point) has a relatively

further distance from the observed point in comparison
with the other models. Indeed, the Taylor diagram analysis
confirms the highlighted results from the scatterplots.

Following the computed normalized RMSE, MAE,
NSE, R2, and LMI indices, the heat maps over the training
and testing phases (Figure 7) are obtained to provide a

visual comparison among the performance of the predictive
models.

From Figure 7, it is clear that all the cells relating to the
GBTP model have dark blue color in both the training and

testing stages, noting that the GBTP model offers the best
performance indices. Besides, (Vongvisessomjai
Tingsanchali et al. ) model is also ranked as the

second adequate model in terms of MAE, R2, and LMI indi-
ces in training phase (Figure 7(a)) while in testing stage, the
om https://iwaponline.com/wst/article-pdf/doi/10.2166/wst.2020.321/711248/wst2020321.pdf
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GBFP model performs better than the remaining models, i.e.

(Ab. Ghani ; Vongvisessomjai Tingsanchali et al. ;
Ebtehaj Bonakdari et al. ) in terms of all indices,
except the R2 index (Figure 7(b)). In fact, in agreement

with the scatter plots and the Taylor diagrams, heat maps
also indicate that a significant prediction superiority is
expected in the use of the GBTP model in comparison
with the other predictive models.

The boxplots, respecting the percentiles (i.e., Q25%, Q50%

andQ75%) and the interquartile ranges (IQR) of the observed
and predicted Froude number values, are exhibited in

Figure 8 to quantify their variability in training and testing
phases.

Figure 8 indicates that the closest values between the

predicted and observed median (Q50%) of the Froude
number in the training phase are obtained from the (Ebtehaj
Bonakdari et al. ) and GBTP models, while the better
performance to capture the observed IQR¼ 2.81 is evi-

denced in the GBTP model with IQR ¼ 2:92. Relatively
similar results are also obtained in testing phase, noting
that the GLUE based models offered the best overall predic-

tion performance. Indeed, that is a normal result where the
input and output parameters have stochastic nature and sto-
chastic-based models.

To quantify the performance improvement by the pro-
posed models, the IM index [Equations (21) and (22)] is
assessed in training and testing phases (Table 4). To this

end, the (Ab. Ghani ) model is considered as the bench-
mark model. Hence, a positive value of IM means the model
has better performance than the (Ab. Ghani ) model,
and vice versa. Table 4 demonstrates that the highest

improvement in all the performance indices (1.60–19.19%)
as well as the IM index (9.2%) are obtained by GBTP over
the training phase. Similar superiority is also achieved in

testing phase, where the performance indices (2.16–
24.65%) and the IM index (11.3%) are improved through
the GBTP.

To assess the impact of the input variable (e.g.,

Dgr , CvL,
Rh

d50
, λs) changes on the target variable; a sensi-

tivity analysis is performed. In this way, an index named
relative coefficient of variation (RCV) is introduced as
follow:

RCV (xi, y) ¼ CVy

CVxi
i ¼ 1 . . .n (30)

where xi and y are the ith input variable and target variable,
respectively. CV is the coefficient of variation, and n is a



Figure 5 | Scatter plots of the predicted versus the observed densimetric Froude number. (a) training phase, (b) testing phase.
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Figure 6 | Normalized Taylor diagrams of the predicted and the observed densimetric Froude number: (a) training phase, (b) testing phase.
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total number of input variables. The target variable is most
affected by an input variable which provides the highest

RCV . To obtain the RCV value for each input variable,
100 random samples are generated using the Monte Carlo
simulation. In this way, the PDFs of the input variables is
assumed to be a uniform distribution. The changes in the

non-deposition velocity limit against the variation of the
input variables are presented in Figure 9.

FromFigure 9, it is clear that the highest values of theRCV
are found respectively, in the Rℎ/d50 (RCV¼ 0.55), and CvL
(RCV¼ 0.29). It means that the non-deposition velocity limit
om https://iwaponline.com/wst/article-pdf/doi/10.2166/wst.2020.321/711248/wst2020321.pdf
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is most affected by those variables. This finding is consistence
with those obtained by (Mayerle Nalluri et al. ).

Although the formulas provided by GLUE approach for
predicting the non-deposition velocity limit are simple as the
empirical equations, those formulas preserve the stochastic
nature of deposition phenomenon. Hence, the primary

advantage of the GLUE-based is simple modeling with
acceptable accuracy. At the same time, the AI models com-
prise the complicated structure with many unknown

parameters, and thus, accurate tuning of those parameters
is a crucial issue in AI modelling. Furthermore, it is easy



Figure 8 | Boxplots of the observed densimetric Froude number against the different predictive models results.

Figure 7 | Heat maps of the predictive models of the densimetric Froude number: (a) training phase, (b) testing phase.
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to identify the attributes of GLUE modelling while it is a dif-
ficult task in AI modeling due to its close-box nature.
CONCLUSION

Clean sewer design is a key issue for engineers. Deposition
and consolidation of solid materials in sewer pipes may
reduce the system efficiency or even block a part of the net-

work. The velocity at limit of sediment deposition is
embedded in densimetric Froude number, a function of
s://iwaponline.com/wst/article-pdf/doi/10.2166/wst.2020.321/711248/wst2020321.pdf
SITY user
dimensionless grain size, friction factor in the presence of
sediment motion, sediment concentration, and the ratio of

hydraulic radius over the median sediment size. Fundamen-
tal analysis is made through the Gamma Test to identify the
most effective parameters. Results reveal that among the
four mentioned dimensionless parameters, sediment con-

centration at limit of deposition and the ratio of hydraulic
radius over median sediment size are the most effective par-
ameters on the prediction of velocity at limit of deposition.

The internal part of many sewer pipes are not rough
enough to affect sediment transport. Moreover, the other



Table 4 | Performance indices of the proposed and the previous predictive models

Model Phase

Performance indices Improvement (%)

IMSI MAE NSE LMI R2 SI MAE NSE LMI R2

Ab. Ghani () Training 0.139 0.396 0.933 0.772 0.939 – – – – – –

Vongvisessomjai et al. () 0.129 0.346 0.942 0.801 0.953 7.05 12.63 0.96 3.76 1.49 5.2

Ebtehaj et al. () 0.155 0.426 0.916 0.755 0.949 �11.82 �7.58 �1.82 �2.20 1.06 �4.5

GBFP 0.124 0.352 0.946 0.797 0.951 10.76 11.11 1.39 3.24 1.28 5.5

GBTP 0.115 0.320 0.954 0.816 0.954 17.28 19.19 2.25 5.69 1.60 9.2

Ab. Ghani () Testing 0.161 0.426 0.906 0.763 0.928 – – – – – –

Vongvisessomjai et al. () 0.145 0.404 0.923 0.775 0.946 9.55 5.16 1.88 1.57 1.94 4.0

Ebtehaj et al. () 0.144 0.438 0.925 0.756 0.944 10.63 �2.82 2.10 �0.92 1.72 2.1

GBFP 0.133 0.382 0.936 0.787 0.944 17.41 10.33 3.31 3.15 1.72 7.2

GBTP 0.121 0.343 0.946 0.809 0.948 24.65 19.48 4.41 6.03 2.16 11.3

Figure 9 | Variation of densimetric Froude number against changes of (a) Dgr, (b) CvL, (c) Rℎ/d50, (d) λs.
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less effective parameter, i.e. dimensionless grain size, par-
ticularly expresses the effect of sediment size on

densimetric Froude number. Noting that median sediment
size is also included in the ratio of hydraulic radius over
median sediment size, one may conclude that the dimen-

sionless grain size is a redundant parameter in the
prediction of velocity at limit of deposition.
om https://iwaponline.com/wst/article-pdf/doi/10.2166/wst.2020.321/711248/wst2020321.pdf
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To ensure about the results of the Gamma Test, two sep-
arate equations are derived based on the Generalized

Likelihood Uncertainty Estimation (GLUE) methodology:
1) GBFP (Equation (28)) and 2) GBTP (Equation (29)).
These two formulas consist of all the four influencing par-

ameters and the selected two variables, respectively.
Further analysis by means of P� factor technique assured



15 A. Tafarojnoruz & A. Sharafati | Prediction of velocity at limit of deposition in storm sewer Water Science & Technology | in press | 2020

Uncorrected Proof

Downloaded from http
by CORNELL UNIVER
on 16 August 2020
that both models are potent to offer reliable predictions. In

contrast, the R� factor analysis reveals that the prediction
uncertainty by GBTP model (Equation (29)) is considerably
less than the GBFP model. Other analyses by several error

indices, e.g. SI, LMI, NSE, etc., support the superiority of
the GBTP (Equation (29)) with respect to the 4-parameter
GLUE based formula (i.e., GBFP), as well as the convention-
al regression-based equations in this context.

From the methodology used in this study, a new
equation was derived for the estimation of velocity at the
limit of deposition for sewer design purposes. The suggested

equation is more accurate than the available regression-
based formulas in the literature. Thus, one may also
employ this technique in some other predictions if the

phenomena are not fully deterministic. For example, local
scouring is an interaction result of two stochastic processes
(i.e., transient vortices and sediment motion) and use of a
stochastic method may lead to enhance the prediction accu-

racy and reliability.
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