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Abstract

Norbert Wiener and Nikolai Bernstein set the stage for a worldwide multidisciplinary attempt to understand how purposive action is
integrated with cognition in a circular, bidirectional manner, both in life sciences and engineering. Such a ‘workshop’ is still open and
far away from a satisfactory level of understanding, despite the current hype surrounding Artificial Intelligence (AI). The problem is
that Cognition is frequently confused with Intelligence, overlooking a crucial distinction: the type of cognition that is required of a
cognitive agent to meet the challenge of adaptive behavior in a changing environment is Embodied Cognition, which is antithetical to
the disembodied and dualistic nature of the current wave of AI. This essay is the perspective formulation of a cybernetic framework
for the representation of actions that, following Bernstein, is focused on what has long been considered the fundamental issue under-
lying action and motor control, namely the degrees of freedom problem. In particular, the paper reviews a solution to this problem
based on a model of ideomotor/muscle-less synergy formation, namely the Passive Motion Paradigm (PMP). Moreover, it is shown how
this modeling approach can be reformulated in a distributed manner based on a self-organizing neural paradigm consisting of multiple
topology-representing networks with attractor dynamics. The computational implication of such an approach is also briefly analyzed
looking at possible alternatives of the von Neuman paradigm, namely neuromorphic and quantum computing, aiming in perspective at a
hybrid computational framework for integrating digital information, analog information, and quantum information. It is also suggested
that such a framework is crucial not only for the neurobiological modeling of motor cognition but also for the design of the cognitive
architecture of autonomous robots of industry 4.0 that are supposed to interact and communicate naturally with human partners.

Keywords: cybernetics; degrees of freedom problem; embodied cognition; passive motion paradigm; equilibrium point hypothesis;
self-organization; topology representing networks; quantum brain hypothesis

1. The Cybernetic Framework
The invention of cybernetics by Norbert Wiener more

than seventy years ago [1] marked the acquisition of two
main interdisciplinary concepts: (1) the large common
ground between neurophysiology and engineering method-
ologies and (2) the unitary nature of the multi-scale/multi-
level investigation of “cognitive agents”, whether biologi-
cal or artificial.

There is no doubt that modern engineeringmethodolo-
gies, from informatics to signal processing, control method-
ologies, and telecommunications are somehow spin-offs
with a common cybernetic origin. At the same time, we
should remember that Wiener and colleagues [2] advocated
for neurophysiology “a new step in the study of that part of
neurophysiology which concerns not solely the elementary
processes of nerves and synapses but the performance of the
nervous system as an integrated whole”. This was the pre-
liminary background that suggested, a few years later, the
proposal of “Cybernetics” [1] to denote “the entire field of
control and communication theory, whether in the machine
or in the animal”, based on the concept that “the problems of
control engineering and communication engineering were
inseparable and that they centered not around the techniques

of electrical engineering but the much more fundamental
notion of the message, whether this should be transmitted
by electrical, mechanical, or nervous means”.

One of the early accomplishments of cybernetics was
to establish the role of feedback both in engineering design
and biology. Not much attention was devoted to cogni-
tion per se, although it was clear that feedback and feed-
back control may require the integration, in the closed loop,
of specific information/knowledge, as reflected in the con-
cept of “control by informative feedback”. A system that
counts on feedback for its behavior and stability is funda-
mentally linked and integrated with the surrounding envi-
ronment, partially destroying the clarity and rationale of
simple causal reasoning: in the closed loop between two
interacting systems (say a purposive agent and its environ-
ment), the first system influences the second and second
system influences the first, leading to a circular pattern of
interaction that requires to analyze the system as a whole.
Such an intrinsic circularity of purposive action inexorably
leads to the notion of cognition as a necessary side-effect of
feedback control, a concept that was clearly stated by Mat-
urana and Varela [3], thus complementing the overall view
of Cybernetics: they proposed Enactivism, namely a posi-
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tion in cognitive science that argues that cognition arises
through a dynamic interaction between an acting organism
and its environment. Stretching this concept to the extreme
the authors stated that it is valid for all organisms, with or
without a nervous system, because living implies adaptation
to a specific environment.

However, even avoiding such extremization and fo-
cusing the attention on purposive agents like humans and
humanoid robots, the close relation suggested by Enac-
tivism between feedback and adaptation to the environ-
ment, clarifies why and how cognition is fundamental for
purposive action, both at the phylogenetic and ontogenetic
level. Along the same line, there is also the emergence of a
specific view on the nature of cognition known as Embod-
ied Cognition [4]. This theory, fully positioned in the cy-
bernetic framework, is fundamentally opposed to the many
forms of dualism that, since the time of Descartes, sepa-
rated the body from the mind, pragmatic from intellectual
activities, hardware from software, and so on: thus, cog-
nitive processes are shaped by and integrated with sensory
and motor processes of the entire body in its continuous in-
teraction with the environment. Such circularity also res-
onates with another stream of psychological research on
the cognitive development in children, expressed, in par-
ticular, by the “circular reaction strategy” advocated by
Jean Piaget [5], namely the efference-reafference cycle that
allows humans, particularly during early development, to
learn sensory-motor transformations via an active explo-
ration of the environment [6–8]. Moreover, this strategy
is a self-organizing paradigm that can be associated with
self-organizing neurodynamics for learning sensory-motor
transformations [9–14].

At the same time, we cannot ignore a divergent line
of research that had initially a strong link with cybernet-
ics, namely Artificial Intelligence (AI) [15]. Apart from
the unresolved issue of the specific relation between cogni-
tion and intelligence, it is a fact that AI, departing from the
cybernetic context, was articulated into two main streams,
one focused on the symbolic representation of knowledge
(Symbolic AI) and another (Connectionist AI) focused on
the acquisition of knowledge via supervised training (typ-
ically by using the backpropagation algorithm) of feedfor-
ward neural networks [16]. The former stream is currently
active in the development of cognitive architectures for
robotics [17] and the latter stream in deep learning tech-
niques [18] aiming at achieving Artificial General Intelli-
gence (AGI). In both cases, however, the type of cognition
that is aimed at is overall “disembodied” and what is lost is
one of the fundamental elements of cybernetics, namely the
issue of self-organization through agent-environment inter-
action, learning, and adaptation. However, we should not
forget that the self-organization issue was kept alive, since
the early time of cybernetics, by two minority streams of
research in neural networks: (1) self-organizing neural net-
works [12] trained by unsupervised Hebbian learning or

self-supervised learning [19], inspired by the already men-
tioned Piagetian “circular reaction strategy”; (2) associative
memories [20–24], also trained by Hebbian learning and
characterized by a collective energy function that implies
attractor dynamics.

In this framework, articulated around the central role
of cybernetics for understanding the organization of purpo-
sive actions in humans and robots, we should also consider
the markedly original work of Nikolai Bernstein [25]. Al-
though he is mostly known for the definition of the “degrees
of freedom problem” as the crucial topic underlying the or-
ganization of action, his research achievements are indeed
multifaceted and synergic in many senses with cybernetics.
His early research was aimed at overcoming the limitations
of Pavlov’s theory on conditioned reflexes: it was clearly
stated by Bernstein in 1924 that such a theory cannot ex-
plain human skills because it ignores their purposeful char-
acter [26]. A similar evolution occurred in Western neuro-
physiology when the limitation of the spinal reflex as the
basic building block of motor neurophysiology, advocated
by Charles Sherrington [27], became evident, thus promot-
ing the emergence of cognitive neuroscience. It is important
to note that the importance of feedback, central in the de-
velopment of Wiener’s cybernetics, was clear as well in the
mind of Bernstein not only as a crucial ingredient of motor
control (providing corrections of the on-going movement)
but even more importantly from the cognitive point of view,
suggesting amechanism of anticipation or “ante factum cor-
rections” [26]. In agreement with the rationale of embodied
cognition, Bernstein suggested that the organization of pur-
posive actions is driven by the goal, which is the “meaning
of the action” and plays the role of an invariant in the pro-
duction of the action. This line of research led to the theory
of non-individualized control of complex systems and the
principle of minimal interaction [28].

According to Berthoz and Petit [29], Bernstein was
one of the first to conceive anticipation/prediction as a con-
structive element of purposive action, although we should
also consider that this issue has a clear link with the ideo-
motor theory of action, dating back to James’ Principles
of Psychology [30] and recently revisited [31]. More-
over, the concept that the “idea” of an action, i.e., the pre-
dicted/desired sensory consequences of an action, apply
both to real (overt) and imagined (covert) actions [32] is
reflected in the concept of Kinesthetic Imagination [33,34]
as a driving force for the acquisition of skilled behavior.

In summary, the cybernetic framework for the rep-
resentation of action must be focused on what has long
been considered the fundamental issue underlying action
and motor control, namely the degrees of freedom prob-
lem. On the other hand, the solution to this problem sug-
gested by Bernstein consisted, essentially, in “freezing” the
number of possibilities at the beginning of motor learning,
an idea revisited years later [35] under the name of Un-
controlled Manifold (UCM). The problem here is that the
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selection of the Degrees of Freedom (DoFs) that need to
be “frozen”, for a specific task, is far from straightforward
and thus the advocated reduction of complexity for the brain
tends to disappear. The same kind of conceptual contradic-
tion can also be found in the proposal of “muscle synergies”
[36] as basic building blocks for the construction of natu-
ral motor behavior. The alternative, proposed by the author
[37,38], is based on a computational model for the gener-
ation of “muscle-less synergies” or “ideomotor synergies”
that apply both to covert (imagined) actions and overt (real)
actions, in agreement with the theory of the Neural Simu-
lation of Action formulated by Jeannerod [32]. The rest of
the paper builds upon ideomotor/muscle-less synergy for-
mation, to clarify how this modeling approach is a natural
heir of cybernetics, on one side, and can be grounded, on the
other, on self-organizing neural modeling, including possi-
ble quantum computing implications.

The rationale of muscle-less synergies is supported by
the discovery of motor imagery [39–42] and, as a conse-
quence, the distinction between ideomotor synergy forma-
tion and synergy control: the former item has mainly the
purpose of anticipating the consequences of a plan of ac-
tion through an internal simulation that includes the selec-
tion and recruitment of the required DoFs as well as their
ranking according to the degree of relative relevance for
the action; the latter item, which is relevant only in the
case of overt action, includes the activation of the relevant
muscles by blending different control strategies: feedfor-
ward, feedback, and stiffness (via coactivation of antago-
nistic muscles). The kinesthetic patterns generated by the
muscle-less synergies are also crucial for optimally tuning
the mentioned control strategies.

The main purpose of this review paper is to offer a
computational perspective for the design of cognitive ar-
chitectures of robots of industry 4.0 that are supposed to
interact and communicate with human partners. The work-
ing hypothesis is that to achieve that purpose humans and
robots should share the overall computational organization,
although detailed “hardware” may be quite different. This
is the innovative contribution of the paper that is meant to
re-evaluate the deep rationale of cybernetics, namely the
belief that neurobiology and neurotechnology can feed and
improve each other: a belief that underlies as well the field
of integrative neuroscience.

2. A Computational Model of Ideomotor
Synergy Formation

The computational model of synergy formation for
muscle-less or ideomotor synergies is based on the Passive
Motion Paradigm (PMP) [43,44]. It was conceived for ex-
plaining and reproducing biological motion, with particular
attention on the Spatio-temporal invariants that character-
ize common human gestures such as reaching in 2D [45],
reaching in 3D [46], whole-body gesturing as when writing
on a blackboard [47], handwriting and hand-drawing [48],

bimanual coordination [49]. The invariant features indicate
that the figural and kinematic aspects of human gestures are
not independent and the figural-kinematic link occurs what-
ever the number of DoFs recruited for a specific action. In
particular, in point-to-point, unconstrained movements the
trajectory is (approximately) straight and the speed profile
is bell-shaped and symmetric, whatever the starting point,
direction, and length. In common gestures, where the fig-
ural aspect is meant to express a specific meaning and is
composed as a sequence of primitive gestures, the figural-
kinematic linkage is expressed by the anti-correlation of the
speed and curvature profiles: the times of peak curvature
coincide with the times of minimum speed and the times of
maximum speed coincide with the times of minimum cur-
vature (Fig. 1, Ref. [38]).

There have been attempts to explain the two main
features of the spatio-temporal invariants in terms of spe-
cific mathematical models: for example, the minimization
of jerk for the approximation of reaching movements [50]
and the 2/3 power law for reproducing repetitive curved
shapes [51]. The proposed model, based on the PMP, was
originally conceived in the framework of the Equilibrium
Point Hypothesis (EPH) [52–54], namely the idea that the
motor system has point-attractor dynamics determined by
the visco-elastic properties of muscles. In other words, the
body is viewed as a network of spring-like elements that
store elastic energy, contributing to the global potential en-
ergy that recapitulates, in a smooth, analog manner, the
complex set of bodily interactions, providing a “landscape”,
with hills and valleys, that induce the overall body model to
navigate “passively” in the landscape, attracted by the near-
est equilibrium configuration. The minimization of poten-
tial energy is a “global process” arising from “local interac-
tions”. The brain can tune such local interactions in a task-
oriented manner, modifying the shape of the landscape and
the corresponding force field; thus, there is no need for the
brain to represent and control actions directly and continu-
ously because an indirect and discontinuous intervention is
sufficient, by preparing new equilibrium points in advance
and anticipation of the future course of the action. This is
a general concept that is fully in tune with the Bernsteinian
viewpoint, whereas it seems at odds with the emphasis on
continuous feedback attributed to the cybernetic point of
view that, in a narrow interpretation, could regard the gen-
eration and control of actions as a “servomechanism”. But
this is just a narrow view and the PMP model is intended
to inherit the main ideas on the representation and gener-
ation of actions from both the general cybernetic view, on
one side, and the Bernsteinian view, through EPH, on the
other, with a clear link to the artificial neural networks with
attractor dynamics such as associative memories proposed
by Hopfield [20].

The PMP model solves the degrees of freedom prob-
lem in an implicit manner, whatever the degree of kine-
matic redundancy, by avoiding ill-posed transformations,
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Fig. 1. Spatio-temporal or figural-kinematic invariants in trajectory formation. (A) Planar reaching movements between six target
points; note the invariant straight point-to-point trajectories and the invariant bell-shaped speed profiles. (B) Three examples of continu-
ous hand gestures displayed as digitized trajectories, including the profiles of the velocity (V) and curvature (C); note the anti-correlation
of the two profiles. FromMorasso, P. “A vexing question in motor control: the degrees of freedom problem”. Front. Bioeng. Biotechnol.
9:783501, 2022. [38].

like inverse-kinematics, but counting only on well-posed
computations, as mapping joint angles to end-effector posi-
tion (direct kinematics) and mapping end-effector forces to
joint torques (direct statics).

In agreement with the theory on the neural simula-
tion of action [32], as a unifying mechanism for motor
cognition, the PMP model is suggested to apply both to
overt or real actions, which imply the activation of mus-
cle synergies, and to covert actions, which refer to the spe-
cific cognitive aspects of action, in terms of anticipation
and imagination: the goals of action are expressed as a
set of elastic force fields applied to specific parts of the
body and then diffused to the whole-body network. Re-
markably, force fields are additive, thus providing a nat-
ural composition of complex gestures in terms of motor
primitives. Moreover, the original PMP model of syn-
ergy formation was extended [55], incorporating a non-
linear gating mechanism of the virtual force field, similar to
the GO-signal of the vector-integration-to-endpoint (VITE)
model [56] which corresponds to the well-known cortical-
subcortical loop and induces a terminal attractor dynamics
to the synergy-formation model [57,58].

Fig. 2 (Ref. [38]) is a simplified version of the PMP
model as a pair of non-linear interconnectedmodules: mod-
ule A operates in the low-dimensional exteroceptive or ego-
centric space (typically 3D); module B operates in the high-
dimensional proprioceptive space (nD where n is the num-
ber of DoFs of the model). The input to block A is a final
target pointPT which triggers the generation of a force field
FT in the exteroceptive space pointing to the final target: its

intensity (modulated by the gain matrixKT ) is proportional
to the distance of the moving target pT (t) from the final tar-
get. The force field is gated by the Γ-command, which is
a non-linear gain function, null before start time and then
quickly increasing to infinity at the prescribed termination
time: this induces a gradient descent in the force field, pro-
ducing a moving target point pT (t) that reaches the final
target in the prescribed time, with a bell-shaped velocity
profile.

The second module (B) implements the PMP by ap-
plying to the end-effector a force field Fee, proportional
to the distance of the end-effector position pee(t) from the
moving target point pT (t) (modulated by the gain matrix
Kee). This force field is then mapped into the exteroceptive
torque field τee, using the transposed Jacobian matrix JT ,
which is gated by the same Γ-command of module A; the
result is mapped into the joint velocity vector q̇ using the
compliance matrix C, which ranks the degree of involve-
ment of the different DoFs in the synergy formation pro-
cess. The joint velocity vector is transformed into the ve-
locity vector of the end-effector (ṗee) through the Jacobian
matric J , finally yielding the evolution of the position of
the end-effector pee(t) via integration and thus closing the
loop. The two gradient-descent processes, in the exterocep-
tive and proprioceptive domains respectively, are synchro-
nized by the same gating signal, i.e., the Γ-command, that
provides an overall terminal-attractor dynamics, namely the
moving target reaches the final target together with the end-
effector and the final body configuration at the termination
time of the Γ-function.
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Fig. 2. Simplified PMP model of synergy formation, as a pair of non-linear interconnected modules (A and B). A operates in
the low-dimensional exteroceptive or egocentric space (typically 3D) and B in the high-dimensional proprioceptive space (nD where n
is the number of DoFs of the body-model). The input to module A is a final target point PT which triggers the generation of a force
field FT in the exteroceptive space pointing to the final target: its intensity (modulated by the gain matrix KT ) is proportional to the
distance of the moving target pT (t) from the final target PT ; the force field is gated by the Γ-command, which is a non-linear gain
function, null before start time and then quickly increasing to infinity at the prescribed termination time: this induces a gradient descent
in the force field, producing the moving target point pT (t) that reaches the final target in the prescribed time, with a bell-shaped velocity
profile. The second module (B) implements the PMP by applying to the end-effector a force field Fee, proportional to the distance of
the end-effector position pee(t) from the moving target point pT (t) (modulated by the gain matrixKee). This force field is then mapped
into the exteroceptive torque field τee, through the transposed Jacobian matrix JT , is gated by the same Γ-command of module A, and
is mapped into the joint velocity vector q̇ using the compliance matrix C: this matrix ranks the degree of involvement of the different
DoFs in the synergy formation process. The joint velocity vector q̇ is transformed into the velocity vector of the end-effector ṗee through
the Jacobian matric J , finally yielding the evolution of the position of the end-effector pee(t) via integration and thus closing the loop.
The two gradient-descent processes, in the exteroceptive and proprioceptive domains respectively, are synchronized by the same gating
signal that provides an overall terminal-attractor dynamics: the moving target reaches the final target together with the end-effector and
the final body configuration at the termination time of the Γ-function. FromMorasso, P. “A vexing question in motor control: the degrees
of freedom problem”. Front. Bioeng. Biotechnol. 9:783501, 2022. [38].

As clarified above, the interaction/integration between
the two representation levels (exteroceptive and proprio-
ceptive) is provided by the Jacobian matrix of the kinematic
transformation (or forward kinematic function), which is
the main component of the body model:

pee = f(q) → J =
∂pee
∂q

(1)


dpT

dt = Γ(t)KT (PT − pT (t))
dq
dt = Γ(t)CJTKee (pT (t)− pee(t))
dpee

dt = J dq
dt

(2)

The simulation of the model of synergy formation in
Fig. 2 consists of the integration of the following ordinary
differential equations (ODEs):

From the kinematic point of view, the Jacobian is
not an invertible operator: it provides a unique solution
in the mapping from the proprioceptive to the exterocep-
tive domain (q̇ → ṗee) but it is ill-posed in the oppo-
site direction because infinite proprioceptive patterns (or
none) can match a given exteroceptive pattern. However,
the opposite relation (between exteroceptive and proprio-
ceptive patterns) occurs if we consider generalized forces
instead of generalized movements. Such complementar-
ity is the basic rationale of the PMP model: the instanti-
ation of the target induces a force field in the exterocep-
tive manifold and this field is mapped to the proprioceptive
manifold through the transpose Jacobian, producing a high-
dimensional torque field that drives the concurrent gradi-
ent descent of the body model, ultimately providing the tra-
jectory of the end-effector through the same Jacobian: this
closes the causal loop between the two manifolds. Remark-
ably, although the Jacobian operator for the redundant kine-
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matic system is not invertible, it is possible to regularize
the DoF problem by separating the process into two streams
that move in opposite directions and different domains. The
crucial point is that the simulation of this model of synergy
formation is consistent with the spatio-temporal invariants
of biological motion.

It is also worth considering that although the mathe-
matical formulation of the Jacobian matrix can be derived
explicitly in closed form through standard, although gen-
erally complicated, methods, these methods are unlikely to
match biological reality. A more biologically plausible ap-
proach is based on the circular reaction strategy: the general
idea is that the purposive agent performs a random set of
movements, where the joint angular patterns are distributed
in an approximately uniform manner in the proprioceptive
manifold, keeping note of both the joint angles and the po-
sition/orientation of the end-effector (training set). In other
words, learning is behaviorally unsupervised, in the sense
that the training set is autonomously generated by the agent
in such a babbling phase. Moreover, the neural represen-
tation of the Jacobian matrix can be obtained by training a
feedforward, multilayer neural network using the backprop-
agation method. Although for this kind of network the con-
nection weights between input, hidden, and output neurons
are generally unidirectional, it can be demonstrated [59]
that the same network can be used in both directions: from
the proprioceptive input neurons to the exteroceptive output
neurons it approximates the Jacobian and in the opposite di-
rection it approximates the transpose Jacobian. Multilayer
feedforward networks are far from being biologically plau-
sible, in particular, because the training method (backprop-
agation) is quite implausible. However, the overall plausi-
bility of the PMP computational architecture, summarized
in Fig. 2, is based on the underlying circular reaction strat-
egy and its self-organizing flavor. This argument, as ex-
plained in the next section, is further motivated by a neural
formulation of the computational model of synergy forma-
tion that uses Hebbian learning instead of backpropagation.

3. A Neural Formulation of the
Computational Model of Ideomotor Synergy
Formation

The computational model of Fig. 2 is a lumped system,
namely a model in which the dependent variables of interest
are a function of time alone and the analysis of the dynamic
behavior of the model implies solving a set of ordinary dif-
ferential equations (ODEs). Although we clarified how this
model can capture relevant aspects of sensorimotor cogni-
tion, the biological plausibility of the model and its compu-
tational efficiency could be enhanced by a distributed im-
plementation based on neural networks. One step in this
direction was already provided in the previous section by
showing how to integrate into the lumped formulation of
the model a feedforward neural network for representing
the Jacobian matrix, which is a crucial element of the Pas-

sive Motion Paradigm. However, this does not improve the
overall biological plausibility, due in particular to the ar-
tificial nature of the back-propagation training mechanism;
moreover, integrating a neural network representation in the
lamped model yields an implausible hybrid computational
structure. An additional step forward, outlined in this sec-
tion, is a fully distributed implementation of the model of
ideomotor synergy formation in which the variables of in-
terest are distributed on collections of Processing Elements
(PEs) that we call Sensorimotor Neural Fields. In partic-
ular, we propose two interacting neural fields, one related
to exteroceptive or egocentric information and the other to
proprioceptive information, in analogy to the subdivision
of the model of Fig. 2 into two modules (A and B). More
specifically, both neural fields are represented by Topology
Representing Networks (TRN) [60], extended in such a way
as to incorporate an attractor neurodynamics inspired by the
Hopfield associative memory model [20,22] and trained by
unsupervised Hebbian learning. In passing, we wish to ob-
serve that although both neural paradigms were conceived
more than 30 years ago and their computational potential
was somehow obscured by the recent emphasis and com-
mercial success of supervised learning in deep feedforward
neural networks [18] both neural models are still active re-
search paradigms [23,24,61,62].

At the same time, we should clarify in which sense the
proposed Sensorimotor Neural Fields are related to Neural
Field research at large, pioneered by Amari and Wilson &
Cowan for developing a continuum approximation of the
neural activity of specific cortical areas [63,64]. Typically,
the numerous neural field models developed over time are
tissue-level partial differential equations (PDEs) that de-
scribe the spatiotemporal evolution of coarse-grained vari-
ables in populations of neurons: the grains in such neural ar-
eas typically reflect micro- or macro-columns and thus rep-
resent a mean-field model, averaging neural activity over
a time interval of the order of several milliseconds. Con-
sequently, neural fields are usually continuous and coarse-
grained in time and space. We should also mention that
there is some similarity between neural field models and
neural mass models [65], with the difference that the latter
models neglect spatial extensions. Since neural field mod-
els are nonlinear spatially extended systems, they are capa-
ble in principle to support the formation of spatio-temporal
patterns, such as bumps (for population coding) and travel-
ing waves. One of the common assumptions in most neu-
ral field models is that the networks are homogeneous and
isotropic, typically distributed on a bi-dimensional mani-
fold. In contrast, the neural sensorimotor field model de-
scribed in the following focuses on representing the dimen-
sionality of the sensorimotor manifolds through the lateral
connectivity of thePEs, organized indeed as Topology Rep-
resenting Networks. In summary, such sensorimotor neu-
ral fields are coarse-grained in time and space but are not
continuous in space, implementing a tessellation of high-
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dimensional manifolds, and thus are represented by a large
set of ODEs rather than PDEs.

3.1 Neural Sensorimotor Fields

A neural sensorimotor field can be intended as a col-
lection of neural assemblies or processing elements (PEs),
such as cortical micro-columns, logically distributed on
some smooth hyper-surface or manifold, encoded by the
connectivity patterns of the PEs. A TRN, in the context
of this model, can be used to represent neural fields. All
the PEs of a neural field receive a common thalamocor-
tical input vectors xand compete for activation: each PE
or hyper-neuron of the field (PEi, i = 1, … N) is char-
acterized by a prototype vector Πi, that plays the role of
center of the corresponding receptive field, and by a set
of lateral intra-connections Cij with other PEs of the net-
work. Such connections are bidirectional and symmetric
(Cij = Cji) without self-connections (Cii = 0): such a
pattern of connectivity mirrors the Hopfield model [20] and
this implies that the state of the network is governed by a
potential energy function and the corresponding point at-
tractor neuro-dynamics. However, while in the Hopfield
model the pattern of cross-connectivity is preassigned and
typically equal to full connection, in the case of TRNs the
cross-connections are generally sparse and emerge during
training based on Hebbian adaptation and competitive acti-
vation, to facilitate the emergence of the topological struc-
ture of the input signal.

Now, suppose that during training the input sensory
signal is an n-dimensional vector that is generated by sam-
pling in an approximately uniformmanner a finite manifold
M , hosted inRn but with lower dimensionality: x ∈ M ⊂
Rn. In other words, it is assumed that the information pro-
vided by x is redundant and thus the real (hidden) dimen-
sionality of M is less than n: for example, the representa-
tion of peri-personal space (that we may assume to be 3-D)
is obtained by the brain by integrating different exterocep-
tive signals (visual-binocular and audio-binaural), yielding
a multimodal sensory signal with a dimensionality larger
than 3. In any case, at the end of the training the prototype
vectors of the map and the corresponding receptive fields,
adapted according to the competitive Hebbian rule, will be
distributed across the manifold in such a way as to fill it
and the cross-connectivity will be compatible with the hid-
den 3D nature of the sensory signals, independent of the
redundancy of x.

The relation between the connectivity of a TRN and
the dimensionality of the input sensory signal can be de-
rived from the theory of dense sphere packing [66] and, in
particular, from the definition of “kissing number” K: for
the regular tessellation of nD space, K is the number of hy-
perspheres with an equal radius that “touch” a given hy-
persphere in the densest packing. Reminding that no al-
gorithm exists for computing K in general as a function
of n, it is worth considering a few notable cases: K =

2,6,12,24,40,72,126,240 for n = 1,2,3,4,5,6,7,8. In prac-
tice, the tessellation of the manifold offered by a trained
TRN will not be perfectly regular but the notion of kiss-
ing number as an indicator of hidden dimensionality can
be associated with the distribution, over the network, of
the number of cross-connections of each PE. Thus, if the
hidden dimensionality of the input vector x is 3, we may
expect that the PEs located well inside the manifold will
have an average number of cross-connections close to 12,
declining to 6 or less near the border of the manifold: in
this sense, a well-trained TRN is “Topology-Representing”
and implies a well-organized tessellation of the manifold
M . More specifically, the tessellation of Mwill cover it
by a set of Voronoi hyper-polyhedra, one for each proto-
type vector (M= {Wi, i = 1…. N}), linked according to
the corresponding Delaunay triangulation: in particular, the
fact that the Voronoi hyper-polyhedronWi of a given PE is
adjacent to the hyper-polyhedronWj of another PE implies
that the two PEs are connected (Cij ̸= 0). Each Voronoi
polyhedronWi of the map, associated with the correspond-
ing prototype vector Πi, may be considered the receptive
field of the PE in the case of hard competitive dynamics
(winner-take-all). For a more biologically plausible com-
petition, the receptive field of a given PE may include sev-
eral Voronoi polyhedra, according to the population code
concept [67]. Generally, it has been shown that cortico-
cortical organization is not static but changes with ontoge-
netic development together with patterns of thalamocortical
connections [68,69].

Although the classic neural field models [11,12] are
based on a flatness assumption, this hypothesis is contra-
dicted by the fact that the structure of lateral connections
is not genetically determined but depends mostly on acti-
vation during development: such connections are known
to grow exuberantly after birth, reaching their full extent
within a short period, followed by a pruning process which
ends in a well-defined pattern of connectivity, characterized
by a large amount of non-local connections. Such connec-
tions to non-neighboring microcolumns are organized into
characteristic patterns: collaterals of pyramidal axons typ-
ically travel a characteristic lateral distance without giving
off terminal branches and then producing tightly packed ter-
minal clusters: the characteristic distance is not a universal
cortical parameter and is not distributed in a purely random
fashion but is different in different cortical areas [70–72].
Thus, the development of lateral connections depends on
the cortical activity caused by the external inflow, in such a
way as to capture and represent the (hidden) correlation in
the input channels.

3.2 Multi-Field Representation

For the neuronal formulation of the synergy formation
model we need at least two fields, representing two sensori-
motor manifolds: one related to the representation of exte-
roceptive or egocentric, or distal space (MA) and the other
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to proprioceptive or proximal space (MAB). In a biological
context, we may suppose that the two maps are trained con-
currently by using the circular reaction strategy, namely by
randomly sampling the proprioceptive space (producing a
training set of proprioceptive signal vectors q) and evaluat-
ing the corresponding set of exteroceptive signal vectors p.
Competitive Hebbian learning is applied independently to
the prototype vectors of both fields (A and B) as well as to
the corresponding intra-connections (CA, CB); moreover,
in the same process, it is possible to use the same competi-
tive learning for growing a set of inter-connections among
PEs of the two fields (CAB).

Fig. 3 is a sketch of the two trainedmaps: the receptive
field centers of the PEs in MA (light blue region) are de-
noted by blue circles and thePEs inMB (light green region)
by green circles. An example of intra-connections in the
first manifold is shown for a single PE (blue lines) as well
as intra-connections in the second manifold (green lines);
moreover, the figure shows the inter-connections (red lines)
that depart from a selected (red colored) neuron of the first
manifold and terminate in the corresponding (red colored)
neurons of the second manifold. Such a pattern of one-
to-many connectivity exemplifies, at the neural level, the
concept of motor redundancy: the same end-point position
can be achieved by multiple joint configurations. The high-
lighted set of neurons in the proprioceptive manifold cor-
responds to the neuronal representation of the no-motion-
manifold or self-motion-manifold of the kinematic transfor-
mation [73], referred to in Eqn. 1. The inter-connections
of the figure are symmetric and bidirectional; as better ex-
plained in the following, they implement in a neuronal way
the bidirectional use of the Jacobian matrix in Fig. 2.

It is worth noting that this kind of neuronal represen-
tation of synergy formation, based on the circular reaction
strategy, implicitly incorporates a treatment of joint lim-
its that is more general and more robust than the one that
is provided by the modeling framework depicted in Fig. 2.
Since network training through circular reaction integrates
the sensory-motor data acquired during the untargeted ex-
ploration of the environment, the learned prototypes auto-
matically incorporate all the biomechanical constraints and
guarantee a safe limitation of the planned patterns. More-
over, typical amplification phenomena can occur if the ex-
ploratorymovements during circular reaction do not sample
uniformly the workspace but are more concentrated in some
areas, a sort of attentional proprioceptive fovea. In other
words, the representation of sensory-motor spaces does not
need to have a uniform and pre-fixed resolution, but a vari-
able resolution that can be fine-tuned by experience. The
two processes (planning and learning) could be made to co-
exist without interference using autonomous mechanisms
of selective attention and vigilance similar to those studied
by Gaudiano and Grossberg [74].

A likely site for the computational model based on in-
teracting TRNs is the posterior parietal cortex (PPC), par-

Fig. 3. A sketch of two interacting neural fields, represented
by two trained TRNs. One hosted by the exteroceptive map
(MA: light blue region) and the other by the proprioceptive map
(MB : light green region). The receptive field centers of the PEs
in the former manifold are denoted by blue circles and the PEs
in the latter by green circles. An example of intra-connections
in MA is shown for a single neuron (blue lines) as well as intra-
connections inMB (green lines); moreover, the figure shows the
inter-connections (red lines) that depart from a selected (red col-
ored) PE of the former neural field and terminate in the corre-
sponding (red colored) PEs of the latter field. Such pattern of
one to many connectivity exemplifies, at the neuronal level, the
concept of motor redundancy: the highlighted set of PEs in the
proprioceptive field corresponds to the neuronal representation of
the no-motion-manifold or self-motion-manifold of the kinematic
transformation.

ticularly as regards the association area 5 [75,76], which is
the crossroad between the somatosensory cortex (areas 1,
2, 3), the motor cortex (areas 4 and 6), the other part of the
PPC (area 7) involved in the integration of external space
structures, and sub-cortical as well as spinal circuits: PPC
processes a combination of peripheral and centrally gener-
ated inputs and is potentially suitable to synthesize neuronal
representations in active movements. It is important to note
that area 5 is activated in anticipation of intended move-
ments [77] and is insensitive to load variations [78], i.e.,
it appears to deal with the purely geometric and kinematic
aspects of movements.

3.3 Neural Dynamics of a Single Sensorimotor Neural
Field

On top of the topological organization of the two in-
terconnected TRNs, that correspond to the two modules A
and B of Fig. 2, it is necessary to design the correspond-
ing neuro-dynamics, first of a single neural field (module
A) and then of the interconnected fields (A plus B). Lat-
eral intra-connections have a crucial role in the process, al-
though each of them may be singularly too “weak” thus go-
ing virtually unnoticed while mapping the receptive fields
of cortical neurons; however, the total effect on the overall
dynamics of cortical maps may be substantial, as suggested
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by the sharp increase of the number of intra-connections
with the increase of the dimensionality of the manifold and
by cross-correlation studies [79]. Lateral connections from
superficial pyramids tend to be recurrent (and excitatory)
because 80% of synapses are with other PEs and only 20%
with inhibitory interneurons, most of them acting within
columns [80]: recurrent excitation is likely to be the under-
lying mechanism which produces the synchronized firing
which has been observed in distant mini-columns.

The existence (and preponderance) of massive recur-
rent excitation in the cortex is in contrast with what could
be expected, at least in primary sensory areas, consider-
ing the ubiquitous presence of peristimulus competition (or
“Mexican-hat pattern”) which has been observed in many
pathways as the primary somatosensory cortex and has been
confirmed by direct excitation of cortical areas as well as
correlation studies; in other words, in the cortex there is
a significantly larger amount of long-range inhibition than
expected from the density of inhibitory synapses. In gen-
eral, “recurrent competition” has been assumed to be the
same as “recurrent inhibition”, for providing an antago-
nistic organization that sharpens responsiveness to an area
smaller than would be predicted from the anatomical fun-
neling of inputs. Thus, an intriguing question is how long-
range competition can arise without long-range inhibition
and a possible solution is the mechanism of gating inhibi-
tion based on a competitive distribution of activation, pro-
posed by Reggia [81] and further investigated by Morasso
and Sanguineti [82].

The neurophysiological evidence summarized above
about the organization of neural fields can be modeled in
different manners and the following mean-field model of
the dynamics of a single sensorimotor neural field is just
an example. In this model, for simplicity, the generic cor-
tical minicolumn is lumped into a single PE, characterized
by an activity level Vi and two kinds of inputs, one com-
ing from lateral connectivity and the other from thalamo-
cortical pathways:

 

 

 
 

 

 

(3) 

 
(3)

N is the number of PEs of the neural field. The first
element of the equation provides the terminal attractor fea-
ture of the field neurodynamics, gating with the non-linear
function Γ(t) the overall input to the PE, that includes three
contributions:

(1) The first contribution−γi Vi is a self-inhibition of
thePE, weighted by the parameter γi: this term is consistent
with the intra-columnar nature of inhibitory synapses and it
gives the PE the character of a “leaky integrator”.

(2) The second contribution
∑

j Cij
Vj∑
k Vk

is a recur-
rent excitatory input, expressing the massive lateral exci-
tatory connections: the connection weights Cij that link
the given PE with the connected neighbors are positive and
symmetric. This term also includes an element of gating in-
hibition, because the activity level of each PE is normalized
according to the average activity of its immediate neigh-
bors. The symmetry of the lateral connections supports the
point-attractor dynamics of the map. The gating inhibition
allows the population code that characterizes the state of
the manifold at any given time to be much sharper than the
receptive field of any PE.

(3) The third contribution is related to the external
thalamo-cortical input x, broadcasted to all the PEs of the
map and filtered according to the receptive field properties
of the given unit. In the implementation of Eqn. 2, the re-
ceptive field of a given PE is a Gaussian, centered on the
prototype vector Πi. This term also includes a shunting
interaction term, an idea borrowed from Grossberg [10]:
Vi G(x, Πi) for further sharpening the population code.

Shunting interaction, together with gating inhibition,
is crucial for inducing the emergence of a manifold-wide
behavior that is analogous to the synergy formation process
described above for the computational model of Fig. 2.

In summary, the transient behavior of the map can be
described as follows: after the sudden shift of the input vari-
able x (say the selection of a new target) there is first a
spreading of activity throughout the map, which initially
flattens the population code, distributing the pattern over a
large part of the network, followed a re-sharpening process
around the target (which builds up faster and faster as the
diffused waveform reaches the target area). The combina-
tion of the two processes is the propagation of the popula-
tion code toward the new target, following a “geodesic” in
the characteristic manifold of the map, with a bell-shaped
speed profile as a consequence of the non-linear gating of
the Γ-command. A biologically plausible implementation
of this non-linear gating is related to the basal-thalamo-
cortical loop and the well-established role of the basal gan-
glia in the initiation and speed-control of voluntary move-
ments [57].

Fig. 4 shows a simple simulation of a neural field that
illustrates the described computational mechanism. The in-
put environmental variable xis two-dimensional, varying in
a circular domain. The map includes 128 PEs that after
training are arranged in a regular tessellation of the input
domain; the receptive fields are radially symmetric, with a
large size, comparable to the range of variation of the input
signal. In the figure, the initial state of the field is centered
around the point (+0.2, –0.2); the final target (–0.2, +0.2)
is then instantiated, triggering a transient that lasts 1 s and
consists of the shift of the population code from the initial
to the final position.

If we compare the lumped implementation of module
A in Fig. 2 with the distributed implementation with a neu-
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Fig. 4. The figure shows the graphical output of the simulation of a simple neural field or map whose dynamics is described by
Eqn. 3. The input environmental variable x is two-dimensional, varying in a circular domain. The neural field includes 128 PEs that
after training are arranged in a regular tessellation of the input domain. The initial peak of activity of the map (T = 0) is located in (+0.2,
–0.2); the final target is then instantiated at position (–0.2, +0.2), thus triggering a transient that lasts 1 s, shifting the population code
from the initial to the final position. This distributed dynamic behavior mirrors the dynamics of block A in Fig. 2 where the moving
target is attracted to the final target with a bell-shaped velocity profile.

ral field whose PEs are characterized by Eqn. 3, we may
say that the force field, explicitly represented in the former
case by the formula FT = KT ∆pT , is implicitly imple-
mented in the distributed model of Eqn. 3 by the diffusion
of a distance field from the designated target throughout the
map (the corresponding force field is the associated gradi-
ent field).

3.4 Combined Neuro-Dynamics of Interacting Neural
Fields

Both neural fields of the distributed synergy forma-
tion process (the exteroceptive field MA and the proprio-
ceptive field MB) are characterized by a copy of equation
3, where Cij refers to the intra-connections of each map.
Since the two neural fields are characterized by very differ-
ent dimensionality (the proprioceptive field has obviously a
much greater dimensionality than the exteroceptive field),
the corresponding patterns of intra-connections emerging
from self-supervised learning will be quite different. In any
case, the intrinsic dynamics of each map is capable to main-
tain the stability of the population codes on the correspond-
ing manifolds. Their consistency, i.e., the fact that the cur-
rent position of the end-effector coded in map A is geomet-
rically consistent with the current articulation of the body
model coded in map B is provided by the inter-connections
between map A and map B. In particular, for achieving this
result it is sufficient to introduce in the equation that charac-
terizes the dynamics of map B the following ‘external’ term
for each PE of the map, where CAB

ik the inter-connection
weights that link map A to map B:{

hext
i =

∑
k

CAB
ik Vki = 1 . . . NB

}
(4)

This term carries out the same role as the Jacobian ma-
trix in module B of Fig. 2. In other words, the force field
that drives the motion of the population code in map A is
reflected onto map B, starting the co-evolution of the two

maps, synchronized by the common gating command.

In summary, the distributed implementation of the
model of Fig. 2 is characterized by the following distributed
set of ODEs:
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is the instantaneous activity level of each PE of map A and
Wi is the corresponding activity level of the PE in map
B;

{
CA

ij

}
are the intra-connection weights of map A and{

CB
ij

}
the corresponding weights of map B;

{
Πi

A
}
are the

prototype vectors or centers of the receptive fields of the
PEs in map A and

{
Πi

B
}
the corresponding prototype vec-

tors in map B; p is the exteroceptive thalamo-cortical input
to map A and q the corresponding proprioceptive input to
map B.

The biological plausibility of this model was tested in
the case of speech motor control [83] with real data: in this
case, the exteroceptive space is acoustic (the targets are spo-
ken sequences) and the proprioceptive space characterizes
the articulatory structure of the vocal tract, which includes
tongue, jaw, lips, and larynx and thus, mechanically, has
an infinite number of DoFs. However, it is expected that
the number of functional DoFs or functional articulators
used by the brain is limited, although large enough to al-
low some redundancy in speech production. This problem
was addressed by using a training set that included several
thousand samples of the acoustic output of a speaker, pro-
nouncing Vowel to Vowel (VV) transition sequences, syn-
chronized with a cineradiographic view of the vocal tract
[84]. The acoustic samples were represented by the first
five formants of the recorded sounds (In speech science a
formant is defined as a broad peak, or local maximum, in
the spectrum), and were used for training an acoustic TRN,
composed of 500 PEs, with a five-dimensional acoustic in-
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put vector. The digitized images of the vocal tract were an-
alyzed by extracting 10 geometric indicators [85] that were
used for training an articulatory TRN composed of 1000
PEs, with a ten-dimensional input vector.

After training, the analysis of the patterns of intra-
connections allowed us to evaluate the intrinsic dimension-
ality of the acoustic map in the range 3–4 and the cor-
responding dimensionality of the articulatory map in the
range 4–5. The inter-connections, obtained in the combined
training of the two maps, implicitly code the functional re-
lationship between the two manifolds and also allow map-
ping the population code of onemap as external input for the
other: this induces coupled acoustic-articulatory dynamics
that is a general-purpose tool for solving several sensorimo-
tor problems in a simple and unified framework.

Finally, the computational power of the dual-map
model was demonstrated by testing its ability to generate
coordinated acoustic-articulatory patterns in VV transitions
compatible with the available experimental data, for exam-
ple, the /ae/ transition. The initial conditions in the two
maps were chosen by centering the two population codes
according to the available data vectors and allowing the dual
neural fields to stabilize. The phoneme /e/ was then given
as new external input to the acoustic map at t = 0 while
also activating the Γ-command. The two maps started co-
evolving in time, as dictated by Eqn. 5, under the driving
influence of the hext inter-coupling term (Eqn. 4). The pop-
ulation code in the acoustic map was attracted by the tar-
get phoneme /e/, producing a moving wave of activation in
the five-dimensional articulatory manifold. At the end of
the transient, the articulatory map settled in a configuration
that implicitly selected, in the no-motion manifold of /e/,
the configuration closest to the initial one. In other words,
an effect of the cross-coupling was to establish a correspon-
dence between phonemes and no-motion manifolds, allow-
ing the map dynamics to operate as a navigation tool that
carried out the inverse acoustic-articulatory mapping, with-
out any explicit regularization or optimization procedure.

4. A Neuromorphic/Quantum Computing
Modeling Framework?

In the previous section, it was shown that a neural ar-
chitecture based on interacting TRNs is capable, in princi-
ple, to carry out goal-oriented synergy formation processes
for both covert and overt actions. Synergy formation for
purposive actions is an essential kernel of cognition, in the
framework of the theory of Embodied Cognition and agree-
ment with the self-awareness promoting practices such as
Tai Chi: in fact, Tai Chi is defined as “meditation in mo-
tion”, namely the generation of slow and smooth gesture
sequences integrated with intentional and anticipatory mo-
tor imagery [86,87].

The neuro-dynamics of the model implies a large
number of modular PEs that may correspond to the mini-
columns of the cerebral cortical areas. It is estimated that

in the brain there are about 108 mini-columns that include
about 80–120 neurons each [88,89]. Thus, in principle, the
brain has available sufficiently powerful neural hardware to
support a body-wide TRN-based neuromotor architecture.
On the other hand, the size of the simulation models in the
literature is too small (of the order of thousands of PEs) to
allow investigating in depth a number of subtle computa-
tional aspects that link neuromotor modeling with memory
and accumulation of knowledge.

The distributed model sketched in the previous section
is based on self-organizing principles operating both at the
behavioral level, like the circular reaction strategy, and at
the local level, like the competitive interactions of neigh-
boring PEs that support global effects like the diffusion of
force fields and then the propagation of population codes.
The point is that this kind of computational architecture is
as far away as possible from the von Neumann digital ma-
chines that are used for simulating very limited prototypes
of the model.

At the same time the dissemination of electrophys-
iological techniques based on multi-electrode, multi-site
recording, which permits the analysis of the correlation
structure of cortical areas, has focused the attention on cor-
tical dynamics, suggesting that the cerebral cortex might
exploit high-dimensional, non-linear dynamics for carrying
out cognitive functions [90]. The cortical connectome, with
its preponderance of reciprocal connections and the rich dy-
namics resulting from such reciprocal interactions, is in-
deed ideally suited to provide an internal representation of
high-dimensional manifolds emerging from the non-linear
dynamics of recurrently coupled networks, on the border
of chaotic and attractor dynamics [91]. In this conceptual
framework, which allows performing a flexible and effi-
cient computation in a distributed manner, the representa-
tion and internal simulation of purposive actions are dis-
tributed and encoded both in the discharge rate of individ-
ual PEs and in the specific temporal relations among the
discharge sequences of distributed PEs in different cortical
maps.

On the other hand, one may ask whether this con-
ceptual “digital” framework, based on the firing patterns
of neuronal assemblies, is sufficient to capture short-range
“analog” interactions which support Hebbian learning, at
the basis of TRNs, as well as the force-fields and wave-like
behavior of neural fields that implement the PMP model
of synergy formation on a very large number of PEs. A
possible solution, away from the von Neumann paradigm,
could be offered by a large family of neuromorphic tech-
nologies, rapidly growing but still in their infancy [92]: this
new generation of computing architectures is believed to
deal with the storage and processing of large amounts of in-
formation with much lower power consumption than von
Neumann architectures. The neuromorphic architectures
use very-large-scale integration (VLSI) systems containing
electronic analog circuits to mimic neuro-biological archi-
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tectures in the nervous system. Generally speaking, the
term neuromorphic is used to describe analog, digital, and
mixed-mode analog/digital VLSI systems. Just as a few ex-
amples, wemay quote StanfordUniversity’sNeurogrid sys-
tem [93], Intel’s neuromorphic research chip Loihi [94], or
Heidelberg University’s BrainScaleS Neuromorphic Hard-
ware System [95], in the framework of the Human Brain
Project. We are still far away from a deep understanding of
how to design and assemble neuromorphic computing sys-
tems with billions of artificial neural assemblies that can
match, at least approximately and in a coarse-grain man-
ner, the organizing principles of brain function: the problem
is that it is still unknown how computational functions can
emerge from neuromorphic network structures [96]. More-
over, it is expected that the hybrid integration of neuromor-
phic technologies with other nanotechnology concepts, in-
cluding photonics, can be extended down to quantum com-
puting technologies [97].

Behind the amazing technological potential break-
throughs hinted above, it is also necessary to face a funda-
mental question: the analog component of cortical dynam-
ics, underlying themeasurable digital component expressed
in terms of neuronal firing patterns, should be described and
understood in terms of classical physics (for example us-
ing ordinary differential equations) or quantum physics or
as a combination of the two? There is no doubt that the
brain obeys quantum mechanics as any physical system but
the question is whether quantum effects are observable and
measurable and, for specific brain functions, are relevant or
irrelevant in comparison to the account offered by classical
physics.

Various general objections are raised against any
quantum brain hypothesis: even though neurons and neu-
ronal components are small, still they are orders of magni-
tude too big for assuming that quantum effects may influ-
ence directly neuronal activity; moreover, the physiological
features of the brain environment (warm, wet, and noisy)
seem to imply sure destruction of any non-trivial quantum
effect, such as superpositions or entanglements [98]. In ad-
dition, major philosophical and conceptual problems sur-
round the process of making measurements in quantumme-
chanics. From the engineering point of view, together with
the lure of achieving asymptotic speedups, there is also the
formidable challenge that quantum computations are diffi-
cult to implement, as exemplified by the fact that no scal-
able large quantum computer, with a size comparable to the
human brain, is known so far despite the size of the em-
ployed funds. More specifically, two key biophysical oper-
ations underlie information processing in the brain: chemi-
cal transmission across the synaptic barrier and the genera-
tion of action potentials. Both events involve thousands of
ions and neurotransmitter molecules, driven by mechanical
diffusion or by electrical potential over tens of microns, and
this is likely to inhibit the emergence of any coherent quan-
tum states. Thus, spiking neurons can only receive and send

classical, rather than quantum, information. On the other
hand, spiking is the ‘digital’ final event that occurs on the
top and at the end of complex ‘analog’ processes that may
or may not include quantum effects.

In contrast to classical physics, quantum mechanics
is fundamentally indeterministic but this is true as well for
non-linear dynamical systems in general. Quantum effects
are small and local and thus it seems unlikely that can influ-
ence brain dynamics at large in a non-trivial way. However,
the complex non-linear dynamics of the brain is frequently
characterized by quasi-chaotic behavior, or at least it oper-
ates on the stability edge with high sensitivity to small fluc-
tuations: such sensitivity may amplify the small and local
quantum effects and help dissemination at relatively long
distances, such as the sensorimotor maps suggested in the
previous section [99].

In any case, there is mounting evidence of non-trivial
quantum effects in the brain, at least in the sensory domain:
Rhodopsin, an important protein for retinal photoreceptors,
was found to exhibit quantum waves [100]; Olfactory re-
ceptors appear to exploit quantum effects (electron tunnel-
ing) for the detection of odorant molecules [101]; Magne-
toreception, that is crucial for avian navigation skills, re-
vealed robust quantum entanglements in the cryptochromes
of the retina [102]. Moreover, quantum effects are expected
to play a role in a fundamental neural function such as the
opening of ion channels [103].

However, it is fair to say that, at present, non-
trivial quantum effects were not detected or hypothesized
in the central nervous system concerning general cogni-
tive functions, except for the highly controversial quan-
tum consciousness hypotheses formulated by Penrose and
Hameroff and based on the supposed quantum computation
carried out by the tubulin components of microtubules, fil-
amentous protein polymers that form the cytoskeleton of
cells [104].

In any case, there is agreement that the neurodynam-
ics underlying motor cognition should be characterized as
a non-linear system, capable of oscillatory and/or chaotic
behavior [105,106]. In such a context, small (even in-
finitesimal) fluctuations due to generic noise or quantum
effects need not be averaged out in the large but, at least in
some cases, can be amplified in a multi-scale manner. In
both cases, such rich dynamic effects are intrinsically inde-
terministic but critical from the self-organization point of
view.

In summary, the intricate interplay between quantum
effects and non-linear complex dynamics might be able (a)
to generate new persistent quantum-chaotic patterns at a
microscopic scale and (b) to amplify quantum effects to a
macroscopic scale. How exactly the indeterminacy of com-
plex quantum dynamics of the brain is embedded in classi-
cal neuronal mechanisms of the cognitive organization re-
mains to be investigated in depth. In the meantime, we
may suggest a crucial side-effect of the possible massive ex-
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ploitation of quantum effects in brain physiology: since lo-
cal quantum interactions are likely to be very efficient from
the energetic point of view, their exploitation/amplification
through non-linear quasi-chaotic global dynamics might be
the key to the energetic efficiency of the neural control of
actions in general. It is also worth mentioning that the
global, quasi-chaotic dynamics should not be restricted to
the brain per se, isolated from the environment, but should
include body-environment interaction as well. An example,
in this context, is the issue of Intermittent control for the
stabilization of unstable tasks, such as balancing inverted
pendulum paradigms [107–110]. The intrinsic dynamics of
the task involves a saddle-like instability that implies a par-
tition of the state space of the inverted pendulum in stable
and unstable areas. The intermittent control strategy means
to open/close the feedback loop according to the current
state. The result is a quasi-chaotic oscillation (the well-
known sway motion in the case of upright standing) that
enhances readiness for sudden phase transitions if the task
changes and provides energetic efficiency because no mus-
cle energy is required in about 50% of the time (i.e., when
the feedback loop is open).

Quantum computing and quantum (neuro)-biology are
certainly linked but are separated logically and technolog-
ically. The fundamental motivation of the former is the
promise of achieving asymptotic speedups in hard compu-
tational problems that are crucial for specific applications,
including genomics, genetics, biochemistry, and deep phe-
notyping [111]. The challenge for neurobiological model-
ing is to outline a hybrid framework for integrating digital
information, analog information, and quantum information.

5. Conclusions
In the original spirit of cybernetics, we believe that

a better and deeper understanding of the neurobiology of
purposive action should have an impact on the design of
robotic systems capable of similar functionality. Although
this requirement was practically ignored so far in most in-
dustrial robotics, it is now re-evaluated in the framework of
Industry 4.0 which implies a high degree of cognitive in-
teraction and communication between humans and robotic
partners. This is the reason for (re)taking inspiration from
neurobiology for designing better robotic systems, capable
of cognition in purposive action and multi-agent interaction
and cooperation, revisiting the general framework outlined
by Nikolai Bernstein and Norbert Wiener.

In particular, it is worth considering the relationship
between the Passive Motion Paradigm, which has a central
role in the modeling framework outlined in this review pa-
per, and Active Inference [112]. The issue was discussed
by Friston and Parr [113], enhancing the fact that these two
concepts are strongly related also in a deep philosophical
sense: “The anti-symmetry between active inference and
passive motion speaks to the complementary but conver-
gent view of how we use our forward models to generate

predictions of sensed movements. This view is another ex-
ample of Dennett’s ‘strange inversion’ [114], in which mo-
tor commands no longer cause desired movements – but de-
sired movements cause motor commands (in the form of
the predicted consequences of movement)”. Moreover, be-
yond simple goal-oriented actions, gesture representation,
production, and understanding [87] are topics of crucial in-
terest for human-robot communication, as emphasized by
recent research activities along this line [115,116].

Among the different issues that are implied by such
vision, there is also the energetic efficiency of the neuro-
biological implementation, characterized by hybrid integra-
tion of computing tools: the optimality of human motion is
appreciated by roboticists [117] and the energetic “frugal-
ity” of neural computational architectures, away from the
von Neuman paradigm, is emphasized by the roadmap to
the development of neuromorphic systems [92], including
the focus on spiking neural control [118,119].
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