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Abstract. This paper deals with the analysis of the main variables involved in the visual activity of a driver of motor 
vehicles, in order to identify the most important quantities and implement, therefore, appropriate corrective actions to 
the achievement of road safety. The first step in this research was to survey a number of variables within the road en-
vironment and processing this data base with clustering techniques in order to extract useful information for purpose. 
In this case, a mixture of procedures based on Fuzzy Logic (FL) and Artificial Neural Network (ANN) were applied 
not only to extract knowledge not known a priori but, above all, to define the membership functions and rules of the 
fuzzy model without recourse to the skills of the analyst, not always so objective. This procedure, applied to a rural road 
open to traffic, showed a good performance in predicting the user’s visual behavior and, especially, in identifying the 
most influential variables. This aspect may allow the agency to direct the maintenance operations so that to facilitate 
understanding of the information contained within the road environment, thus improving safety.
Keywords: visual behavior, driving behavior, road safety, fuzzy logic, ANFIS.
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Introduction

The vision of people immersed in a complex environ-
ment, such as road, has been studied with profit by many 
researchers in the last thirty years. They immediately 
encountered some difficulties, such as the high statisti-
cal spread of the human factors involved, their relative 
numerousness, uncertainty and interdependence, which 
led the studies to represent in a qualitative way only a 
few observations concerning the phenomenon in ques-
tion (Dorsey, Coovert 2003). 

For example, among the most popular authors, 
Donges (1978) and Reid (1983) proposed a visual model 
behavior based on the combination of two mechanisms 
that take place in parallel. The first is a long-term pro-
cess, according to the curvature predicted on the basis of 
the visibility of the stretch of road, while the second is a 
process in the short term operating in a corrective way 
allowing modification of the trajectory in the proximity 
to the roadside. Subsequently, although this mechanism 
was generally shared within the scientific community, 
a number of changes and clarifications were produced. 
For example, Godthelp (1986) has indicated that the two 

stages operate in series rather than parallel and there-
fore the behavior performed during the forecast stage 
ends before the corrective stage is carried out. Latest re-
searches (Land 1992; Grasso et al. 1998; Groeger 2000) 
have confirmed the correctness of these models, suggest-
ing the importance of the tangent point as a reference 
for the approach to a bend and introducing certain time 
limits within which the driver triggers the feed forward 
and feedback mechanisms described above (Bosurgi, 
D’Andrea 2012).

Again Land (1998, 2006), Land, Horwood (1998) 
and Land, Tatler (2001) improved this theory, carrying 
out a number of experiments, also in simulated condi-
tions and ascertaining that the edges of the road in the 
field of vision are the only necessary and sufficient vi-
sual cues for steering and understanding road geometry. 
These results are consistent with those based on optical 
flow and focus of expansion that were initiated by Gib-
son (1958).

With the development of modern eye-tracking 
systems, many researchers have studied more complex 
problems, related to the roto-translational components 



of the head-eye system movements and relating these 
to the road geometry (Rushton et al. 1998; Lappe et al. 
1999; Wann, Land 2000, 2001; Wann, Wilkie 2003; 
Prévost et al. 2003; Erikson, Hörberg 1980; Miura 1990; 
Chapman, Underwood 1998a, b).

More recently Zariņš (2006); Antov et  al. (2007); 
Konstantopoulos, Crundall (2008); Wood et al. (2009) 
and Bosurgi et  al. (2010, 2011) emphasized the role 
of the visual scene in the strategies of drivers and, in 
particular, of the visual field on which to focus attention 
during critical events.

All these studies have the merit of having shown 
the basic mechanisms of visual behavior but did not 
produce any model able to predict the visual activity 
inside a complex environment. Tools to resolve these 
issues could reasonably be based only on soft comput-
ing techniques such as fuzzy logic, neural networks or 
genetic algorithms (Bosurgi, Trifirò 2005). Of course, 
the soft computing approach is not always preferable to 
other methods. It produces more realistic results when 
the number of variables involved is considerable and, 
especially, when their interdependence would render 
other techniques not applicable. If the nature of certain 
variables is also lexical, for example, the use of fuzzy 
logic should become necessary (Dubois, Prade 1998; 
Dağdeviren et  al. 2008; Grassi et  al. 2009; Pellegrino 
2011, 2012; D’Andrea, Pellegrino 2012). For these rea-
sons, the treatment of uncertainties in probabilistic 
terms is correct when the system consists of components 
whose reliability in a given period of time was measured 
and verified and whose variability is sufficiently small 
(Papoulis, Pillai 2002).

1. Aim of the Paper

In recent years, the development of modern digital in-
struments has enabled the survey of large amounts of 
data that, however, must be properly sorted and under-
stood in order to extract useful information. Moreover, 
the preventive treatment of the data set is of paramount 
importance when using artificial intelligence techniques 
because it allows to prepare the preliminary stages of 
training, absolutely necessary to achieve credible results.

Generally, fuzzy logic, by means of fuzzy if-then 
rules, can model some qualitative aspects of human 
knowledge applying linguistic or analytical information. 
Unfortunately, it possesses disadvantages regarding rules 
and membership functions that have to be tuned by 
subjective judgment in order to achieve the desired reli-
ability. To overcome these limitations, recent researches 
have proposed the support of artificial neural networks 
and the result, an adaptive network-based fuzzy infer-
ence system, has been shown to be an efficient tool be-
cause of a hybrid learning procedure for calibrating the 
membership functions and the rules (Jang 1993; Güler, 
Übeyli 2005; Mon 2007; Gu, Oyadiji 2008; Tahmasebi, 
Hezarkhani 2010).

With this paper, the authors wanted to propose a 
method that, starting from the visual drivers’ behavior, 
would allow identification of the critical aspects in the 

road environment, in order to eliminate them at an early 
stage of design. In the first phase, the observed data set 
was analyzed with neuro-fuzzy techniques for a dual 
purpose: to identify the most important variables in 
relation to the visual behavior and to remove subjectivity 
in the preparation of the membership functions and 
rules. The predictive model returned, as an output 
variable, a function representative of visual behavior, that 
is the head-eye movement (EM) but, more importantly, 
it allowed prediction of this with varying of the input 
parameters, depending on a road, user and vehicle. 
This consents, in the case of critical visual behavior, 
modification of one or more characteristics of the road 
(as radius or distance of visibility) in order to have an 
optimal driver’s visual response towards road safety.

2. Method

The procedure followed in this research begins with pre-
liminary trials on a rural road regularly open to traffic 
by a suitably instrumented vehicle capable, that is, to re-
cord the user’s head-eye movements by means of Image 
Analysis (Gonzales, Woods 2002; Jha 2006), its activity 
on the pedals, some dynamic parameters of the vehicle 
and the geometric characteristics of the road (Bosurgi 
et al. 2004, 2007; Pellegrino 2009). It was subsequently 
prepared a predictive model that links some input vari-
ables related to the road environment and to driver’s 
visual activity that, therefore, represents the output. The 
collected data base was used, as mentioned, both dur-
ing calibration of the fuzzy model to train and check 
the procedure.

The preparation of a predictive model used in 
maintenance operations, requires the development of a 
number of preparatory steps and, especially, the identifi-
cation of variables involved in the phenomenon and the 
characterization of their uncertainty. The choice to rep-
resent the variables with the neuro-fuzzy system allows 
the use of natural language through the judgments of 
the experts, the achievement of flexibility in the model, 
tolerance to inexact data, and the possibility of repre-
senting non linear functions of arbitrary complexity.

2.1. Brief Notes about Fuzzy Logic (FL) and ANFIS
In the traditional theory, a Membership Function (MF) 
or ( )µA x  is a function that defines how each point of X 
in the input space is mapped to a membership value (or 
degree of membership) between 0 and 1. Fuzzy opera-
tors represent the verbs of fuzzy logic and the ‘if-then-
else’ rule statements are used to determine all the con-
ditional definitions. The if-part of the rule is called the 
antecedent, while the then-else part of the rule is called 
the consequent. It will be necessary firstly to fuzzily the 
input (that is to calculate the antecedent) and then, by 
means of the implication process, to apply this result 
to the consequent. The consequent specifies a fuzzy set 
assigned to the output. The implication function then 
modifies that fuzzy set to the degree specified by the 
operator in the premise. The most common means of 
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modifying the output fuzzy set are truncation using the 
main function or scaling using the product function 
(Chao 2007). 

Generally, fuzzy models can present certain prob-
lems regarding the definition of membership functions 
and rules that bind the dependencies between the vari-
ables involved due to the excessive subjective contribu-
tion of the analyst. This problem can overcome through 
the use of clustering procedures, applying them to the 
relevant data that will then be interpreted, organized and 
classified in an appropriate manner (Lin, Lee 1996; Li 
et al. 1999; Sarimveis et al. 2003).

In fact, these methods are used to identify experi-
mental groupings of data from a large data set to pro-
duce a synthetic representation of a system’s behaviour 
through optimal membership functions. For example, 
neuro-fuzzy techniques exploit Artificial Neural Net-
works (ANNs) procedures to determine the properties 
of fuzzy sets and fuzzy rules by processing data sets. The 
most famous approach in this field is the Adaptive Neu-
ro-Fuzzy Inference System (ANFIS), in which the mem-
bership function parameters and the rules are extracted 
from a data set opportunely surveyed (Jang 1993). The 
model is trained with the back-propagation gradient 
descent method and because of slowness, is preferable 
combined with the least squares method. In brief, the 
steps can be outlined thus:

 – collect a training data set that contains the de-
sired input/output data of the system to be mod-
elled;

 – specify an initial model structure (in this case, it 
was the Sugeno type); 

 – after generating the initial fuzzy model structure, 
it is possible to train it by means of the back-
propagation form of the steepest descent method; 
the optimization method train the membership 
function parameters to emulate the training data;

 – it is opportune to specify the number of training 
epochs and the training error tolerance to set the 
stopping criteria for training;

 – after the fuzzy model is trained, the model can be 
validated using a testing or checking data differ-
ent from that used.

The steepest descent method is a first-order 
optimization algorithm. To find a local minimum of a 
function this procedure takes steps proportional to the 
negative of the function gradient at the current point. 
If instead the steps are proportional to the positive of 
the gradient, a local maximum of that function has been 
approached.

To illustrate the methodology behind this 
procedure, we can introduce a simple example with two 
fuzzy if-then rules based on a first order Sugeno model 
(Fig. 1):

( ) ( )1 1Rule 1:  if is and isx A y B

( )= ⋅ + ⋅ +1 1 1 1then f p x q y r ;  (1)

( ) ( )2 2Rule 2 :  if is and isx A y B

( )= ⋅ + ⋅ +2 2 2 2then f p x q y r ,  (2)

where: x and y are the inputs; Ai and Bi are the fuzzy sets; 
fi are the outputs; pi, qi and ri are the design parameters 
that are determined during the training progression. In 
the Fig. 1 a circle indicates a fixed node and a square is 
an adaptive node. The first layer is composed by adaptive 
nodes and the outputs are the fuzzy membership grade 
of the inputs, given by:

( )= µ1  with  =1,  2;
ii AO x i   (3)

( )−= µ1
2   with =3, 4,

ii BO y i   (4)

where: ( )µi x  could be described by the generalized Bell 
function:
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where: X is the input; ai, bi and ci are adaptable param-
eters.

In the second layer, there are only fixed nodes and 
they are simple multipliers (M). The outputs can be 
expressed as:

( ) ( )= = µ ⋅µ =2   with 1,  2i i Ai BiO w x y i   (6)

called the firing strengths of the rules. 
Also in the third layer, the nodes, labelled with N, 

are all fixed. They normalize the firing strengths from 
the previous layer. The outputs can be reported as:
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In the fourth layer, there are only adaptive nodes. 
The output is the product of the normalized firing 
strength and a first order polynomial:

( )= ⋅ = ⋅ ⋅ + ⋅ + =4 with  1,  2.i i i i i i iO w f w p x q y r i   (8)

In the fifth layer, there is a single fixed node (S) that 
sums all incoming signals:
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It can be observed in the first adaptive layer, there are 
three modifiable parameters (called premise parameters) 
ai, bi, ci, related to the input membership functions.  

Fig. 1. ANFIS architecture
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In the fourth adaptive layer, there are different modifiable 
parameters (called consequent parameters) pis, qi, ri, 
pertaining to the first order polynomial.

The learning algorithm is designed to calibrate all 
the modifiable parameters as { },  ,  i i ia b c  and { },  ,  i i ip q r  , to make the output compatible with the training data.

When the membership function is fixed, the output 
can be written as:

= ⋅ + ⋅
+ +

1 2
1 2

1 2 1 2

w w
f f f

w w w w
  (10)

and, finally:

= ⋅ + ⋅1 1 2 2f w f w f .  (11)

Substituting the fuzzy if-then rules into the last 
equation:

( )
( )

= ⋅ ⋅ + ⋅ + +

⋅ ⋅ + ⋅ +
1 1 1 1

2 2 2 2 .
f w p x q y r
w p x q y r    (12)

In this way and after some rearrangement, the 
output can be expressed as:

( ) ( ) ( )= ⋅ ⋅ + ⋅ ⋅ + ⋅ +1 1 1 1 1 1f w x p w y q w r

( ) ( ) ( )⋅ ⋅ + ⋅ ⋅ + ⋅2 2 2 2 2 2 .w x p w y q w r   (13)

As mentioned, a hybrid algorithm combining the 
least squares method and the gradient descent method 
can be used to identify in a faster way the optimal 
values of these parameters, especially when the premise 
parameters are not fixed.

In particular, when the premise parameters are 
fixed, the least squares method (forward pass) is used 
to optimize the consequent parameters. Once the op-
timal consequent parameters are found, the gradient 
descent method (backward pass) is used to adjust in an 
optimal mode the premise parameters corresponding to 
the fuzzy sets in the input domain. The output of the 
ANFIS is calculated by using the consequent parameters 
already found in the forward pass, while the output error 
permits to adapt the premise parameters with the back-
propagation algorithm (Jang 1993).

In order to acquire a complete data set covering the 
aim of the present research, a survey on a rural road 
near the town of Messina (Italy) was organized with an 
instrumented vehicle and a homogeneous sample of us-
ers. A number of features are outlined below, and further 
details are specified in references (Bosurgi et al. 2004, 
2007; Pellegrino 2009).

2.2. The Trial Vehicle
Equipment for tracking eye movement, the road envi-
ronment and dynamic vehicle were installed on a Ford 
Focus (Fig. 2).

The instruments included three micro cameras, 
concealed within the car interior to avoid obtrusiveness. 
The first of these provides a reasonably faithful picture of 
the driver’s view ahead, the second reproduces the view 
through the rear-view mirror and the third records head 
and eye movements in greater detail. 

Special software was written to coordinate this in-
strumentation since our highly specific requirements 
made it impossible to use any of the more standard 
commercial applications (Bosurgi et al. 2004, 2007). This 
application also allowed the calculation of head-eye sys-
tem coordinates in real time and using Image Processing 
techniques (Gonzales, Woods 2002).

2.3. Road Analysed 
Before beginning the road trials, the Authors selected 12 
male drivers between the ages of 25 and 28 who, there-
fore, had between 7 and 10 years of driving experience 
and who were all habitual users of the sections of road 
under examination. The trials took place on a country 
road over a distance of about 7.5  km with a uniform 
track in terms of cross section and construction.

Morphological-geometrical features are as follows:
 – the cross section comprises two separate car-
riageways constructed at equal height, with three 
lanes each of which is 3 m in width;

 – there are two footpaths of 1.40 m each positioned 
alongside the edge of the carriageways; the one 
on the coastal side is fitted with a safety barrier;

 – the central reservation is planted over and varies 
in width from 2.5 m to 4.00 m;

 – the trials were carried out on the carriageway 
nearest to the hills, using a sample group of eight 
drivers; 

 – the radii vary between 70 and 160 m.
The trial lasted for about 10 minutes and took place 

under the normal traffic conditions with participants 
unaware either of the aims of the study or of the 
presence of instrumentation within the vehicle. The 
vehicle was also occupied by an operator responsible 
for making sure the computer and tracking equipment 
worked properly. 

2.4. Variables Involved
The main parameters involved in this experiment, 
as already mentioned, are all related to the drivers’ 
behavior, to vehicle dynamics and road context. These 
variables may be listed as follows: 

1) movements of head-eyes system (EM): X and Y 
coordinates of the pupil centroid in a Cartesian 

Fig. 2. Two of three cameras inside the cockpit
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system in which the unit of measurement is the 
pixel;

2) distance between pupil centroids in pixels;
3) angle of line joining centroids relative to horizon 

line in centesimal degrees;
4) vehicle speed (Sp) in km/h;
5) vehicle longitudinal acceleration (Ac) in m/s2;
6) circular curve radius (R) in m;
7) distance of visibility (V) in m;
8) straight stretch (St) in m;
9) accelerator pedal percentage use in %;

10) longitudinal grade of the road (Al) in %.
The trend of head-eye movements (EM) with re-

spect to the geometry allows the evaluation of the visual 
strategy of the driver while checking the homogeneity 
with the standard literature. In particular, idealizing the 
trend of EM function with a sinusoid, at the inflexion 
point, a driver began to interpret the bend, looking at 
the tangent point of the curve. In the max (or min) 
point, this interpretation was completed. Therefore, in 
the distance covered from the inflexion point and the 
max (or min) point, the driver interprets the road ge-
ometry.

During the trial, some of these variables (such as 
distance between pupil centroids, angle of line joining 
centroids activities on the pedals) have proved useless-
ness in this initial phase of research for the interpreta-
tion of visual behavior. At the end, six input variables 
were selected, trained and then checked. However, these 
six variables, as is easily guessed, are not all of equal 
importance in determining the output. Therefore, the 
purpose of the procedure was to identify which are the 
most influential both individually and in groups. The 
index used by the authors to appreciate the fairness of 
the procedure was the Root Mean Square Error (RMSE), 
although there are other statistical parameters that there 
will not discuss for reasons of brevity. The RMSE is a 
measure of precision by means of the differences (called 
residuals) between values predicted by a model and the 
values actually observed from the thing being estimated. 
In this paper, the normalized root mean square error 
has been used, obtained as RMSE divided by the range 
of observed values. The result is, therefore, expressed as 
a percentage, where lower values indicate less residual 
variance.

3. Results

As a first step, we evaluated the input variables that most 
influence the head-eye movements that are the output 
of the model. ANFIS techniques (Chiu 1996) outlined 
above have allowed to perform some experiments whose 
results were reported in Tables 1–3.

A part of the surveyed data set (1200 observations 
of 1456) was used to train and build the model. The re-
maining observations (256) have been used to test the 
capability of the model to be applied to general cases. 
However, after the first configuration, the model must 
be calibrated, i.e. it must be optimized based on train-
ing errors or, rather, checking. In fact, it may be that 
the model over-fits the training data, i.e. it responds well 

Table 1. Training and checking errors with an input at a time

Training Checking T–C

1 Sp 0.2605 0.3427 0.0822
2 Ac 0.2232 0.3793 0.1561
3 Al 0.2457 2.2415 1.9958
4 R 0.2241 2.1665 1.9424
5 St 0.2693 0.3474 0.0781
6 V 0.2778 0.3899 0.1121

min 0.0781

Table 2. Training and checking errors with two inputs at a time

Training Checking T–C

1 Sp–Ac 0.1663 0.4542 0.2879
2 Ap–Al 0.1943 1.9251 1.7308
3 Sp-R 0.1444 4.5428 4.3984
4 Sp–St 0.2350 0.3827 0.1477
5 Sp–V 0.2354 0.9490 0.7136
6 Ac–Al 0.1662 2.4592 2.2930
7 Ac–R 0.1519 10.0494 9.8975
8 Ac–St 0,1847 0.4717 0.2870
9 Ac–V 0.2040 0.4710 0.2670

10 Al–R 0.1347 54.2134 54.0787
11 Al–St 0.2317 2.7157 2.4840
12 Al–V 0.1972 2.5358 2.3386
13 R–St 0.2002 0.4562 0.2560
14 R–V 0.1591 2.7407 2.5816
15 St–V 0.2309 1.1431 0.9122

min 0.1477

Table 3. Training and checking errors with three inputs at a time

Training Checking T–C

1 Sp–Ac–Al 0.1149 1.9345 1.8196
2 Sp–Ac–R 0.0939 34.3076 34.2137
3 Sp–Ac–St 0.1094 0.5353 0.4259
4 Sp–Ac–V 0.1107 0.8679 0.7572
5 Sp–Al–R 0.0925 157.7875 157.6950
6 Sp–Al–St 0.1759 1.0810 0.9051
7 Sp–Al–V 0.1543 6.5021 6.3478
8 Sp–R–St 0.1071 8.3299 8.2228
9 Sp–R–V 0.1014 72.7484 72.6470

10 Sp–St–V 0.1917 3.2527 3.0610
11 Ac–Al–R 0.0837 72.5316 72.4479
12 Ac–Al–St 0.1438 1.4571 1.3133
13 Ac–Al–V 0.1325 2.0242 1,8917
14 Ac–R–St 0.1055 2.1979 2.0924
15 Ac–R–V 0.1210 10.0659 9.9449
16 Ac–St–V 0,1259 1.1218 0.9959
17 Al–R–St 0.1052 238.7862 238.6810
18 Al–R–V 0.0828 345.2563 345.1735
19 Al–St–V 0.1602 2.6468 2.4866
20 R–St–V 0.1061 22.4941 22.3880

min 0.4259
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only in the scenario used for surveying but not to repre-
sent more general situations. In this case, it is necessary 
to minimize RMSE in function of the number of epochs 
that, therefore, is a means to tune the model.

For optimal selection of input variables inside the 
ANFIS model, an exhaustive search has been conducted 
organizing an ANFIS model with a certain number of 
input variables (respectively 1, 2 and 3) and trains it for 
the number of input combinations and one epoch and 
reporting the results achieved in term of Mean Quadrat-
ic Error (MQE) for training and checking data.

This procedure was based on the hypothesis that, 
the model with the smallest residual MQE, after the first 
training iteration, has a better estimation than the other 
configuration to reach a smaller MQE even with a high-
er number of iterations. The first step to run the process 
was to specify to be tried during the search. 

For example, with reference to the Table 1, the 
variables Speed (Sp) and Straight Stretch (St) have the 
least error or, in other words, the most relevance with re-
spect to the output. The training and checking errors are 
comparable, which implies that there is no overfitting. In 
view of these results, it was subsequently evaluated the 
influence of two variables, selecting more than one input 
attribute to build the ANFIS model.

ANFIS was built with the same procedure respec-
tively, it means with the combination of two and three 
inputs for a time (Tables 2 and 3). The results clearly 
indicate a strong influence of the variables Sp and St (al-
ready emerged with the first assessment) even with the 
addition of the longitudinal Acceleration (Ac).

The results from the previous simulations show that 
Speed (Sp) and Straight Stretch (St) are the best combi-
nation for the ANSIS model but now, with the next step, 
it is necessary to spend more time on training. In order 
to know with some approximation the number of ep-
ochs that provides a better approximation, we calculated 
the errors of the training and checking data. From Fig. 3, 
it can be easily highlighted the error training function 
that has a minimum around 850 epochs, therefore, rep-
resents the optimal number for simulation of the model.

In Fig. 3, the curve of the training error is deter-
mined by the difference between the surveyed output 
and forming part of the training data set and the output 
of the model built with the input data of the training 
data set. In particular, this difference is reported in terms 
of RMSE as a function of the number of epochs; the 
minimum value of RMSE identifies the optimal value of 
epochs to train the model.

Similarly, also the checking error curve is quanti-
fied as a function of the number of epochs and represen-
tative of the difference between the surveyed output and 
forming part of the checking data set and the output of 
the model built with the checking data set. The value of 
RMSE translates the capacity of the model to simulate 
the phenomenon that we want to represent. The mini-
mum value on the curve of checking is particularly im-
portant because, for a large number of epochs and data 
it is possible that the training function shows problems 
of overfitting in the model and, therefore, it can not be 
used to calibrate the model.

The data sets collected during the trial and tuned 
with the ANFIS procedure, allowed us to size the mem-
bership functions and rules that are a part of the fuzzy 
model. In particular, the functions are Gaussians whose 
characteristics in relation to the mean, the variance and 
the range of existence are given in Table 4.

Table 4. Characteristics of the input membership functions

Name MF µ ρ Interval

Speed (Sp)

MF1Sp 72.00 10.75

[59.00; 91.00]MF2Sp 79.00 10.75

MF3Sp 74.00 10.75

Straight 
Stretch (St)

MF1St 21.00 72.55

[0.00; 216.00]MF2St 216.00 72.55

MF3St 0.00 72.55

Fig. 3. Determination of the best number of epochs by 
means of training (green) and checking (red) curves
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The Figs 4 and 5 represent the tendency of the in-
put membership functions Speed and Straight Stretch 
respectively.

The preparation of membership functions and 
rules, allowed the value of the one crisp output function 
to be derived, represented by the Eye Movement (EM) 
function.

A simulation with the neuro-fuzzy model has fi-
nally allowed to build a new EM function in accordance 
with the hypothesis which was acquired of data sets 
(type of users class, environmental context, etc.). Fig. 6 
show the tendency of EM function in a section of road 
(650÷1000 m) considered more significant, with two 
curves in the opposite side with a radius of 160 m.

4. Discussion

This study aims to evaluate the visual behavior of road 
users and the difficulties linked to this.

The first one concerns the extraction of useful in-
formation from modern digital devices that survey the 
quantities of interest at frequencies so high to assume an 
unmanageable size. Recently, with the increase of tech-
nological progress, it is possible to record at low-cost 
several parameters relating to dynamic of the vehicle, 
driver’s eye movements, characteristics of the road ge-
ometry and of the entire context. The problem arises 
when you want to evaluate the uncertainties and the de-
pendencies between these variables and the laws govern-
ing the phenomena of interest. If you want to leave the 
confines of the observation of the phenomenon, already 
dealt with successful in much in-depth research into ex-
isting literature and want to propose a model that will 
aid in making predictions, the variables involved should 
be managed in a more appropriate way. These are not all 
equally important, show interdependency between them 
and the functions describing the observed phenomenon 
are sometimes nonlinear and non differentiable. There-
fore, they not only become almost mandatory to use the 
artificial intelligence techniques, but also must be pre-
ceded by the opportune clustering procedures in order 
to make a disorganized data base in a source of useful 
information to the purpose. The process of clustering, 
however, configures in the best way the basic elements 
of the model (in this case the membership functions and 
rules of the fuzzy model), eliminating any subjective in-
fluence of the analyst.

In particular, the ANFIS technique has directed us 
towards a model with only two inputs and one output. 
However, there were also analyzed and performed simu-
lations, respectively, with one and three input variables 
at a time. Authors like the model with two input vari-
ables, in which the pair Sp–St has a value of checking 
RMSE particularly low (0.3827). Values of the same or-
der of magnitude can be found in the table 1 (with only 
one variable) but the model so formed is not very useful 
because it is too simplistic.

The examination of the tables for these attempts 
shows that the results are, however, all consistent with 
each other. For example, in the case of one variable 
(Table 1) the Straight Stretch (St  = 0.0781) presents a 
smaller difference between the errors of training and 
checking but the Speed (Sp = 0.0822) has a value very 
similar to the first. It should be noted that the Radius 
(R) and Acceleration (Ac) have low values of error for 
the training phase, which, however, grow considerably 
during the checking one. This implies that the variables 
that have a greater influence in determining the visual 
behavior are certainly St and Sv, followed by R and Ac. 
These considerations are fully compatible with the ob-
servations reported by most researches that attributed 
with a great importance especially to the straight before 
the bend as the driver begins to interpret the next ele-
ment in advance depending by radius and speed of the 
vehicle.

Fig. 5. Membership Functions (MF) of the input variable 
Straight Stretch (St)

Fig. 6. Comparison of the Eye Movement (EM) function 
with the Road Geometry (RG) in the section 650÷1000 m
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The simulation with two inputs at a time, different 
combined (Table 2), confirms the information revealed 
previously. The couple Sp–St (0.1477) is the most power-
ful, but good results are also provided by the pairs in-
volving R and Ac. Other variables, such as the longitudi-
nal slope of the road (Al) present the major differences 
between the training and checking errors, proving to be 
unreliable.

The simulation with three inputs at a time, differ-
ent combined (Table 3), produces the same information. 
The best choice falls on Sp–Ac–St = 0.4259. This value 
is still acceptable, but the increased difference between 
the phase of training and checking may indicate a prin-
ciple of overfitting of the data. So, for prudence, it was 
decided to calibrate the prediction model with only two 
inputs, i.e. the Speed (Sp) and the Straight Stretch (St).

Knowledge of training and checking errors made it 
possible to determine the temporal period in which to 
train the model. Fig. 3 shows well that the test should 
be extended to approximately 850 epochs. At the end of 
this procedure of calibration, the membership functions 
and rules (Table 4, Figs 4 and 5) have been defined in 
an objective way.

The proposed procedure allows, however, to update 
the architecture of the model with easiness in case of 
new available survey data. And, however, it is possible to 
estimate the reliability of the model through the control 
of errors and the number of epochs required for train-
ing phase.

An application of this model has simulated the 
driver’s visual behavior on a section of an existing road. 
In order to evaluate any congruence with the results of 
the literature, head-eye movements (EM) were super-
imposed on the road geometry (RG). From Fig.  6 it 
follows a trend of EM at first very irregular. However, 
with greater attention, it is possible to recognize a good 
consistence between the EM and the RG functions, es-
pecially in correspondence of the two bends. In fact, 
there is a substantially sinusoidal pattern of EM, which 
is compatible with the mechanism of feed-forward and 
feedback introduced by Donges (1978) and subsequently 
developed by Land (1992, 1998). The user has started to 
turn the system head-eye a few seconds before enter-
ing the bend, gazing at the tangent point at a distance 
dependent on the speed. Within the two curves, but 
especially in the first, it is possible to notice irregular 
trends of EM, induced by the driver’s control on the dif-
ferent points of the visual field (feedback mechanism). 
This action, carried out by looking at the rearview mir-
rors or other points in the windscreen, it is useful to the 
safety of the vehicle because it can produce repositioning 
within the lane if it were needed.

With reference to the models existing in the lit-
erature, an ideal pattern of eye movements in relation 
to road geometry would be illustrated by a sine wave. 
The inflection point should pass at the straight before 
the analyzed bend and it should identify the beginning 
of the interpretation of the curve. The maximum (or 
minimum) point would represent the deviation of the 
driver’s eye-head system toward the internal edge and, 

therefore, the final point beyond which driver believes 
to have interpreted the geometric element and turns his 
gaze to the subsequent elements of the road. This ideal 
performance rarely takes place in reality, unless an en-
tire sample of users is considered. Although the general 
trend of EM function could be simplified through a sine 
wave, it is also interesting to find the presence of addi-
tional peaks of the small amplitude and wavelength that 
means small eye movements. The gaze is deviated for a 
very short time from the target to capture all the possible 
information inside the visual field. Examination of the 
movies made it clear that this behavior occurred with 
two distinct situations: first, the driver had sufficient 
time (low speed and good sight distance) to inspect in 
detail the visual scene in its extension; the second case 
occurred when the context was so complex to suggest 
different areas of the visual field on which to place at-
tention. Therefore, since the aim of this research is to 
guide the maintenance in order to improve the visual 
interpretation of the driver, is not important to use an 
eye tracking instrument of great precision.

This application at a short section of this road ex-
plains the use that can have the model here proposed. 
Since the visual behavior is related to the proper inter-
pretation of the road and, therefore, to the road safety, 
we could test some maintenance operations (as the mod-
ification of the radius of a bend or the visibility distance 
or imposing speed limits) and verifying the effectiveness 
not only with the road standard, but above all, with the 
natural mechanism followed by the users to acquire vi-
sual information by means of road context.

Conclusions

The contribution of this research is not limited to a 
simple application of soft computing techniques to the 
current vision models but deals with some problems still 
undetermined:

 – The existing models connect the visual behavior 
only to the road geometry (radius, curve and 
straight length, angle of deviation between the 
straights). 

 – The existing models do not permit an analysis 
of prediction. This is due to the reduced number 
of variables and analytical models too simplistic 
compared to the complexity of the road environ-
ment.

In general, the dependences between variables are 
difficult to interpret, often non-linear and would lead 
to an inability to obtain useful solutions. Therefore, the 
analyst generally chooses between two different pos-
sibilities: models extremely simple, but unrealistic, in 
which the variables can be treated by deterministic or 
probabilistic techniques. Or, models that take into ac-
count the real uncertainties and, above all, the bonds 
that are created between the quantities involved in the 
observed phenomenon. A model such a complex can 
only be treated with artificial intelligence techniques, as 
in the case of this paper. The proposed model, further-
more, has the advantage that can be updated with ad-
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ditional variables without losing accuracy (but, rather, 
increasing it) in the calculation of final solutions.

In this paper, the results have confirmed those of 
the literature. This was not the final point of the pres-
ent study, otherwise there would be no any change and 
the use of artificial intelligence techniques would have 
been unjustified. But it was, on the contrary, a necessary 
starting point, a sort of benchmark, without which the 
proposed model would not have had the proper recogni-
tion for subsequent analysis. 

Again, no particular emphasis was given to the sys-
tem for measuring eye movements in terms of accuracy, 
tolerance, etc., but instead we used a simple system of 
medium-quality cameras and on the recorded video we 
have applied some image analysis techniques that have 
established the visual zones in which the user’s gaze fo-
cused. Do not forget, in fact, that the purpose of this 
research is not to investigate diseases or eye movements 
frequency of particular entities or to propose automo-
tive instruments of particular innovation (and cost), but 
rather build a system capable to relate driving visual ac-
tivity with road context so the latter can be corrected or 
mitigated to improve the perception.

Another new element emerged from this study is 
that the variables do not really have all the same weight. 
This assumption can be verified only through an analyti-
cal technique such as that proposed by the authors. A 
deterministic or probabilistic model would be extremely 
complex to organize and solve, if not assuming bound-
ary conditions particularly simple and therefore not very 
realistic. Finally, the introduction of new variables or 
new data would have needed a totally new model with 
improved costs.
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