
Submitted to:
QAPL 2013

c© Paolo Tranquilli
This work is licensed under the
Creative Commons Attribution License.

Indexed Labels for Loop Iteration Dependent Costs

Paolo Tranquilli∗

DISI (Dipartimento di Informatica – Scienza e Ingegneria)
Università di Bologna Alma Mater

tranquil@cs.unibo.it

We present an extension to the labelling approach, a technique for lifting resource consumption
information from compiled to source code. This approach, which is at the core of the annotating
compiler from a large fragment of C to 8051 assembly of the CerCo project, looses preciseness when
differences arise as to the cost of the same portion of code, whether due to code transformation such
as loop optimisations or advanced architecture features (e.g. cache). We propose to addresses this
weakness by formally indexing cost labels with the iterations of the containing loops they occur in.
These indexes can be transformed during the compilation, and when lifted back to source code they
produce dependent costs.

The proposed changes have been implemented in CerCo’s untrusted prototype compiler from a
large fragment of C to 8051 assembly [2].

1 Introduction

Recent years have seen impressive advancements in the field of formal description and certification of
software components. In the fields of compilers a well-documented example is CompCert, a project
which has spawned the proof of correctness of a compiler from a large fragment of C to assembly [9].
The success of this endeavour is also supported by a comparison with other compilers as to the number
of bugs found with testing tools [14].

The CerCo project [2] strives to add a significant aspect to the picture: certified resource consump-
tion. More precisely our aim is to build a certified C compiler targeting embedded systems that produces,
apart from object code functionally equivalent to the input, an annotation of the source code which is
a sound and precise description of the execution cost of the compiled code. Time and stack are the
immediate resources on which the method can be applied.

The current state of the art in commercial products that analyse reaction time or memory usage
of programs installed in embedded systems (e.g. Scade [8] or AbsInt [1]) is that the estimate is based
upon an abstract interpretation of the object code that may require explicit and untrusted annotations
of the binaries stating how many times loops are iterated (see e.g. [13]). Our aim, on the other hand,
is to lift cost information of small fragments of object code, so that these bits of information may be
compositionally combined at the source level, abstracting away the specifics of the architecture and only
having to reason about standard C semantics the programmer will be familiar with. This information can
be used to decide complexity assertions either with pencil and paper or with a tool for automated and
formal reasoning about C programs such as Frama-C [3].

The theoretical basis of the CerCo compiler has been outlined by Amadio et al [6]. Summarising,
the proposal consists in ‘decorating’ the source code by inserting labels at key points. These labels are
preserved as compilation progresses, from one intermediate language to another. Once the final object

∗This work is funded by the CerCo FET-Open EU Project.

http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

2 Indexed Labels for Loop Iteration Dependent Costs

code is produced, such labels should correspond to the parts of the compiled code that have a constant
cost. This cost can then be assigned to blocks of source code.

Two properties must hold of any cost estimate given to blocks of code. The first property, paramount
to the correctness of the method, is soundness—the actual execution cost must be bounded by the esti-
mate. In the labelling approach, this is guaranteed if every loop in the control flow of the compiled code
passes through at least one cost label. Were it not the case, the cost of the loop would be taken in charge
by a label external to it, so that any constant cost assignment would be invalidated by enough iterations
of the loop. The second property, optional but desirable, is preciseness—the estimate is the actual cost.
This is of particular importance for embedded real-time systems, where in particular situations we may
care that a code runs for at least some clock cycles. In the labelling approach, this is true if, for every
label, every possible execution of the compiled code starting from such a label yields the same cost be-
fore hitting another one. In simple architectures such as the 8051 micro-controller which is targeted by
the current stage of the CerCo project, this can be guaranteed by placing labels at the start of any branch
in the control flow, and by ensuring that no labels are duplicated.

The reader should note that the above mentioned requirements state properties that must hold for the
code obtained at the end of the compilation chain. Even if one is careful about injecting the labels at
suitable places in the source code, the requirements might still fail because of two main obstacles.

• The compilation process might introduce important changes in the control flow, inserting loops or
branches. This might happen for example when replacing operations that are unavailable in the
target architecture, such as generic shift and multi-byte division in the 8051 architecture1.

• Even when the compiled code does—as far as the the syntactic control flow graph is concerned—
respect the conditions for soundness and preciseness, the cost of blocks of instructions might not
be independent of context and thus not compositional, so that different passes through a label
might have different costs. This becomes a concern if one wishes to apply the approach to more
complex architectures, for example one with caching or pipelining.

Even if we solved the problem outlined in the first point for our current compilation chain, the point
remains a weakness of the current labelling approach when it comes to some common code transforma-
tions. In particular, most loop optimisations change the control flow graph duplicating code and adding
or changing the branches. An example optimisation of this kind is loop peeling, where a first iteration
of the loop is hoisted out of and before its body. This optimisation is employed by compilers in order
to trigger other optimisations, such as dead code elimination or invariant code motion. Here, the hoisted
iteration might possibly be assigned a different cost than later iterations.

The second point above highlights another weakness. Different tools allow to predict up to a certain
extent the behaviour of cache. For example, the aiT tool [1] allows the user to estimate the worst-case
execution time taking into account advanced features of the target architecture. While such a tool is not fit
for a compositional approach which is central to CerCo’s project2, aiT’s ability to produce tight estimates
of execution costs would still enhance the effectiveness of the CerCo compiler, e.g. by integrating such
techniques in its development. A typical case where cache analysis yields a difference in the execution
cost of a block is in loops: the first iteration will usually stumble upon more cache misses than subsequent
iterations.

If one looks closely, the source of the two weaknesses of the regular labelling approach of [6] outlined
above is common: the inability to state different costs for different occurrences of labels in the execution

1The reader might see the work outlined in [5] to get a grasp of how we tackle this problem in CerCo’s compiler.
2aiT assumes the cache is empty at the start of computation, and treats each procedure call separately, unrolling a great part

of the control flow.

Paolo Tranquilli 3

x,y, . . . (identifiers) e, f , . . . (expressions)
P,S,T, . . . ::= skip | s; t | if e then S else T | while e do s | x := e (statements)

Figure 1: The syntax of Imp.

trace. The difference in cost might be originated by labels being duplicated along the compilation, or by
the costs being sensitive to the current state of execution.

The work we present here addresses this weakness by introducing cost labels that are dependent on
which iteration of its containing loops it occurs in. This is achieved by means of indexed labels; all cost
labels are decorated with formal indexes coming from the loops containing such labels. These indexes
allow us to rebuild, even after multiple loop transformations, which iterations of the original loops in
the source code a particular label occurrence belongs to. During the annotating stage, this information is
presented to the user by means of dependent costs.

Here we concentrate on integrating the labelling approach with two loop transformations—loop peel-
ing and loop unrolling. They will be presented for a toy language in section 2, For general information
on compiler optimisations (and loop optimisations in particular) we refer the reader to the vast literature
on the subject (e.g. [12, 11]).

The proposed changes have been implemented in CerCo’s untrusted prototype compiler available on
CerCo’s homepage3. For lack of space the present work will not delve into the details of the implemen-
tation.

Whilst we cover only two loop optimisations in this paper, we argue that the work presented herein
poses a good foundation for extending the labelling approach, in order to cover more and more common
optimisations, as well as gaining insight into how to integrate advanced cost estimation techniques, such
as cache analysis, into the CerCo compiler. Moreover loop peeling itself has the fortuitous property of
enhancing and enabling other optimisations. Experimentation with CerCo’s untrusted prototype com-
piler, which implements constant propagation and partial redundancy elimination [10, 12], show how
loop peeling enhances those other optimisations.

Outline. We will present our approach on a minimal ‘toy’ imperative language, Imp with gotos, which
we present in section 2 along with formal definitions of the loop transformations. This language already
presents most of the difficulties encountered when dealing with C, so we stick to it for the sake of
this presentation. In section 3 we summarize the labelling approach as presented in [6]. Section 4
presents indexed labels, our proposal for dependent labels which are able to describe precise costs even
in the presence of the various loop transformations we consider, together with a more detailed example
(subsection 4.5). Finally section 5 speculates on further work on the subject.

2 The minimal imperative language Imp

We briefly outline the toy language, the minimalist imperative language Imp. Its syntax is presented
in 1. We may omit the else clause of a conditional if it leads to a skip statement. The precise grammar
for expressions is not particularly relevant so we do not give one in full. We will use the notation
(S,K,s)→ (S′,K′,s′) for Imp’s small-step semantics of which we skip the unsurprising definition. S is

3http://cerco.cs.unibo.it/

http://cerco.cs.unibo.it/

4 Indexed Labels for Loop Iteration Dependent Costs

i f b then
S ;
wh i l e b do S

7→

wh i l e b do S 7→

wh i l e b do
S ;
i f b then

S ;
...
i f b then

S

Figure 2: Loop peeling (left) and loop unrolling (right).

the statement being executed, K is a continuation (i.e. a stack of statements to be executed after S) and s
is the store (i.e. a map from variables to integers).

Further down the compilation chain. We abstract over the rest of the compilation chain. We posit the
existence, for every language L further down the compilation chain, of a suitable notion of ‘sequential
instructions’, wherein each instruction has a single natural successor. To these sequential instructions to
which we can add our own.

Loop transformations. We present the loop transformations we deal with in Figure 2. These trans-
formations are local, i.e. they target a single loop and transform it. Which loops are targeted may be
decided by some ad hoc heuristic. However, the precise details of which loops are targeted and how is
not important here.

As already mentioned in the introduction, loop peeling consists in preceding the loop with a copy
of its body, appropriately guarded. This is usually done to trigger further optimisations. Integrating this
transformation into the labelling approach would also allow, in the future, the integration of a common
case of cache analysis, as predicting cache hits and misses benefits from a form of virtual loop peeling [7].

Loop unrolling consists of the repetition of several copies of the body of the loop inside the loop
itself (inserting appropriate guards, or avoiding them altogether if enough information about the loop’s
guard is available at compile time). This can limit the number of (conditional or unconditional) jumps
executed by the code and trigger further optimisations dealing with pipelining, if appropriate for the
architecture. Notice that we present unrolling in a wilfully naı̈ve version. On the one hand usually less
general loops and more well-behaving loops are targeted; on the other hand, conditionals are seldom used
to cut up the body of the unrolled loop. However we are mainly interested in the changes to the control
flow the transformation does. The problem this transformation poses to CerCo’s labelling approach are
independent of the sophistication of the actual transformation.

We decided to apply transformations in the front-end in order to only target loops explicitly written
by the programmer. This is because we need to output source code annotations that are meaningful to
the user, and in order to do so we only transform loops that where explicitly written as so.

Example 1. In Figure 3 we show a program (a wilfully inefficient computation of of the sum of the first n
factorials) and a possible combination of transformations applied to it (again for the sake of presentation
rather than efficiency).

Paolo Tranquilli 5

s := 0 ;
i := 0 ;
wh i l e i < n do

p := 1 ;
j := 1 ;
wh i l e j ≤ i do

p := j ∗ p ;
j := j+1 ;

s := s+ p ;
i := i+1 ;

s := 0 ;
i := 0 ;
i f i < n then

p := 1 ;
j := 1 ;
wh i l e j ≤ i do

p := j ∗ p ;
j := j+1 ;

s := s+ p ;
i := i+1 ;
wh i l e i < n do

p := 1 ;
j := 1 ;
i f j ≤ i then

p := j ∗ p ;
j := j+1 ;
i f j ≤ i then

p := j ∗ p ;
j := j+1 ;
wh i l e j ≤ i do

p := j ∗ p ;
j := j+1 ;
i f j ≤ i then

j := j+1 ;
s := s+ p ;
i := i+1 ;
i f i < n then

p := 1 ;
j := 1 ;
wh i l e j ≤ i do

p := j ∗ p ;
j := j+1 ;
i f j ≤ i do

p := j ∗ p ;
j := j+1 ;

s := s+ p ;
i := i+1 ;

unrolled

peeled

unrolled

unrolled

peeled

Figure 3: An example of loop transformations. Blocks are delimited by indentation.

3 Labelling: a quick sketch of the previous approach

Plainly labelled Imp is obtained by adding to the code cost labels (with metavariables α,β , . . .), and
cost-labelled statements:

S,T ::= · · · | α : S

Cost labels allow us to track some program points along the compilation chain. For further details we
refer to [6].

The small step semantics turns into a labelled transition system and a natural notion of trace (i.e. lists
of labels) arises. The small-step rules of Imp remain as unlabelled steps, while adding the rule

(α : S,K,s) α→ (S,K,s)

6 Indexed Labels for Loop Iteration Dependent Costs

Cost labels are thus emitted by cost-labelled statements only4. We then write λ→∗ for the transitive closure
of the small step semantics which produces by concatenation the trace λ .

Labelling. Given an Imp program P its labelling in `Imp is defined by α : L (P), putting cost labels
after every branching statement, at the start of both branches, and a cost label at the beginning of the
program. The relevant recursive cases for the definition of L (P) are

L (if e then S else T) = if e then α : L (S) else β : L (T)

L (while e do S) = (while e do α : L (S));β : skip

where α,β are fresh cost labels. In all other cases the definition just passes to substatements.

Labels in the rest of the compilation chain. All languages further down the chain get a new sequential
statement emit α whose effect is to be consumed in a labelled transition while keeping the same state.
All other instructions guard their operational semantics and do not emit cost labels.

Preservation of semantics throughout the compilation process is restated, in rough terms, as:

starting state of P λ→∗ halting state ⇐⇒ starting state of C (P) λ→∗ halting state (1)

Here P is a program of a language along the compilation chain, starting and halting states depend on the
language, and C is any of the compilation passes5. This must in particular be true for any optimisation
pass the compilation undergoes.

Instrumentations. Let C be the whole compilation from `Imp to the labelled version of some low-
level language L. Supposing such compilation has not introduced any new loop or branching, we have
that:

• Every loop contains at least a cost label (soundness condition)

• Every branching has different labels for the two branches (preciseness condition).

With these two conditions, we have that each and every cost label in C (P) for any P corresponds to a
block of sequential instructions, to which we can assign a constant cost6 We therefore may assume the
existence of a cost mapping κP from cost labels to natural numbers, assigning to each cost label α the
cost of the block containing the single occurrence of α .

Given any cost mapping κ , we can enrich a labelled program so that a particular fresh variable (the
cost variable c) keeps track of the summation of costs during the execution. We call this procedure
instrumentation of the program, and it is defined recursively by:

I (α : S) = c := c+κ(α);I (S)

In all other cases the definition passes to substatements. One can then reason on the instrumented version
of the code like he would on any program, asserting statements about complexity by inspecting c.

4In the general case, because of the ternary operator, any evaluation of expressions can emit cost labels too (see B).
5The case of divergent computations needs to be addressed too. Also, the requirement can be weakened by demanding a

weaker form of equivalence of the traces than equality. Both of these issues are beyond the scope of this presentation.
6This in fact requires the machine architecture to be ‘simple enough’, or for some form of execution analysis to take place.

Paolo Tranquilli 7

The problem with loop optimisations. Let us take loop peeling, and apply it to the labelling of a
program without any prior adjustment:

(while e do α : S);β : skip 7→ (if b then α : S;while b do α : S);β : skip

What happens is that the cost label α is duplicated with two distinct occurrences. If these two occurrences
correspond to different costs in the compiled code, the best the cost mapping can do is to take the
maximum of the two, preserving soundness (i.e. the cost estimate still bounds the actual one) but losing
preciseness (i.e. the actual cost could be strictly less than its estimate).

4 Indexed labels

This section presents the core of the new approach. In brief points it amounts to the following:
4.1. Enrich cost labels with formal indexes stating, for each loop containing the label in the source code,

what iteration it occurs in.

4.2. Each time a loop transformation is applied and a cost labels is split in different occurrences, each of
these will be reindexed so that every time they are emitted their position in the original loop will be
reconstructed.

4.3. Along the compilation chain, alongside the emit instruction we add other instructions updating the
indexes, so that iterations of the original loops can be rebuilt at the operational semantics level even
when the original structure of loops is lost.

4.4. The machinery computing the cost mapping will still work, but assigning costs to indexed cost labels,
rather than to cost labels as we wish. However, dependent costs can be calculated, where dependency
is on which iteration of the containing loops we are in.

4.1 Indexing the cost labels

Formal indexes and ι`Imp. Let i0, i1, . . . be a sequence of distinguished fresh identifiers that will be
used as loop indexes. A simple expression is an affine arithmetical expression in one of these indexes,
that is a ∗ ik + b with a,b,k ∈ N. Simple expressions e1 = a1 ∗ ik + b1 and e2 = a2 ∗ ik + b2 in the same
index can be composed, yielding e1 ◦ e2 := (a1a2) ∗ ik +(a1b2 + b1), and this operation has an identity
element 1∗ ik +0, which we may denote simply by ik by abuse of notation. Constants can be expressed
as simple expressions, so that we identify a natural c with 0∗ ik + c.

An indexing (with metavariables I, J, . . .) is a list of transformations of successive formal indexes
dictated by simple expressions, that is a mapping7

i0 7→ a0 ∗ i0 +b0, . . . , ik−1 7→ ak−1 ∗ ik−1 +bk−1

An indexed cost label (metavariables A, B, . . .) is the combination of a cost label α and an indexing
I, written α〈I〉. The cost label underlying an indexed one is called its atom.

Imp with indexed labels (from now on ι`Imp) is defined by having loops with a formal index attached
to them and by allowing statements to by labelled by indexed labels:

S,T, . . . ::= · · · ik : while e do S | A : S
7Here we restrict each mapping to be one from an index to a simple expression on the same index. This might not be the

case if more loop optimisations are accounted for (for example, interchanging two nested loops could give rise to an indexing
like i0 7→ i1, i1 7→ i0).

8 Indexed Labels for Loop Iteration Dependent Costs

Notice that unindexed loops may still exist in the language: though it does not concern this simple toy
exampl, they would correspond to multi-entry loops which are ignored by indexing and optimisations in
a scenario with gotos.

We will discuss ι`Imp’s semantics later, in subsection 4.3.

Indexed labelling. In order to compute the indexed labelling L ι of a program, we need to keep track
of the nesting of indexed loops as we visit the program abstract syntax tree.

Let Idk be the indexing of length k made from identity simple expressions, i.e. the sequence i0 7→
i0, . . . , ik−1 7→ ik−1. We define the tiered indexed labelling L ι(S,k) by recursion setting:

L ι(while b do T,k) := ik : while b do α〈Idk+1〉 : L ι
P(T,k+1));β 〈Idk〉 : skip

L ι(if b then T1 else T2,k) := if b then α〈Idk〉 : L ι
P(T1,k) else β 〈Idk〉 : L ι

P(T2,k)

Here, as usual, α and β are fresh cost labels, and other cases just keep making the recursive calls on the
substatements. The indexed labelling of a program P is then defined as α〈〉 : L ι(P,0), i.e. a further fresh
unindexed cost label is added at the start, and we start from level 0.

In plainer words: each loop is indexed by ik where k is the number of other loops containing this one,
and all cost labels under the scope of a loop indexed by ik are indexed by all indexes i0, . . . , ik, without
any transformation.

4.2 Indexed labels and loop transformations

We define the reindexing α〈I〉 ◦ (ik 7→ f) as an operator on indexed labels by setting8:

α〈i0 7→ e0, . . . , ik 7→ ek, . . . , in 7→ en〉 ◦ (ik 7→ f) := α〈i0 7→ e0, . . . , ik 7→ ek ◦ f , . . . , in 7→ en〉.

We extend this definition to statements in ι`Imp by applying the above transformation to all indexed
labels contained in a statement.

We can now finally redefine loop peeling and loop unrolling, taking into account indexed labels. The
attentive reader will notice that no assumptions will be made as to the labelling of the statements that are
involved. This ensures that the transformation can be repeated and composed at will. Also, notice that
after erasing all labelling information (i.e. indexed cost labels and loop indexes) we recover exactly the
same transformations presented in 2. The transformations are presented in Figure 4.

As can be expected, in loop peeling the peeled iteration of the loop gets reindexed with 0, as it always
correspond to the first iteration of the loop. The iterations of the remaining loop are shifted by 1. Notice
that this transformation can lower the actual depth of some loops, however their index is left untouched.
In loop unrolling each copy of the unrolled body has its indexes remapped so that when they are executed,
the original iteration of the loop to which they correspond can be recovered.

Fact 2. Loop peeling and unrolling preserve the following invariant, which we call non-overlap of in-
dexed labels: for all labels α〈I〉 and α〈J〉 such that I 6= J, the first different simple expressions of the two
are disjoint, i.e. they always evaluate to different constants. Moreover for every loop ik : while e do S and
label α〈I〉 in S, no label outside the loop with the same atom can share the same prefix up to ik.

8If mappings are not restricted to only depend on the index being mapped, reindexing should be substituted in each occur-
rence of ik.

Paolo Tranquilli 9

ik : wh i l e b do S 7→ i f b then S◦ (ik 7→ 0) ; ik : wh i l e b do S◦ (ik 7→ ik +1)

ik : wh i l e b do S 7→

ik : wh i l e b do
S◦ (ik 7→ n∗ ik) ;
i f b then

S◦ (ik 7→ n∗ ik +1) ;
...
i f b then

S◦ (ik 7→ n∗ ik +n−1)

Figure 4: Loop peeling and loop unrolling in the presence of indexed labels. In loop unrolling n is the
times the loop is unrolled.

4.3 Semantics and compilation of indexed labels

In order to make sense of loop indexes, one must keep track of their values in the state. A constant
indexing (metavariables C, . . .) is an indexing which employs only constant simple expressions. The
evaluation of an indexed label A in a constant indexing C, noted A|C, is defined by:

A|i0 7→c0,...,ik−1 7→ck−1 := A◦ (i0 7→ c0)◦ · · · ◦ (ik−1 7→ ck−1)

Here, we are using the definition of −◦− given in subsection 4.1 at page 7. We consider the above
defined only if the the resulting indexing of the label is constant too9.

Constant indexings will be used to keep track of the exact iterations of the original code that the emit-
ted labels belong to. We thus define two basic actions to update constant indexings: C[ik↑] increments
the value of ik by one, and C[ik↓0] resets it to 0.

We are ready to explain how the operational semantics of indexed labelled Imp updates the one
of plain `Imp. The emitted cost labels will now be ones indexed by constant indexings. We add to
continuations a special indexed loop constructor ik : while b do S then K.

The difference between the regular stack concatenation ik : while b do S ·K and the new constructor
is that the latter indicates the loop is the active one in which we already are, while the former is a loop
that still needs to be started10.

The state will now be a 4-tuple (S,K,s,C) which adds a constant indexing to the triple of the regular
semantics. The small-step rules for all but cost-labelled and indexed loop statements remain the same,
without touching the C parameter. The new cases are:

(A : S,K,s,C)
A|C→ (S,K,s,C)

(ik : while b do S,K,C)→

{
(S, ik : while b do S then K,s,C[ik↓0]) if (b,s) ⇓ v 6= 0,
(skip,K,s,C) otherwise,

(skip, ik : while b do S then K,C)→

{
(S, ik : while b do S then K,s,C[ik↑]) if (b,s) ⇓ v 6= 0,
(skip,K,s,C) otherwise.

Some explanations are in order. We can see that emitting a label always instantiates it with the current in-
dexing, and that hitting an indexed loop the first time initializes the corresponding index to 0. Continuing
the same loop increments the index as expected.

9For example (i0 7→ 2∗ i0, i1 7→ i1+1)|i0 7→2 is undefined, but (i0 7→ 2∗ i0, i1 7→ 0)|i0 7→2 = i0 7→ 4, i1 7→ 2, is indeed a constant
indexing, even if the domain of the original indexing is not covered by the constant one.

10In the presence of continue and break statements active loops need to be kept track of in any case.

10 Indexed Labels for Loop Iteration Dependent Costs

The starting state with store s for a program P is (P,ε,s,(i0 7→ 0, . . . , in−1 7→ 0) where ε is the empty
stack and i0, . . . , in−1 cover all loop indexes of P11.

Compilation. Further down the compilation chain the loop structure is usually partially or completely
lost. We cannot rely on it any more to keep track of the original source code iterations. We therefore add,
alongside the emit instruction, two other sequential instructions ind reset k and ind inc k whose only
effect is to reset to 0 (resp. increment by 1) the loop index ik. These instructions will keep track of points
in the code corresponding to loop entrances and continuations respectively.

The first step of compilation from ι`Imp consists of prefixing the translation of an indexed loop
ik : while b do S with ind reset k and postfixing the translation of its body S with ind inc k. Later in the
compilation chain we must propagate the instructions dealing with cost labels.

We would like to stress the fact that this machinery is only needed to give a suitable semantics of
observables on which preservation proofs can be done. By no means are the added instructions and
the constant indexing in the state meant to change the actual (let us say denotational) semantics of the
programs. In this regard the two new instruction have a similar role as the emit one. A forgetful mapping
of everything (syntax, states, operational semantics rules) can be defined erasing all occurrences of cost
labels and loop indexes, and the result will always be a regular version of the language considered.

Stating the preservation of semantics. In fact, the statement of preservation of semantics does not
change at all, if not for considering traces of evaluated indexed cost labels rather than traces of plain
ones. So every pass will still need to enjoy property (1).

4.4 Dependent costs in the source code

The task of producing dependent costs from constant costs induced by indexed labels is quite technical.
Before presenting it here, we would like to point out that the annotations produced by the procedure
described in this subsection, even if correct, can be enormous and unreadable. The prototype compiler
employs simplifications that will not be documented here to mitigate this problem.

Upon compiling the indexed labelling L ι(P) of an Imp program P, we may still apply the machinery
described in [6] and sketched in section 3 and get a statically computed cost mapping from indexed labels
to naturals.

As we need to annotate the source code, we want a way to express and compute the costs of cost
labels. In order to do so, we have to group the costs of single indexed labels with the same atom. In order
to do so we introduce dependent costs.

Let us suppose that for the sole purpose of annotation, we have available in the language ternary
expressions of the form

e ? f1 : f2,

and that we have access to common operators on integers such as equality, order and modulus.

11For a program which is the indexed labelling of an Imp one this corresponds to the maximum nesting of single-entry loops.
We can also avoid computing this value in advance if we define C[i↓0] to extend C’s domain as needed, so that the starting
constant indexing can be the empty one.

Paolo Tranquilli 11

Simple conditions. First, we need to shift from transformations of loop indexes to conditions on them.
We identify a set of conditions on natural numbers which are able to express the image of any composi-
tion of simple expressions. Simple conditions are of three possible forms:

p ::= ik = n|ik ≥ n|ik mod a = b∧ ik ≥ n

Given a simple condition p and a constant indexing C we can easily define when p holds for C (writ-
ten p|C): it suffices to substitute the formal indexes with their value in C. A dependent cost expression
is an expression built solely out of integer constants and ternary expressions with simple conditions at
their head, i.e. K ::= n | p ? K1 : K2. Given a dependent cost expression K where all of the loop indexes
appearing in it are in the domain of a constant indexing C, we can easily define the value K|C ∈ N by
evaluating the heads of all ternary expressions in C.

Every simple expression e corresponds to a simple condition p(e) which expresses the set of values
that e can take. Following is the definition of such a relation12:

p(0∗ ik +b) := (ik = b) p(1∗ ik +b) := (ik ≥ b)

p(a∗ ik +b) := (ik mod a = b′∧ ik ≥ b) otherwise, where b′ = b mod a.

The fact that this mapping has sense is stated by the following fact.

Fact 3. For every expression e on ik, p(e)|(ik 7→c) iff there is a constant d such that e|(ik 7→d) = c.

From indexed costs to dependent ones. Suppose we are given a mapping κ from indexed labels to
natural numbers. We must transform it to a mapping (identified, by abuse of notation, with the same sym-
bol κ) from atoms to dependent expressions. The reader uninterested in the technical details explained
below can get a grasp of how this is done by going through the example in subsection 4.5.

We will allow indexings to start from other index variables than i0. Let S be the set of sets of
indexings with fixed domain. Formally:

S := {S | S⊆ { ih 7→ eh, . . . , ik 7→ ek }for some h≤ k and ei’s},

For every set S ∈ S, we are in one of the following three mutually exclusive cases:

• S = /0.

• S = {ε}, i.e. a singleton of the empty indexing.

• There is ih 7→ e such that S can be decomposed in (ih 7→ e)S′+ S′′, with S′ 6= /0 and none of the
sequences in S′′ start with e. Here (ih 7→ e)S′ denotes prepending ih 7→ e to all elements of S′, while
+ is disjoint union.

The above classification can serve as the basis of a definition by recursion on n+]S where n is the
size of indexings in S and]S is its cardinality. Indeed in the third case in S′ the size of indexings decreases
strictly (and cardinality does not increase) while for S′′ the size of tuples remains the same but cardinality
strictly decreases. The expression e of the third case can be chosen as minimal for some total order13.

12We recall that in this development, loop indexes are always mapped to simple expressions over the same index. If it was
not the case, the condition obtained from an expression should be on the mapped index, not the indeterminate of the simple
expression. We leave all generalisations of what we present here for further work

13The specific order used does not change the correctness of the procedure, but different orders can give more or less readable
results. An empirically “good” order is the lexicographic one, with a∗ ik +b≤ a′ ∗ ik +b′ if a < a′ or a = a′ and b≤ b′.

12 Indexed Labels for Loop Iteration Dependent Costs

We first define of the auxiliary function κα
I , parametrized by atoms and 0-based indexings, and going

from S to dependent expressions, using the previous classification of elements in S.

κ
α
L (/0) := 0 κ

α
L ({ε}) := κ(α〈L〉) κ

α
L ((ih 7→ e)S′+S′′) := p(e) ? κ

α

L(ik 7→e)(S
′) : κ

α
L (S

′′)

Finally the wanted dependent cost mapping is defined by

κ(α) := κ
α
ε ({L | α〈L〉 appears in the compiled code}) (2)

where one must notice that the set of indexings of an atom appearing in the code inhabits S because the
domain of all indexings is fixed by the number of nested loops in the source code.

The correctness of the above formula, which is a consequence of Fact 3, can be stated as the follow-
ing.

Fact 4. If there is no overlap (see Fact 2), and α〈I〉|C = α〈D〉 for α〈I〉 occurring in the compiled code,
then κ(α)|D = κ(α〈I〉).

The no overlap hypothesis ensures that if we are in the third case κα
L ((ih 7→ e)S′+S′′) of the formula

above and I = L,J with J ∈ S′′, then p(e)|D does not hold.

Indexed instrumentation. The indexed instrumentation generalises the instrumentation as presented
in [6] and sketched in section 3. We described above how cost atoms can be mapped to dependent costs.
The indexed instrumentation I ι must also insert code dealing with loop indexes. As instrumentation is
done on the code produced by the labelling phase, all cost labels are indexed by identity indexings. The
relevant cases of the recursive definition (supposing c is the cost variable) are then:

I ι(α〈Idk〉 : S) = c := c+κ(α);I ι(S)

I ι(ik : while b do S) = ik := 0;while b do (I ι(S); ik := ik +1)

This means that instrumentation internalises an index state C as the actual values of variables i0, . . .,
and when a cost must be registered it adds to the global cost variable the value κ(α)|C using the current
index state.

Suppose we guarantee the semantic correctness of the compilation and the fact that we never produce
overlapping indexed labels (Fact 2 for loop transformations, trivial for other passes). The correctness
of the instrumentation then follows from Fact 4. Indeed if the source code emits α〈C〉, by semantic
correctness we have the corresponding point in the execution of the compiled code emitting the same,
which means that we have encountered α〈I〉 under index state D such that α〈I〉|D = α〈C〉. Moreover
the index state in the labelled source is C, as all indexings are identities. It follows that when evaluating
the instrumentation c := c+κ(α), we add to the cost variable the amount κ(α)|C = κ(α〈I〉), which is
correct if the static analysis correctly analysed the cost.

4.5 A detailed example

Take the program in Figure 3. Its initial labelling is shown in Figure 5a. Supposing for example, n = 3
the trace of the program will be

α〈〉β 〈0〉δ 〈0〉β 〈1〉γ〈1,0〉δ 〈1〉β 〈2〉γ〈2,0〉γ〈2,1〉δ 〈2〉ε〈〉

Paolo Tranquilli 13

α〈〉 : s := 0 ;
i := 0 ;
i0 : wh i l e i < n do

β 〈i0〉 : p := 1 ;
j := 1 ;
i1 : wh i l e j ≤ i do

γ〈i0, i1〉 : p := j ∗ p ;
j := j+1 ;

δ 〈i0〉 : s := s+ p ;
i := i+1 ;

ε〈〉 : s k i p

(a)

α〈〉 : s := 0 ;
i := 0 ;
i f i < n then

β 〈0〉 : p := 1 ;
j := 1 ;
i1 : wh i l e j ≤ i do

γ〈0, i1〉 : p := j ∗ p ;
j := j+1 ;

δ 〈0〉 : s := s+ p ;
i := i+1 ;
i0 : wh i l e i < n do

β 〈2∗ i0 +1〉 : p := 1 ;
j := 1 ;
i f j ≤ i then

γ〈2∗ i0 +1,0〉 : p := j ∗ p ;
j := j+1 ;
i f j ≤ i then

γ〈2∗ i0 +1,1〉 : p := j ∗ p ;
j := j+1 ;
i1 : wh i l e j ≤ i do

γ〈2∗ i0 +1,2∗ i1 +2〉 : p := j ∗ p ;
j := j+1 ;
i f j ≤ i then

γ〈2∗ i0 +1,2∗ i1 +3〉 : p := j ∗ p ;
j := j+1 ;

δ 〈2∗ i0 +1〉 : s := s+ p ;
i := i+1 ;
i f i < n then

β 〈2∗ i0 +2〉 : p := 1 ;
j := 1 ;
i1 : wh i l e j ≤ i do

γ〈2∗ i0 +2,2∗ i1〉 : p := j ∗ p ;
j := j+1 ;
i f j ≤ i do

γ〈2∗ i0 +2,2∗ i1 +1〉 : p := j ∗ p ;
j := j+1 ;

δ 〈2∗ i0 +2〉 : s := s+ p ;
i := i+1 ;

ε〈〉 : s k i p

(b)

Figure 5: The result of indexed labeling and reindexing loop transformations on the program in Fig-
ure 3. A single skip after the δ label has been suppressed, and we are writing α〈e0, . . . ,ek〉 for
α〈i0 7→ e0, . . . , ik 7→ ek〉.

Now let as apply the transformations of Figure 3 with the additional information detailed in Figure 4.
The result is shown in Figure 5b. One can check that the transformed code leaves the same trace when
executed.

Let us compute the dependent cost of γ , supposing no other loop transformations are done. Ordering
its indexings we have the list in Figure 6a. If we denote with a,b, . . . ,g the integer costs statically
computed from the compiled code for each of the indexed occurrences of γ in the compiled code in
Figure 5b, we obtain, using equation (2) and the order of indexings in Figure 6a, the depedent cost in

14 Indexed Labels for Loop Iteration Dependent Costs

0, i1
2∗ i0 +1,0
2∗ i0 +1,1
2∗ i0 +1,2∗ i1 +2
2∗ i0 +1,2∗ i1 +3
2∗ i0 +2,2∗ i1
2∗ i0 +2,2∗ i1 +1

(a) The indexings
of γ in Figure 5b.

(i0 = 0) ?
(i1 ≥ 0) ? a : 0 :
(i0 mod 2 = 1∧ i0 ≥ 1) ?

(i1 = 0) ?
b :
(i1 = 1) ?

c :
(i1 mod 2 = 0∧ i1 ≥ 2) ?

d :
(i1 mod 2 = 1∧ i1 ≥ 3) ? e : 0 :

(i0 mod 2 = 0∧ i0 ≥ 2) ?
(i1 mod 2 = 0∧ i1 ≥ 0) ?

f :
(i1 mod 2 = 1∧ i1 ≥ 1) ? g : 0 :

0

(b) The dependent cost of γ as given by
equation (2).

(i0 = 0) ?
a :
(i0 mod 2 = 1) ?
(i1 = 0) ?

b :
(i1 = 1) ?

c :
(i1 mod 2 = 0) ? d : e :

(i1 mod 2 = 0) ? f : g

(c) The dependent cost of γ as
simplified by a procedure not
described in this work but im-
plemented in CerCo’s compiler.
Further simplifications would be
possible if any of the constants
turn out to be equal.

Figure 6: The dependent cost of γ in the program of Figure 7, as transformed in Figure 5b.

Figure 6b. Applying some simplifications that are not documented here but that are implemented in
CerCo’s untrusted prototype, we obtain the equivalent dependent cost in Figure 6c.

One should keep in mind that the example was wilfully complicated, in practice the cost expressions
produced have rarely more clauses than the number of nested loops containing the annotation.

5 Future work

For the time being, indexed labels are only implemented in the untrusted Ocaml compiler, while they are
not present yet in the code on which the computer assisted proof can be carried out (in case of CerCo’s
project, the tool used is Matita [4]). Porting them should pose no significant problem. Once ported, the
task of proving properties about them in Matita can begin.

Because most of the executable operational semantics of the languages across the front end and the
back end are oblivious to cost labels, it should be expected that the bulk of the semantic preservation
proofs that still needs to be done will not get any harder because of indexed labels. The only trickier
point that we foresee would be in the translation of Clight to Cminor, where we pass from structured
indexed loops to atomic instructions on loop indexes.

An invariant which should probably be proved and provably preserved along the compilation chain
is the non-overlap of indexings for the same atom. Then, supposing cost correctness for the unindexed
approach, the indexed one will just need to amend the proof by stating

∀C constant indexing.∀α〈I〉 appearing in the compiled code.κ(α)|IC = κ(α〈I〉).

Here, C represents a snapshot of loop indexes in the compiled code, while I ◦C is the corresponding
snapshot in the source code. Semantics preservation will ensure that when, with snapshot C, we emit
α〈I〉 (that is, we have α〈I ◦C〉 in the trace), α must also be emitted in the source code with indexing
I ◦C, so the cost κ(α)◦ (I ◦C) applies.

Aside from carrying over the proofs, we would like to extend the approach to more loop transforma-
tions. Important examples are loop inversion (where a for loop is reversed, usually to make iterations

Paolo Tranquilli 15

appear to be truly independent) or loop interchange (where two nested loops are swapped, usually to
have more loop invariants or to enhance strength reduction). This introduces interesting changes to the
approach, where we would have indexings such as:

i0 7→ n− i0 or i0 7→ i1, i1 7→ i0.

In particular dependency over actual variables of the code would enter the frame, as indexings would
depend on the number of iterations of a well-behaving guarded loop (the n in the first example).

Finally, as stated in the introduction, the approach should allow some integration of techniques for
cache analysis, a possibility that for now has been put aside as the standard 8051 target architecture for
the CerCo project lacks a cache. Two possible developments for this line of work present themselves:

1. One could extend the development to some 8051 variants, of which some have been produced with
a cache.

2. One could make the compiler implement its own cache: this cannot apply to RAM accesses of
the standard 8051 architecture, as the difference in cost of accessing the two types of RAM is
only one clock cycle, which makes any implementation of cache counterproductive. So for this
proposal, we could either artificially change the accessing cost of RAM of the model just for the
sake of possible future adaptations to other architectures, or otherwise model access to an external
memory by means of the serial port of the microcontroller.

References
[1] AbsInt Angewandte Informatik. Available at http://www.absint.com/.
[2] Certified Complexity (CerCo), FET-Open EU Project. Available at http://cerco.cs.unibo.it/.
[3] Frama-C software analyzers. Available at http://frama-c.com/.
[4] Matita. Available at http://matita.cs.unibo.it/.
[5] Roberto M. Amadio, Nicolas Ayache, Yann Régis-Gianas & Ronan Saillard (2010): Prototype implementa-

tion. Deliverable 2.2 of Project FP7-ICT-2009-C-243881 CerCo. Available at http://cerco.cs.unibo.
it/.

[6] Nicholas Ayache, Roberto M. Amadio & Yann Régis-Gianas (2012): Certifying and Reasoning on Cost
Annotations in C Programs. In Mariëlle Stoelinga & Ralf Pinger, editors: FMICS, Lecture Notes in Computer
Science 7437, Springer, pp. 32–46, doi:10.1007/978-3-642-32469-7 3.

[7] Christian Ferdinand & Reinhard Wilhelm (1999): Efficient and Precise Cache Behavior Prediction for Real-
TimeSystems. Real-Time Syst. 17, pp. 131–181, doi:10.1023/A:1008186323068.

[8] Xavier Fornari: Understanding how SCADE suite KCG generates safe C code. White paper, Esterel Tech-
nologies. Available at http://www.esterel-technologies.com/technology/WhitePapers/.

[9] Xavier Leroy (2009): Formal verification of a realistic compiler. Commun. ACM 52(7), pp. 107–115,
doi:10.1145/1538788.1538814.

[10] E. Morel & C. Renvoise (1979): Global optimization by suppression of partial redundancies. Commun.
ACM 22, pp. 96–103, doi:10.1145/359060.359069.

[11] Robert Morgan (1998): Building an Optimizing Compiler. Digital Press.
[12] Steven S. Muchnick (1997): Advanced Compiler Design and Implementation. Morgan Kaufmann.
[13] Reinhard Wilhelm, Jakob Engblom, Andreas Ermedahl, Niklas Holsti, Stephan Thesing, David B. Whalley,

Guillem Bernat, Christian Ferdinand, Reinhold Heckmann, Tulika Mitra, Frank Mueller, Isabelle Puaut,
Peter P. Puschner, Jan Staschulat & Per Stenström (2008): The worst-case execution-time problem - overview
of methods and survey of tools. ACM Trans. Embedded Comput. Syst. 7(3), doi:10.1145/1347375.1347389.

http://www.absint.com/
http://cerco.cs.unibo.it/
http://frama-c.com/
http://matita.cs.unibo.it/
http://cerco.cs.unibo.it/
http://cerco.cs.unibo.it/
http://dx.doi.org/10.1007/978-3-642-32469-7_3
http://dx.doi.org/10.1023/A:1008186323068
http://www.esterel-technologies.com/technology/WhitePapers/
http://dx.doi.org/10.1145/1538788.1538814
http://dx.doi.org/10.1145/359060.359069
http://dx.doi.org/10.1145/1347375.1347389

16 Indexed Labels for Loop Iteration Dependent Costs

[14] Xuejun Yang, Yang Chen, Eric Eide & John Regehr (2011): Finding and understanding bugs in C compilers.
In Mary W. Hall & David A. Padua, editors: PLDI, ACM, pp. 283–294, doi:10.1145/1993498.1993532.

http://dx.doi.org/10.1145/1993498.1993532

Paolo Tranquilli 17

A Detailed proofs of the facts

Fact 2. Loop peeling and unrolling preserve the following invariant, which we call non-overlap of
indexed labels: for all labels α〈I〉 and α〈J〉 such that I 6= J, the first different simple expressions of the
two are disjoint, i.e. they always evaluate to different constants. Moreover for every loop ik : while e do S
and label α〈I〉 in S, no label outside the loop with the same atom can share the same prefix up to ik.

Proof. The loop transformations can be taken one by one, as each loop transformation of the whole
program, independently on the heuristics used, can be factored into the single peeling or unrolling steps.

For peeling, suppose the invariant holds before it. Take two labels α〈I1〉 and α〈I2〉 occuring in the
transformed code, with I1 6= J2, and let ik be the index of the peeled loop. If ik does not appear in I1 (and
therefore not in I2 either), we are done. So suppose I1 = J1, ik 7→ e1 ◦ f1,J′1 and I2 = J2, ik 7→ e2 ◦ f2,J′2,
where J1, ik 7→ e1,J′1 and J2, ik 7→ e2,J′2 are the indexings in the pre-peeling code from which the two
labels come. f1 and f2 can be either the identity (the label was outside the loop), ik 7→ 0 or ik 7→ ik +1.
Suppose J1 = J2, otherwise the invariant on the pre-peeled code kicks in and we are done. If e1 6= e2 we
are also done, as disjointness of e1 and e2 implies the same for any of their compositions. Supposing
e1 = e2, also when e1 ◦ f1 = e1 ◦ f2 we are done, as it means the first difference is between J′1 and J′2 and
the pre-peeled code hypothesis applies.

So in fact we are left with the case where f1 and f2 are different transformations that take e1 = e2
to different expressions. This means that one is ik 7→ 0 and the other ik 7→ ik + 1, and that e1 actually
uses ik, i.e. it does not have a constant for it. Then it is immediate that the two are disjoint, because all
non-constant simple expressions are injective.

As for preserving the second invariant, suppose that a label inside the surviving loop shares a prefix
up to ik with one outside. This is trivially impossible for one in the peeled iteration. Suppose a label
outside does: however this means that in the pre-peeled code the two labels would overlap. For the same
reason none of the labels transformed in the peeling process can share a prefix with a label with the same
atom inside a loop not interested by the transformation.

A very similar reasoning can be applied to unrolling.

Fact 3. For every expression e on ik, p(e)|(ik 7→c) iff there is a constant d such that e|(ik 7→d) = c.

Proof. The only if part is pretty straightforward. For the if part, if e is constant this is trivial. If e is
“rigid”, i.e. e = 1 ∗ ik + b, then if ik ≥ b holds for ik = c it means we can write 1 · (c− b)+ b = c. If
e = a∗ ik +b with a > 1 and c mod a = b mod a, we have q1 and q2 such that c = q1a+(c mod a) and
b = q2a+(b mod a). If moreover c≥ b, we have q1 ≥ q2 and we can write

a(q1−q2)+b = aq1−aq2 +aq2 +(b mod a) = aq1 +(c mod a) = c.

Fact 4. If there is no overlap (see Fact 2), and α〈I〉|C = α〈D〉 for α〈I〉 occurring in the compiled code,
then κ(α)|D = κ(α〈I〉).

Proof. Let’s generalise the result to the fact that if LS occurs in the code as indexings of α (L is a prefix,
S is a set of postfixes), I ∈ S and α〈LI〉= α〈D〉 then κα

L (S)|D = κ(α〈LI〉).
We reason by cases on the decomposition of S. S = /0 is impossible as I ∈ S, and S = {ε} so that

I = ε yields the result directly.

18 Indexed Labels for Loop Iteration Dependent Costs

Suppose S = (ik 7→ e)S′+ S′′ and that I = (ik 7→ e)I′, so that I′ ∈ S′. We have by the if direction of
Fact 3 that p(e) holds for D which is obtained by evaluation of I. So

κ
α
L (S)|D = κ

α

L(ik 7→e)(S
′)|D = κ(L(ik 7→ e)I′)

by inductive hypothesis and we are done.
Suppose on the other hand that S = (ik 7→ e)S′+ S′′ and that I ∈ S′′. I must still be of the form

I = (ik 7→ f)I′, with f 6= e. As there is a J ∈ (ik 7→ e)S′ with both LJ and LI occurring in the code, by
non-overlap e and f must also be disjoint. This ensures that p(e) does not hold for any evaluation of LI:
if it were the case by the only if direction of Fact 3 we would have found a constant that equates e and f .
So we can conclude as above.

B Notes on the implementation

Implementing the indexed label approach in CerCo’s untrusted Ocaml prototype does not introduce many
new challenges beyond what has already been presented for the toy language. Clight, the C fragment
source language of CerCo’s compilation chain [6], has several more features, but few demand changes
in the indexed labelled approach.

The source code of the prototype together with instructions for compiling are available on the
project’s homepage [2].

Goto, break and continue statements. Explicit goto statements introduce some complications as to
loop optimizations. Indeed with gotos we lose the guarantee that a loop is entered from one point only in
the control flow graph. Anyway loop optimizations usually loose soundness or efficiency when applied
to multi-entry loops, so these are typically detected and excluded from optimizations.

In CerCo’s prototype, multi-entry loops are detected by checking for exterior gotos pointing inside
the body of the loop. These loops are left unindexed and do not contribute to raising the tier in the
definition of indexed labelling.

Clight’s loop flow control statements for breaking and continuing a loop are equivalent to appropriate
goto statements. The only difference is that we are assured that they cannot cause loops to be multi-entry,
and that when a transformation such as loop peeling is complete, they need to be replaced by actual gotos
(which happens further down the compilation chain anyway).

Indexed loops vs. index update instructions. In our presentation we have indexed loops in ι`Imp,
while we hinted that later languages in the compilation chain would have specific index update instruc-
tions. In CerCo’s actual compilation chain from Clight to 8051 assembly, indexed loops are only in
Clight, while from Cminor onward all languages have the same three cost-involving instructions: label
emitting, index resetting and index incrementing.

Loop transformations in the front end. We decided to implement the two loop transformations in
the front end, namely in Clight. This decision is due to user readability concerns: if costs are to be
presented to the programmer, they should depend on structures written by the programmer himself. If
loop transformation were performed later it would be harder to create a correspondence between loops
in the control flow graph and actual loops written in the source code. However, another solution would
be to index loops in the source code and then use these indexes later in the compilation chain to pinpoint

Paolo Tranquilli 19

explicit loops of the source code: loop indexes can be used to preserve such information, just like cost
labels.

Function calls. Every internal function definition has its own space of loop indexes. Executable se-
mantics must thus take into account saving and resetting the constant indexing of current loops upon
hitting a function call, and restoring it upon return of control. A peculiarity is that this cannot be attached
to actions that save and restore frames: namely in the case of tail calls the constant indexing needs to be
saved whereas the frame does not.

Cost-labelled expressions. In labelled Clight, expressions also get cost labels, due to the presence of
ternary conditional expressions (and lazy logical operators, which get translated to ternary expressions
too). Adapting the indexed labelled approach to cost-labelled expressions does not pose any particular
problems.

Simplification of dependent costs. As previously mentioned, the naı̈ve application of the procedure
described in 4.4 produces unwieldy cost annotations. In our implementation several transformations are
used to simplify such complex dependent costs.

Disjunctions of simple conditions are closed under all logical operations, and it can be computed
whether such a disjunction implies a simple condition or its negation.This can be used to eliminate useless
branches of dependent costs, to merge branches that share the same value, and possibly to simplify the
modulus case of simple condition skipping its inequality part. Examples of the three transformations are
respectively:

• i0 = 0 ? x : i0 >= 1 ? y : z 7→ i0 = 0 ? x : y,

• c ? x : d ? x : y 7→ c∨d ? x : y,

• i0 = 0 ? x : i0 mod 2 = 0∧ i0 ≥ 2 ? y : z 7→ i0 = 0 ? x : i0 mod 2 = 0 ? y : z.

The second transformation tends to accumulate disjunctions, to the detriment of readability. A further
transformation swaps two branches of the ternary expression if the negation of the condition can be
expressed with fewer clauses. For example:

i0 mod 3 = 0∨ i0 mod 3 = 1 ? x : y 7→ i0 mod 3 = 2 ? y : x

An example with a C program. We will demonstrate the workings of the annotating compiler on
a small C program. Figure 7 shows such a program. Running the CerCo annotating compiler on it
with no optimization yields the annotated source code in Figure 8. Notice how the annotations give
back to the programmer the actual cost in clock cycles of the object code. Finally, applying some loop
transformations too, the source in Figure 9 is obtained, by turning on indiscriminate peeling and unrolling
(by 2), constant propagation and partial redundancy elimination. We can see that, as can be expected of
the 8051 architecture that lacks pipelining, unrolling does not make much difference between even and
odd iterations.

20 Indexed Labels for Loop Iteration Dependent Costs

i n t min (i n t t a b [] , i n t s i z e) {
i n t i , min index , m i n v a l ;

m i n i n d e x = 0 ;
m i n v a l = t a b [m i n i n d e x] ;
f o r (i = 1 ; i < s i z e ; i ++) {

i f (t a b [i] < m i n v a l) {
m i n i n d e x = i ;
m i n v a l = t a b [m i n i n d e x] ;

}
}

r e t u r n m i n i n d e x ;
}

Figure 7: A small program computing the index of the minimal element in an array.

Paolo Tranquilli 21

i n t c o s t = 0 ;

vo id c o s t i n c r (i n t i n c r)
{

c o s t = c o s t + i n c r ;
}

i n t min (i n t ∗ t ab , i n t s i z e)
{

i n t i 0 ;
i n t i ;
i n t m i n i n d e x ;
i n t m i n v a l ;

c o s t 4 :
c o s t i n c r (4 4 3) ;

m i n i n d e x = 0 ;
m i n v a l = t a b [m i n i n d e x] ;

i 0 = 0 ;
f o r (i = 1 ; i < s i z e ; i = i + 1) {

c o s t 2 i 0 :
c o s t i n c r (2 3 1) ;

i f (t a b [i] < m i n v a l) {
c o s t 0 i 0 :
c o s t i n c r (2 7 0) ;

m i n i n d e x = i ;
m i n v a l = t a b [m i n i n d e x] ;

} e l s e {
c o s t 1 i 0 :
c o s t i n c r (7 7) ;

}
i 0 = i 0 + 1 ;

}
c o s t 3 :
c o s t i n c r (1 8 7) ;

r e t u r n m i n i n d e x ;
}

Figure 8: The result of running acc -a on the program of Figure 7.

22 Indexed Labels for Loop Iteration Dependent Costs

i n t c o s t = 0 ;

vo id c o s t i n c r (i n t i n c r)
{

c o s t = c o s t + i n c r ;
}

i n t min (i n t ∗ t ab , i n t s i z e)
{

i n t i 0 ;
i n t i ;
i n t m i n i n d e x ;
i n t m i n v a l ;

c o s t 4 :
c o s t i n c r (2 6 7) ;

m i n i n d e x = 0 ;
m i n v a l = t a b [m i n i n d e x] ;

i 0 = 0 ;
f o r (i = 1 ; i < s i z e ; i = i + 1) {

c o s t 2 i 0 :
c o s t i n c r (1 2 6) ;

i f (t a b [i] < m i n v a l) {
c o s t 0 i 0 :
c o s t i n c r (i 0 == 0 ? 102 : (i 0 % 2 == 1 ? 150 : 1 5 3)) ;

m i n i n d e x = i ;
m i n v a l = t a b [m i n i n d e x] ;

} e l s e {
c o s t 1 i 0 :
c o s t i n c r (4 9) ;

}
i 0 = i 0 + 1 ;

}
c o s t 3 :
c o s t i n c r (1 8 7) ;

r e t u r n m i n i n d e x ;
}

Figure 9: The result of running acc -a -peel -unroll -cst-prop -pre on the program of Fig-
ure 7.

	Introduction
	The minimal imperative language Imp
	Labelling: a quick sketch of the previous approach
	Indexed labels
	Indexing the cost labels
	Indexed labels and loop transformations
	Semantics and compilation of indexed labels
	Dependent costs in the source code
	A detailed example

	Future work
	Detailed proofs of the facts
	Notes on the implementation

