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Commutative languages with the semilinear property (St#)be naturally recognized by real-time
NLOG-SPACE multi-counter machines. We show that unionsamttatenations of such languages
can be similarly recognized, relying on — and further depiglg, our recent results on the family of
consensually regular (CREG) languages. A CREG languaggfiised! by a regular language on the
alphabet that includes the terminal alphabet and its mackpgl. New conditions, for ensuring that
the union or concatenation of CREG languages is closed,rasepted and applied to the commu-
tative SLIP languages. The paper contributes to the knayeled the CREG family, and introduces
novel techniques for language composition, based on agiisnaongruences that act as language
signatures. Open problems are listed.

1 Introduction

This paper focuses on commutative languages having thdiseani property (SLIP). We recall that a
language has thénear property (LIP) if, in any word, the number of letter occurrences (afsoned
Parikh image) satisfies a linear equation; it hassimilinear propertfSLIP) [5] if the number satisfies
one out of finitely many linear equations. A languagedsnmutativglCOM) if, for every word, all
permutations are in the language; thus, the legality of alvimbased only on the Parikh image, not
on the positions of the letters. Here we deal with the subatdSCOM languages enjoying the SLIP,
denoted by COM-SLIP, for which we recall some known progstti For a binary alphabet, COM-
SLIP languages are context-free whereas, in the genem| ttaes/ can be recognized byulti-counter
machinegMCM), in particular by non-deterministic quasi-real-griblind MCM (equivalent tareversal-
boundedVICM [[7]). The COM-SLIP family is closed under all Boolean ogtons, homomorphism and
inverse homomorphism, but it is not closed under concatamat

Our contribution is to relate two seemingly disparate laggufamilies: on one hand, the COM-
SLIP languages and their closure under union and concatan@enoted by COM-SLIP ), on the
other hand, the family ofonsensually regulalanguages (CREG), recently introduced by the authors,
to be later presented. We briefly explain the intuition bdhin Given a terminal alphabet, a CREG
language is specified by means of a regular languagebébe having adoublealphabet: the original
one and alottedcopy. Two or more words in the base languagatch if they are all identical when
the dots are disregarded and, in every position, exactlyvaorel has an undotted letter (thus in all
remaining words the same position is dotted). In our metapt® say that, position by position, one of
the base words “places” a letter and the remaining wordsseoti to it. A word is in the consensual
language if the base language contains a set of matchingswinkehtical to the given word when the
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dots are disregarded. This mechanism somewhat resemblesadthel of alternating non-deterministic
finite automata, but the criterion by which the parallel comations match is more flexible and produces
a recognition device which is a MCM working in NLOG-SPACE.IFMCM can be viewed as a token
or multi-set machine; it has one counter for each state oDiR& recognizing the base language; each
counter value counts the number of parallel threads thatiarently active in each state. Our main result
is that the COM-SLIP family is strictly included in CREG; we also prove some ndosare properties
of COM-SLIP” .

To construct the regular language that serves as base footisensual definition of a COM-SLYP
language, we have devised a new method, which may be alad tsefudy the inclusion in consensual
classes of other families closed union or concatenationis #asy to consensually specify a COM-
LIP language by means of a regular base; however, in gener@n or concatenation of two regular
bases consensually specifies a larger language than the emaoncatenation of the components. To
prevent this to happen, we assign a distinct numeric congeuelass to each base, which determines the
positions where a letter may be placed as dotted or as udd&ite a given word, such positions are not
the letter orders, but they are the orders of the lettersarptbjections of the word on each letter of the
alphabet. The congruence acts as a sort of signature thadtdae mismatched with other signatures.

To hint to a potential application, COM-SL{P offers a rather suitable schema for certain parallel
computation systems, such as Valiant's “bulk synchroncaralfel computer”[[15]. There, when all
threads in a parallel computational phase, which we suggesbdel by a commutative language, termi-
nate, the next phase can start; the sequential compositguch phases can be represented by language
concatenation; and the composition of alternative subsystcan be modeled by language union. As
said, such computation schema is not finite-state but it isCIM

Paper organization: Se€l. 2 contains preliminaries, samgls properties of COM-SLIP and the
consensual model. Sect. 3 introduces the decomposed f@t@s and proves the conditions that ensure
union- and concatenation-closure, and details the congeubased constructions. Sddt. 4 proves the
main result through a series of lemmas. The last sectionsréferelated work and mentions some
unanswered guestions.

2 Preliminary Definitions and Properties

The terminal alphabet is denoted by= {a, .. .,a}, the empty word by and|x| is the length of a word
x. The projection ok on A C ¥ is denoted by (X); [x|a is shorthand fofrg,, (x) | for a € %, and|x|a
stands follx (X) |. Thei-th letter ofx is x(i) andx(i, j) is the substring(i)...x(j), 1<i < j <|x. The
shuffleoperation is denoted by.

The Parikh imageor vectorof a wordx € Z* is W(X) = [|X|a,, ---, |X|a/]; it can be naturally extended
to a language. The component-wise addition of two vectodeimted byﬁ' + ﬁ". The commutative
closureof L € Z* iscomL) = {x € Z* | W(x) € W(L)}. A languagel is commutativef com(L) = L;
the corresponding language family is named COM. A language>* has thelinear property (LIP)

if there existq+ 1 > 0 vectorsg, Y, ..., p@ over N¥, (resp. theconstantand theperiod9 such that
W) ={c+m - pY+...+nq P9 |ny,...,ng >0}

A language has theemilinear property(SLIP) if it is the finite union of LIP languages. The fami-
lies of commutative LIP/SLIP languages are denotedC®M-LIP/ COM-SLIP, respectively. It is well
known that COM-SLIP is closed under the Boolean operationsyse homomorphism, homomorphism
and Kleene star, but not under concatenation, which in gémlestroys commutativity. However, the
concatenation of COM-SLIP languages still enjoys the SLIP.
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Let COM-SLIP” be the smallest family including COM-SLIP languages andg@tbunder union and
concatenation. Let BLIND denote the class of languagespaedeby nondeterministic, blind multi-
counter machines [7], which, we recall, are restricted tdgpm a test for zero only at the end of a
computation; they are equivalent to reversal-bounded teoumachines. The following facts, although
to our knowledge not stated in the literature, are straighihrd.

Proposition 1. Main Properties of COM-SLIP" .
1. Every COM-SLIP" language on a binary alphabet is context-free.
2. COM-SLIP" C BLIND.

3. The COM-SLIP" family is not closed under intersection and Kleene star.

Proof. Let L’ = com((ab)*). Statement (1) is immediate: since all COM-SLIP on a a birepha-
bet are context-free [9, 13], also their union and concdi@mas context-free. Statement (2) is also
immediate, since COM-SLIP is clearly included in BLIND, aBHIND is closed by union and concate-
nation. The inclusion is strict since BLIND includes alsmreopntext-free languages on a binary alpha-
bet [7]. To prove non-closure of intersection — Statemeyt-@ssume by contradiction that the language
Lo =L'Nnatb" = {a"b" | n> 0} is in COM-SLIP’ . Hence, also the languages= {a"b"a" | n > 0},

L, = {a™bMa" | m> 0} andL; NL, = {a"b"a" | n > 0} are in COM-SLIF" . But the latter lan-
guage is not context-free, contradicting Statement (1). cGimplete the proof of Statement (3), if
COM-SLIP’ were closed under Kleene star, then language- (L'c)* would be COM-SLIP- , with

c ¢ {a,b}. However, COM-SLIP" is included in BLIND, which is an intersection-closed fuinsiAFL
(see Section 5 of[1] and also Theorem 1 0f [7]), i.e., BLINBIzsed under intersection, union, arbitrary
homomorphism, inverse homomorphism, and intersectioh mgular languages. Hence, the language
Ls=LszN(a"btc)* ={a"b"c| n> 0}* would be in BLIND. Letterc can be deleted by a homomorphism,
hence also the languadeb" | n > 0}*, is BLIND, contradicting Corollary 3 of [1] and also Theordin
Part (2), of [7]. O

2.1 Consensual Languages.

We present the necessary elements of consensual langeayg i, 3]. Lets be thedotted(or marked)
copy of alphabek. For eacha € £, adenotes the sdi,a}. The alphabek = SUSis nameddouble(or
internal). To express a sort of agreement between wordstogatouble alphabet, we introduce a binary
relation, calledmatch over>*.

Definition 1 (Match) The partial, symmetrical, and associative binary opera@fedmatch @ 1T %
2> — 2 is defined as follows, for alh € Z:

a@a=4a@a=a
a@a=a
undefined in every other case.

The match is naturally extended to strings of equal lengtta ktter-by-letter application, by assuming
e@e = ¢: for everyn > 1, for allw,w € 2", if w(i)@w (i) is defined for every,1 <i < n, then

w@w = (w(1)@w (1)) -...- (w(nj@w(n)). Inevery other casey@w is undefined.
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Hence, the match is undefined on string®/ of unequal lengths, or else if there exists a posifi@uch
thatw(vj (j) is undefined, which occurs in three cases: when both chasaate inX, when both
are inZ and differ, and when either one is dotted but is not the dattsay of the other. Syntactically,
the precedence of the match operator is just under the precedf the concatenation. The mateh
of two or more strings is further qualified asrongif w € Z*, or asweakotherwise. By Def[11, if
W=w@W@... @wn is a strong match afn > 1 wordswi, .. -, Wi, then in each position £ i < |w|,
exactly one word, saw, is undotted, i.ewn(i) € X, andw;(i ) e 3 for all j # h; we say that wordwy,
placesthe letter at positiom and the other wordsonsentto it. Metaphorically, the words that strongly
match provide mutual consensus on the validity of the cpmeding word ove&, thereby motivating
the name “consensual” of the language family.

The match is extended to two languad#sB” on the double alphabet, S@B” {wWaw' |w e
B',w’ € B"}. The iterated matcB'@ is defined for ali > 0, asB°@ = B, B@ = B(-D@@B, if i > 0.

Definition 2 (Consensual languageT he closure under matchor @-closure of a languagd3 C T*is
B@ = |J;-oB'@. Theconsensual language with baseBdefined as ¢ (B) = B@ N =*. The family of
consensually regulaianguages, denoted by CREG, is the collection of all langs@t{B), such that the
baseB is regular.

It follows that a CREG language can bensensually specifidaly a regular expression OVEr

Example 1. The LIP languagé = {a"b"c" [ n> 0} is consensually specified by the base (that we may
call a consensual regular expressioa”nar b*bb & c&*. For instanceaabbccis the (strong) match of
&dabb¢ candadbbcd. The commutative closure afis also in CREG, with base:om(abc) w3,

Similarly, the COM-LIP languagé’ = com((ab)*) = ¢'(B1), whereB; = com(ab) w3,

The COM-LIP languagé” = com((abb)*) is specified by the badg, = com(abb) w3,

The languagek’ UL” andL’-L” are in CREG, but, counter to a naive intuition, they are net#jgd by

the bases obtained by composition, respectiv@ly, B, andB; B,. In general¢’ (B; UB;) D ¢ (B1) U
%(Bg) in the examplesy’(B1 UB;) contains also undesirable “cross-matching” words, suctbabb=
ababb@ababb A systematic compositional technique for obtaining theext bases for the union and
concatenation is the main contribution of this paper.

Summary of known and relevant CREG properties. Language family comparison€ REG includes
the regular languages, is incomparable with the conted-&nd deterministic context-free families, is
included within the context-sensitive family, and it cantanon-SLIP languages. CREG strictly includes
the family of languages accepted by partially-blind matiinter machines that are deterministic and
guasi-real-time, as well as their unian [4].

Closure propertiesCREG is is closed under marked concatenation, markedidaratverse alphabetic
homomorphism, reversal, and intersection and union wihlex languages. The marked concatenation
of two languages.;,L, C 2* is the languagé. #L,, where #Z %, while the marked iteration df C >*

is the languagé€L#)*. A language family enjoying such properties is known ggexAbstract Family

of Languagegsee, e.g., [14]). A precise characterization of the basasdonsensually specify regular
languages is i |3]; an analysis of the reduction in desomgl complexity of the consensual base with
respect to the specified regular language islin [2].

Complexity:CREG is in NLOGSPACE, i.e., NSPACBgn) (often called NL): it can be recognized by a
nondeterministic multitape Turing machine working in togpace. The recognizer of CREG languages
is a special kind of nondeterministic, real-time multi-oter machine.
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Useful notations for consensual languages. The following mappings will be used:
switching  switch: = — ¥ whereswitch(@) = 4, switch&) = a, forallac =
marking dot:5— 3 wheredot(x) = X, if x € 5, anddot(x) =4, if x=a€
unmarking undot: £ — = whereundoia) = switch(dot(a)), for all ac %.

These mappings are naturally extended to words and languegg, giverx € £*, switchx) is the word
obtained interchanging andd’in x (a sort of “complement”).

In the remainder of the paper, we assume that each base tgnigmsubset &f* — i*, since words
in 3+ are clearly useless in a match. LBtB' be languages included &+ — 3+. We say thaB is
unproductivef € (B) = 0, and that the paifB, B') is unmatchablef B@B' = 0.

3 Consensual specifications composable by union and concaddion

Since it is unknown whether the whole CREG family is closedarrunion and concatenation, we first
introduce a normal form, named decompdge:uf, the base languages, which is convenient to ensure
such closure properties. Second, we state two further tonsgj named joinability and concatenability,
for decomposed forms, and we prove that they, respectigabrantee closure under union and concate-
nation. Such results hold for every consensual languadgehbudifficulty remains to find a systematic
method for constructing base languages that meets suclitioasd Third, in Sect._3]1 we introduce an
implementation of decomposed forms, relying on numerioagcuences, that will permit us to prove in
Sect[4 that thel(, -)-closure of commutative SLIP languages is in CREG.

Definition 3 (Decomposed form)A baseB C ¥* — 5+ has thadecomposed formthere exist a (disjoint)
partition of B into two languages, named tkeaffold sand thefill fl of B, such thatfl is unproductive,
and the paifsc sc) is unmatchable.

The names scaffold and fill are meant to convey the idea oframgement superposed just once on
each word of the base and, respectively, of an optional @péatable) component to complete the letters
which are dotted in the scaffold. Three straightforward agta follow. For every basB there exists a
consensually equivalent decomposed base: it suffices ¢éoaslscaffold the languada dot(y) | ay €
B,ac %,y e 2*}, and as fill the languagfdot(X)y | x € 2,y € £*,xy € B}. For everysC sq f C fl, the
basesU f is a decomposed form. The scaffold, but not the fill, may idelwords ovek.

Consider a wordv € ¢’(B). Since the fill is unproductive, its match closure canplaice all the
letters ofw and such letters must be placed by the scaffold. Since byitilefithe match closure of the
scaffold alone is the scaffold itself, the following fundantal lemma immediately holds.

Lemma 1. If B = scU fl is in decomposed form, as in DEF. 3, th#iiB) = (scuU (sc@ f1®)) Nz*.

Example 2. The table shows the decomposed bases of languame&ab)™) and com((abb)™) of
Sect.[Z.1, considering for brevity only the case that the memof a’s is a multiple of 3. Letl’ =
com({a3"b3" | n > 1}), with scaffoldsc and fill fI’, andL” = com({a3"b®" | n > 1}), with scaffoldsc’
and fill f1”:

scaffold fill a strong match

L' | (a8a)*w (bbb)* | (&%) 8a&(8%)* w (B2)* bbb (B?)* o ¢ E’ o2 g Eg?ﬁ

b be sd

b befl

L” | (Raa)™ w (bbb)* | (&3)* ada(&3)" w (B3)* (bbb)? (B3)*

a ab bb
4 8 b b b

1in [@], we introduced the idea of a decomposed form for cemaiilti-counter machines, but that definition does not work
for commutative languages.
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Clearly, every word irsc is unmatchable with every other word &', hences¢@sc¢ = 0. Similarly,
every fill is unproductive. Every word ik’ is the match of exactly one word in the scaffold with one or
more words in the fill. Analogous remarks hold fdf.

Next, imagine to consensually specify two languages by<asdecomposed for8’ = sc U fl’
andB” = sd’ U fl”. By imposing additional conditions on the bases, we obtaowery useful theorems
about composition by union and concatenation.

Definition 4 (Joinability) Two base language®’,B” in decomposed form aneinable if their union
B'UB" is decomposed, with scaffolst Usc’ and fill fI’U fl”, and the pairgsc, fI”) and(sc’, fl’) are
unmatchable.

Theorem 1 (Union of consensual languages in decomposed fotm) the base languages.B” be in
decomposed form. Ifind B’ are joinable ther¢' (B') U¢(B") = ¢ (B'UB").

Proof. It suffices to prove the inclusio#@’' (B’ UB") C %' (B") U%(B"), since the opposite inclusion is
obvious by Def[R. Lek € ¥ (B). SinceB is decomposed, by Lemma 1 it must be eitker sc@fl@
orx € sc In the latter casex is in B’ or in B”, and the inclusion follows. In the former case, there exist
n> 2 wordswi,Wa. .., W, With n < |X|, Wy € SG Wa,..., W, € fl andw;@wW,@... @w, = x. We claim
that eitheiw; € sc¢ and every othew; € B/, orw; € s¢’ and every othew; € B”, from which the thesis
follows. Assumew; € sc (the casew; € s¢’ is symmetrical). If there exist§, 2 < j < n, such that

w;j € fI” (with wj & i*), thensc@fl1” is not empty (it includes at least; @w;), a contradiction with
the hypothesis th&’ andB” are joinable. O

Example 3. Returning to Ex_R, we check that the two bases are joinatie. uhion of the bases is in
decomposed formfl’ U fl” is unproductive (because letters at positions 3, 6, .. .adm® placed); the
pair (sc¢,sc’) is unmatchable, hence alésc Usc’,sc Usc’) is unmatchable. Moreovefsc, fI”), and
(sc’, fI’) are unmatchable. ThereforeUL” = €' (sc Usc’ U fI'U fl”).

For concatenation, a similar, though more involved, reagprequires a new technical definition.

Definition 5 (Dot-product® and concatenability)Let B',B” be in decomposed form, and define their
dot-productasB’ © B" = (sc¢ - sc’) U fI'U fI”. B' andB” areconcatenabléf B'® B” is in decomposed
form, with scaffoldsc - s¢’ and fill fI’U f1”, and the next two clauses hold for all worisw’ € =1,y €
s¢,y’ e sc:

IX e fI':w =X -dot(y’) A X@y is defined if, and only ifw/ € fI'A W@y -y’ is defined (1)
IK" e fI” :w' =dot(y)-X" A X'@y" is defined if, and only if W’ € fI” A W@y -y" is defined (2)

The two clauses are symmetrical. In loose terms, Clduseaffs that the fillfl’ contains a word
w that matchey'y”, if, and only if, the word has a prefiX , also infl’, which matchey/, hence it is
aligned with the point of concatenation. Therefore, theamat @y -y’ does not produce a word that is
illegal for €' (B') - € (B"). This reasoning is formalized and proved next.

Theorem 2 (Concatenation of consensual languages in decomposed. faehthe bases 'BB” be in
decomposed form. IfB” are concatenable, the&(B') - ¢ (B") = ¢ (B © B").

Proof. LetB=B ©B".

Case?'(B)-¢(B") C€¢(B). If xe €(B)-¢(B"), thenx=xx" with X € € (B'), X" € ¢€(B"). Hence X
is the strong match of on& € sc (resp.w” € sc’) with n > 0 wordsw/, ..., wj, € fI’ C fl; analogously,
X" is the strong match of ong’ € sc’ with m> 0 wordswy, ... wiy, € fI”. By definition of concatenability,
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since for 1< i < n, every wordw is in fl’, then also all wordsv; - dot(w”),w/, - dot(w”),... are in fl’,
hence also irfl. Similarly, alsodot(w”) -w/,...dot(w’) -w;, are in fl”. Sincew -w" is in scsc’, it is
possible to define a strong match yieldixdg’ = x, namely,

X = WW'@ (W, - dot(w")) @ (W) - dot(w")) @. . (dot(w) -/ ) @(dot(w) - W) @. .

that is the concatenation of @w;@. .. @w,, = X with w'@w;@... @w, = X",

Case?¢'(B) C¢(B)- ¢(B"). Letxe % (B). Then there exist > 1 wordsw, W, ..., Wn, with n < |x],
such thatw,@wW,@... @wW, = X, Wy € s¢ -s¢ andws,...,wy € fl’U fl”. By definition, w; can be
decomposed inta; = w;w, for somew; € sc,w;, € sc’. Letq= |w|. Assume, by contradiction, that
x¢ € (B')- ¢(B"). Sincexis the match of wordv; = wjw, and words infl’ U f”, the only possibility
for wnot being in¢'(B') - ¢ (B") is that there exist$,2 < j <n, such that:

1. w; € fI’, and the substring;(1,q) & fl’, or
2. wj € fl”, and the substring/; (q+ 1, |x|) & fl”.

We consider only Case (1) since the other is symmetricate$in € fl’ andw; @w;w; is defined, then,
by definition of concatenability, there existse fl’ such thatw; = x - dot(wj), i.e.,wj(1,9) =X, a
contradiction with the assumption of Case (1). O

Example 4. Consider again EXJ]2. It is easy to check that the fsidf- sc’, sc - sc’) is unmatchable,
for the same reason thggc,sc’) is unmatchable. Then, we check that the basgs fI” andsc’ U fl”
are concatenable. We only discuss the case of Clalise (¥) Glaase[(R) is symmetrical. Let € =+,

y €sc, flI” e sc. If there existsX' € fI’ such thaw' = X'dot(y”), then obviously botiw' € fl" and
w@y -y’ are defined.

For the converse case, assume Wiat fI’ andw @y -y’ is defined. Consider the projectioas= (W),
a’'=m(Y) € (ada)” anda” = (y’) € (daa) ™. Thena € (33d)*aad(add)*. Sincew @y -y’ is defined,
the factoraad of o must be matched with a factor afa”: by its form and alignment, the only possibility
is that it is matched with a factor @f’. Hence,a has the form(d3d)*aad(d3a)*dot(a”). We omit the
analogous reasoning for the projectionsmnSincew @y -y’ is defined, thew’ must have the form

X -dot(y”) for somex € flI’. Thereforel’-L” = ¢'(sc -sc’ U fI’U fl”). For instance

adakbb- 4aabbtbbb @
a®b®a®h® = 4adbhb- 433bbbbbb @
4&4bbb - a&&bbbbbb
This example relies on a numerical congruence with modular pdsitioning the dotted and undotted
letters. We shall see how to generalize this approach toléamords of any congruence class (with
respect to the length of the projections on each letter). geémeralization will carry the cost of taking
larger values for the congruence module.
Incidentally, we observe that the theorems of this secti@y mave a more general use than for

commutative languages. Moreover, the theorems do notreethé base languages to be regular; in fact,
Def.[2 applies as well to non-regular bases (as a matter bf3pstudies context-free/sensitive bases).

3.1 A Decomposed Form Relying on Congruences

Having stated some sufficient conditions for ensuring thatunion/concatenation of two consensual
languages can be obtained by composing (as described by18Emd Th[2) the corresponding base
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languages, we design a decomposed form, suitable for simgpgoinability and concatenability, that
uses module arithmetic for assigning the positions to thied@nd undotted letters within a wondover

3; the preceding examples offered some intuition for the faxxbal developmen@.Looser speaking,
each decomposed base language is “personalized” by a saniopfe pattern of dotted/undotted letters,
such that, when we want to unite or concatenate two langu#gesnatch of two words with different
patterns is undefined, thus ensuring that the union or déenaf the two decomposed bases specifies
the intended language composition.

For everya € 2, consider the projection af ona= {a,a} and, in there, the numbered positions of
eachaandd. Letmbe an integer. By prescribing that for each base languagh,walotted lettea may
only occur in positiong characterized by a specified value of the congrugnaaodm, we make the
bases decomposed. We need a new definition.

Definition 6 (Slots and modules)Let m > 3, calledmodule be an even number. LRXC {1,...,(m/2—
1)} be a nonempty set, calledset of slots of module mFor everya € Z, define a finite language
Rm(a) C &, where only positions 1 and4- 1 are dotted:

Rn(@) = {&d1&d™ "1 |r c R} (3)

The disjoint regular Ianguagess-Rn,fI-ng* are defined as:
sc-Rn = {x|vaeZ m(x) € (Rm(a)Ua)"} (4)
fl-Rn = switchsc-Ry) — 2*. (5)

The definition offl-Ry, is clearly equivalent tdx | Va € %, 1(x) € (switch(Rn(a)) U8)" } — S ltis
fairly obvious that#’(B) = ", sinceZ™ C sc-Ry. Also, sc-Ry@sc-R, = 0 andfl-Ry, is unproductive.
The following lemma is also obvious.

Lemma 2. For all even numbers m 3 and non-empty sets R of slots of module m, every base E
sc-RnUTl-Ry, is in decomposed form, with scaffold:rEsc-Ry, and fill: ENfl-Ry,.

Example 5. Letm=6,R={1,2} andX = {a,b}. Then

Rs(a) = {ddaaaa dadaaa
sc-R = (dadaaaaJaadaaala)*w(bbbbbbubbbbbbub)*
Rs = ((achddduakalaL &) w (bbbbbbUbBbBBDUD)") — {4 by

For clarity, in this example the characterssittR and infl-Rs, belonging to factors iRs(a), Rs(b), or
switch(Rg(a)), switch(Rs(b)) respectively, are in bold. Examples of wordsdtiB) are:
¢ aadaadbbbbb @

6 6 - 6 pr— o o 00
a’b’ € sc-R;, alsoa’b AASBAALEELD

in sc-R
in fl-Rg
4adaasasbbbbbbbb @

98 - 98: o 00000
a’b® € sc-R;, alsoa’b 282833333bbbbbhbD

in sc-R;
in fl-Rg

ababababazabb@
ababababaaabb

in sc-R;
in fl-Rg

2As said, similar ideas have been used for a different langytaily in [4] and have been sketched for COM-SLIP lan-
guages in our communication [15].

(ab)*aaabbe sc-Rs, also(ab)*aaabb=
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To ensure that a base, includedsittR,, U fl-Ry, can be used when two such languages are concate-
nated, we need the next simple concept.

Definition 7 (Shiftability). A languageR C $* is shiftableif R= 3* RS*.

This means that any word Rremains legal, when it is padded to the left/right with anjteidwords.
Next we show that by taking disjoint sets of slots over theesamdule, we obtain two bases that are
joinable; if, in addition, the fills are shiftable, the cotiolih for concatenability is satisfied.

Theorem 3. Let m> 3 and let R R’ be two disjoint sets of slots of module m, and letEc-R,Ufl-R;,
and E’ C sc-R,,Ufl-R;, be two bases. Then:

e E’ and E’ are joinable;

o if the fills of E and E’ are shiftable, then the fills of E'E” and E ® E” are also shiftable, and E
and E’ are concatenable.

Proof. Let R=R UR’. BasesE’ andE” are in decomposed form by Lin. 2. AISBUE” andE’ © E”
are in decomposed form, since they are both subsets-Bf, Ufl-R.

Part (1): To show thaE’ andE” are joinable, we only need to prove th#tR}, sc-R,,) is unmatchable
(the cas€(fl-R,,sc-R;,) being unmatchable is symmetrical). By contradiction, assthat there exist
x € fl-R;, andy € sc-R,, such thaix@y is defined. Leta € X be a letter occurring ix ¢ 3+ and consider
the projectiona = m(x). By definition offl-R, there exist a position of o and a valug € R’ such
thata(q) = a(g+r”) =a. Then, there exists’ € 15(y) such thata@a’ is defined. But ina’ for
all positionsp, 1< p < |d’|, if a’(p) = athena’(p+1') = afor all i’ ¢ R. Therefore, ifp = q then
a(p+r) =a’(p+r) = a, which is impossible by definition of matching. The same argat could be
applied to show that also the other two pairs are unmatchable

Part (2): Define adl-E’,sc-E and adl-E”,sc-E’ the fills and the scaffolds d&’ andE”, respectively.
If fl-E’ andfl-E” are shiftable, then also the filtE’ Ufl-E” of both E'’ UE” andE’ ® E” is shiftable,
since the union of two shiftable languages is shiftable. \&& prove that in this case’,E” are also
concatenable. Let/ € fl-E',y € sc-E,y" € sc-E'. If there exists<' € fl-E’ such thatX @y is defined
andw = x'dot(y"), then it is obvious that ¢ fl-E’ = $*fl-E’S* and thaw' @(y -y") is defined. We are
left to show that:

if W@(y -y") is defined theriX € fl-E’such thawv = Xdot(y") andX @y is defined. (6)

The proof of Claim[(B) requires another technical definitidBiven a seRR of slots with modulem,
for ac Z, for everya € mg(sc-Ry) arestarting pointfor projectiona is a positioni, 1 <i < |a|—m,
such thata (i,i + m— 1) € Rp(a). Hence, at there is a factor irRn(a). A symmetrical definition
holds if a € m(fl-Ry): factor a(i,i + m—1) € switchRyn(a)). A restarting point always exists for all
a € 1(sc-Ry) or a € (fl-Ry,), provided thatr ¢ S*. We claim that ifs € sc-Ry, f € fl-Ry, for some
(possibly equal) sets of sloi Rwith modulem, and the matck@f is defined, then both the following
conditions hold:

RNR#£0, (7)
Va e Z, the set of restarting points fag( f) is included in the set of restarting points fag(s). (8)

Sincef ¢ 3*, there exists at least omec ¥ such thatrg( f) has a factor iswitch(Rn(a)) i.e., there exists
arestarting poinp for 1g( f). For brevity, leta = 1( ). Hence, I< p <|a|—m. Therefore, there exists
r € Rsuch thator (p) = a(p+r) = a. Consider now3 = 1(s). Sinces@f was assumed to be defined,
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B(p) = B(p+r) = & By definition ofsc-Ry, B € (Rn(a)ua)*.

There are two possibilities: eithgris a restarting point also fg8, hencer € R and the above claims
follow, or pis not a restarting point fof. The latter case is however impossible. In fact, in this case
p-+r would be a restarting point fg8, because of the form d&®y(a). Therefore, sincg(p) = 4, there
would be a restarting point also at positipn-r’, for somer’ € R. However, bothr, r’, by definition,

are smaller tham/2, therefore 2<r +r’ < m— 2. Hence, the restarting point pt- r’ would be at a
distance less tham from the restarting point gi -+ r, which is impossible by definition d®y(a).

We prove Claim[(b) to finish. For everg € Z, let g, = |m&(Y)|, and letd, = |&(Y)|. Con-
sider the rightmost restarting poipt, for %(w'). By definition offl-E’, there exists’ € R such that
T&(W)(Pa, Pa+ M) = ad” —1ad™ " ~1. By Claim (8), pa is also a restarting point farg(y -y’): there
existsr € R UR’ such thatrg(yy”)(pa, pa+ M) = 8 ~18a™ 1. We claim thatp, < d,. In fact, if
Pa > Ga, then p, must be a restarting point fof’, hencer € R”: butr = r’, a contradiction with the
hypothesis thaR "R’ = 0. If p, < d} thenp, must be a restarting point fag(y'), hencer =r’" and ac-
tually pa < ga — M. Sinceps is the rightmost restarting point(wW)(pa— m+ 1,0, +q.) € 5+. Choose
X to be the prefix ofv’ such that such that' = X'dot(y”"). O

4 Commutative SLIP languages and their(U, -)-closure

This section proves the main result:

Theorem 4(Closure under union and concatenatiomhe family COM-SLIP is strictly included in the
family of consensually regular languages: COM-St:IR- CREG.

Every language in COM-SLIP can be defined by an expression that combines finitely many COM
SLIP languages, using union and concatenation; since COM-S the finite union of COM-LIP lan-
guages, we may assume that the expression includes only O@Mather than COM-SLIP, languages.

In the sequel, we prove that every COM-LIP language can bsarmually defined in a decomposed
form such that it permits to satisfy the additional assuamsineeded for union and concatenation, hence
all COM-SLIP’ languages are in CREG.

Decomposed form for COM-LIP languages To expedite handling the constant terms of LIP systems,
we introduce a new operati@ppendthat combines a language and a commutative language, tae lat
penetrating into the former.

Definition 8 (Appending) Let B be a language over the double aIpha%dForae >, define the (unique)
factorization

B=Bs-Bs .

whereBz C 2*-dandBs_, C (f — 5) are languages, resp. ending @yand not using the lettes 3.

If neithera nord occurs inB, let By = €. LetA C a™; we define the operation, namagpending A to B
as follows:

B<A=Bs- (Bi—ﬁLUA)'

Given a commutative languadgeC >*, ~ = {&a, ..., &}, the iterative application of the previous opera-
tion to every letter of the alphabet (in any order) definesojireration, namedbktter-by-letter appending
F to B, as:

B<F = (... B (F)) <1,(F))...) Qg (F).
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To illustrate, we compute:
{&bé&b} < {ac,ca} = ({ébéf)} < m{ac, ca}) < e{ac,cal =
- ({ébéb} 4 {a}) a{c} = ({ébé}(bma)> a{c} =
— {&baba, 4bdab} < {c} = {abiba, abdab}Lu{c}

In the remainder of the Section, letbe a COM-LIP language over= {a;,...,a}, k> 0, defined
by constant and periods? = {p\Y, ..., pl9}, for someq > 0, with the condition that for evergi € 2,
every componenp; is even.

The next definition introduces some sets, called,W, to define the COM-LIP languade with

a baseD in decomposed form. The assumption on eaclibeing even will be lifted when defining
COM-SLIP languages.

Definition 9. For all even integersn > 4, and for all sets of slotR of the form{r} with 0 <r <m/2,
define the regular languag&syY,D C >* and the finite commutative languagéC >*, as follows:

X = [J{xefl-Ry|W(rs(x)) = B} )
b
Y = (Rm(a1))" ... W(Rm(a))" (10)
WW) = {6+h1-ﬁ(1)+...+hq-ﬁ(q) 10<hy,... hg < m/z}. (11)
D=XU(Y<aW) (12)

It is obvious thatX C fl-Ry,. To see tha¥ <<W C sc-Ry, we first describe relevant features of the
formulae. By Eq.[(IIL)WV is the finite commutative language having as Parikh imagérbar subspace
included betweei andc+ (m/2— 1) +... 4+ (m/2—1)p'%. For eachs;, the projection org of a
word inY <<W ends with a tail of undotteé;’s defined by Eq.[(T1). While the projection anof sc-Ry
has necessarily length multiple wf the tail does not need to comply with such constraint, thiog/ang,
in principle, the languag¥ <W to contain words whose projections arhas any length greater or equal
to ¢ (within the specified subspace). The following lemma is irdiage:

Lemma 3. Let X,Y,W,D as in Def[9. Then, D is a decomposed base included in,goRR,, with

Y <1v°v gosc-Rn being the scaffold and X fl-Ry, being the fill; moreover, the fill of D is shiftable, i.e.,
X =2Z*XZ*,

Example 6. Consider the languagey,.,= com((a?b*)*) having the periodp, = 2, p, = 4 and null
constant. Notice that to obtain languagem((ab?)*), it is enough to apply union tby,.,and to the

even

languagd. {4 = com(abb(a2b4)*), which can be defined with the same permg= 2, pp = 4, and with
constantc, = 1,c, = 2. If modulem = 6 and set of slotR = {2} thenRg(a) = &ada’, Rs(b) = bbbb®.
Also, f-Rs = ((aiad® U8)" w (bbbb®UD) ) — {&,b}". Let

X = {xefl-Re| W (map(x)) = (2.4)}
— (& -a8a8-&) w (b bbbb?- b bbob*- b)

Y = (Rol@) w(Re(b)) = (dada’) " (bbbb?)
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Both X andY satisfy Def[9. To complete the base of languagg,, we define

W= [J com(a®b*)

0<i<2

The fill {&b}*X{& b}* and the scaffold& <W are a decomposed form fo,,., Similarly, to define
odd» We have to define the sexs,Y’',W’; for X',Y" we select as set of sloR = {1}, which satisfies
RNR=0. Atlast,W’ = Jy<j<,com(abba'b*).

The important property of the language in EQ. (9) is stated.ne
Lemma4. 1. For all n> 0, for every ue X"@ there exist g> 1 integers A,...,Ng > 0 with n=

N1+ ...+ nNg such that
W(rg (u) =ny- P+ +ng- po.

2. Forallnng,...,ng >0, withm+...+ng=n, if
uefl-Ry and W (75 (u)) =ng- pY +... +ng-
then ue X"@,

Proof. Part (1). By definition oK, if x€ X, then there exist§! € 22, 1< j < g, such thatV (75 ) = P
By definition of match closure, there exisis> 0 wordsxy,...x, € X such thatu = xl@xz@ . @Xn.
Then, for all 1< i < n, W(75 ) = P for somej;, with 1< j; < q. Hence W (7% (u)) = S 1<i<n P(TB(x)),
from which the thesis follows immediately. Part (2). By dﬁftm of X, for every vectop!, 1< j <q,
languageX includes all wordx of fl-Ry such that¥ (75 ) ) = pJ Hence, one can always selegtwords

x[ll], ,xLll] e X, n wordsx[z] ,XLZZ] € X, etc., such that:

i) W( (xﬂ)) =pl, forevery1< i<q1<i< n,-;

i) X' @... @, @) @...@%;, @...@% @...@xX) O
Lemma 5. The consensual languaggé(D) is commutative.

Proof. We notice first that¥ <W andX obviously verify the following two conditions:
DY <W =15, (Y <W)wrg, (Y <W)w ... wirg, (Y <W);

1) if x e X then7g, (X)W g, (X)W ... W7, (X) € X

Letue ¢ (D) and letv € Z* be such tha#(v) = W(u). Wordu is defined ag@x;@. . . @x,, for someze
Y <W, n> 0 and some, ..., X, € X. Wordv is a permutation ofl, hence for allg; € Z 15, (u) = 15, (V).
By Prop. (I) above, there exists a permutatdrof z, such thatZ € sc-R, <xW, with undotZ) = v.
Similarly, by Prop. (II) above, for all ¥ j < n, there exists a permutatioq of x; such that, for all
g €2, Tlig‘j( -) = 1% (xj) and, moreover, such thai@x; is defined, withrg, (Z@x)) = 1, (z@x ). Hence,
alsoz’@x’l@ .@x;, is defined, thereford @x;@. .. @x;, = undot(Z) = v. O

Next, Th[® shows thdD consensually definds with mandr arbitrarily large.

Theorem 5. For all even integers m» 4 and for every R of the forrfr}, with 1 <r <m/2 -1, there
exists a decomposed base D as in Def. 9 such that the COM-hifidge L= %" (D).
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Proof. Letm,R D, X,Y,W be defined as in Def] 9, witk= |Z|,q = | Z?|. We first notice that, by defini-
tion of Y <W and ofX:

(*) if Z €Y then, foreveryg € %, |Z|5 is a multiple ofm, |Z |5 = 2- |75 /mand|Z |4 = (M—2)-|Z5/m.
Proof of € (D) C L. Letu e ¢ (D). We show that¥’(u) € W(L). SinceD is in decomposed formy
must be the match of a worde (Y <W) with h > 0 wordsxy,...,xy € X. LetX = Xx1@x@. .. @Xn.
Word z has the formZ <w for someZ €Y and somew ¢ W C 5*. By Lm.[4, Part (1), there exist
di,...,dq > 0 such thaW(r5(x)) = S+ dy - pY +... +-dgq- p'9. Also, by definition ofw, there exist
g integers 0< hy,...,hq < m/2 such tha¥(w) = €+ hy - pY ... + hy- 9. Sinceu = (Z aw)@x is a
strong matchW(u) = W(1%(Z)) + W(1&(x)) + W(ms(w)). Notice that each component ¥ 75 (x)) must
be even: by(Z <w)@x being a strong match it follows that|, is equal to|Z|s, which is even. Again
becausdZ <w)@x is a strong match¥(15(Z)) = (m—2)/2- W(r&(x)). Therefore:

—2)-W(15(x))/2+ W(1&(X)) + W(W) =
(15 (x)) +W(w) =

A(dp- BV 4. 4 dg PO)+C4hy - PO 4. 4 hy- PO =
=C+(m-dy+hy)- P +...+ (Mm-dy+hg) - O

Hence W(u) € W(L).
Proof of LC (D). For allu € L there exist integersny, ..., ng such that(u) =¢+ng- p +... +
ng- P9, For everyj, 1< j <q, leth; = n; mod(m/2). Letd; =n;—h; if njp”) >0, andd; =0

i
otherwise. Then, evergl; andh; are such that & h; < m/2 andd; is a (possibly zero) multiple of

m/2. By definition ofW, there existsv € W such that¥(w) = h; - pY + ...+ hy- 9. Forallg € 3,
let z be the word in(Ry(&))* such that|z| = dlp(l) + '-'+dqpi(q>. Such a word does exist, since

(
eachd; is a (possibly zero) multiple afn/2, hencedyp™ + - + dqp? is a multiple ofm/2; if this
multiple is 0, thenz = €. By definition of Ry(a), word z (when not empty) has, in every segment
of lengthm belonging toRy(a ), exactly two occurrences @f, ‘and(m— 2) occurrences of. Hence,

z]s = 2(d1pi(1> + ~-+dqpi(q))/m and|z|; = (M—2)- (dlpi(l) +~'+dqpi(q))/m. We claim that there
existsZ € Y such that’(undotZ)) = di - Y + ...+ dg- 9. In fact, by Prop. (*) above, there exists
Z €Y such thatg; (Z) = z. Hence,W(7&(Z)) = (m—2) - (dy - PV + ... +-dg- 9. By definition ofw,
there existsv € W such that

Ww) =c+hy-pY 4. 4 hgpl9.

LetZ’ = switch(Z). By Lm.[4, Part (2), there exist= 2d; /m+2dy/m+- - - +2dq/mwordsxy, ..., X, € X
such that
7' =x@...@%, with W(1(Z")) =2-(dy- pY + ...+ dg- p9)/m

Consider nows; <tdot(w). This word is inX, since the fills included iXX may end with arbitrarily many
4, for everya € 3. Clearly, fromx; <t dot(w) one can obtain a strong matehvith Z <tw:

V= (Z aw)@(x; < dot(w))@. .. @(x, < dot(w))
with W(v) = W(1&(Z)) + W(75(Z")) + W(15(W)) = P(u).

Since the languag#'(D) is commutative, ang € ¢’ (D), alsou € €' (D). O

We can now complete the proof of TH. 4. Since a COM-SLIP laggua the finite union of COM-
LIP languages, a COM-SLP language is the union and concatenation of COM-LIP langsiaj&an
be assumed that these COM-LIP languages comply with[Defviddpanly even components in every
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vector of the set” of periods (since otherwise they can be represented as tteedirion of COM-LIP
languages with this property). Select the same module ajointi sets of slots for the decomposed bases
of these COM-LIP languages. By TH. 3, since each COM-LIP imdd by a shiftable base with disjoint
sets of slots, the various bases can be combined w#hd®, resulting in a shiftable base. By TH. 1
and and TH.12, the result is still a consensual language enitbcomposed base). The inclusion is strict,
since languagébatba?ba’...bd‘ | k > 1} has a non-SLIP commutative image, but it is in CREG [2].

5 Related Work and Conclusion

By classical results, COM-SLP is included in the class of languages recognizedeversal-bounded
multi-counter machine$ [1] 8] (which is also closed undercedenation). The latter class admits differ-
ent, but equivalent, characterizations: as the class gllages recognized by (nondeterministiind
MCMs'’ [[7], or as the minimal, intersection-closed full semi-ARiciuding languageom((ab)*) [1, [6].
However, the cited papers are not concerned with actuatremtisn methods for the MCMs'.

Although COM-SLIP languages have been much studied, weatraware of any specific study on
the effect on COM-SLIP of operations such as concatenation.

Concerning the techniques to specify COM-SLIP languageassjpecification, using as patterns the
commutative Parikh vectors, bears some similarity to kdfi0] “scattered deletion” operation.

Itis known that family COM-SLIP, when restricted to a binatphabet, is context-fregl[9,13], there-
fore it enjoys closure under concatenation and star. Onttier tihand, we observe that the intersection
| =L N afL"b*, wherel’ = com((ab)*), is not context-free, since

I N (atbh)* = {a"b"a"b"a"b"ad" | n > 1}.

In [13], the context-free grammar rules for COM-LIP agaisamble our consensual specification.

Also, the context-sensitive grammarslin/[11], obtainedddiag permutative rulesf the formAB —

BA to context-free grammars, include COM-SLIP and of courselibsure by concatenation and star,
but not its intersection with regular languages.

Last, the COM-SLIP languages are included in the SLIP lagguamily recognized by a formal
device, based on so called restarting automata, studid@]nut the grounds covered by CREG and by
that family are quite different. Beyond the mentioned samiiles, we are unaware of anything related to
our congruence-based decomposed form.

Unanswered questions This paper has added a piece to our knowledge of the languagjaded in
CREG,; it has introduced a novel compositional constructirthe union/concatenation, which is very
general and hence likely to be useful for other languageasuiies included in CREG. Some natural
guestions concern the closures of COM-SLIP under othechasrations: is the intersection of two
COM-SLIP languages, or the Kleene star of a COM-SLIP languagCREG?

A different kind of problem is whether the only commutatisaduages that are in CREG are semilin-
ear; for instance, the nonsemilinear non-commutativeuagg{ba*ba’ba’...ba | k > 1} is in CREG,
but, for its commutative closure, we do not know of a consalhguegular specification. Last, a more
general problem is whether CREG is closed under union, ¢enation, and star. A possible approach is
to investigate whether every CREG language may be definedolage which is joinable and shiftable,
thus obtaining closure under union and concatenation lyevof the lemmas presented in this paper.
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