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ABSTRACT Neurodegenerative diseases are particular diseases whose decline can partially or completely 

compromise the normal course of life of a human being. In order to increase the quality of patient’s life, a 

timely diagnosis plays a major role. The analysis of neurodegenerative diseases, and their stage, is also carried 

out by means of gait analysis. Performing early stage neurodegenerative disease assessment is still an open 

problem.  In this paper, the focus is on modeling the human gait movement pattern by using the kinematic 

theory of rapid human movements and its sigma-lognormal model. The hypothesis is that the kinematic theory 

of rapid human movements, originally developed to describe handwriting patterns, and used in conjunction 

with other spatio-temporal features, can discriminate neurodegenerative diseases patterns, especially in early 

stages, while analyzing human gait with 2D cameras. The thesis empirically demonstrates its effectiveness in 

describing neurodegenerative patterns, when used in conjunction with state-of-the-art pose estimation and 

feature extraction techniques. The solution developed achieved 99.1% of accuracy using velocity-based, 

angle-based and sigma-lognormal features and left walk orientation. 

INDEX TERMS pose-estimation, computer vision, computer aided diagnosis, gait analysis, machine 

learning, early neurodegenerative diseases assessment, kinematic theory of rapid human movements, 

sigma-lognormal 

I. INTRODUCTION 

eurodegenerative diseases are incurable diseases whose 

decline can partially or completely compromise the 

normal course of life of a human being.  

In order to increase the quality of patient’s life, a timely 

diagnosis plays a major role. Usually physicians asses the 

disease by letting the patient performing several tasks, such 

as Timed Up And Go (TUG) Test, Tandem Test, Sit to Stand, 

ADL (Activities of Daily Living), IADL (Instrumental 
Activities of Daily Living), Romberg and many more, in 

which, usually, the patient is asked to walk on a straight line 

or sit and standup, try to remain immobile in balance and so 

on. 

These tests are important, because neurodegenerative diseases 

act by destroying several parts of the nervous system and 

showing various disorders in also other parts of human body 

such as speaking, posture, coordination, handwriting and 

many more.[1][6] 

Gait is, thus, a complex activity which involves cognitive, 

kinesthetic and perceptual-motor components [6]. Gait is 

known to be one of the foundation movements of human 

being and it is carried out from the first years of life. It 

requires the use of an ensemble of resources of the nervous 

system to bring it to completion.  

The accuracy of the analysis carried out depends greatly on the 

quality of the tools used. In past centuries, the analysis of the 

gait was carried out mainly through the careful observation of 

experts, who were able to extrapolate qualitative and 

quantitative data from it (such as the cadence, the speed of the 

pace and the distance traveled). The data obtained were, 

certainly, valid for recognizing serious gait disturbances, but 

proved inadequate to recognize small variations in the 

progression of diseases. This prevented early and precise 

diagnoses, identifying the actual severity of a given disease 

and carefully planning the next treatments. 

N 
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Up to now, some Computer Aided Diagnosis (CAD) tools 

for neurodegenerative assessment, have shown to be 

effective. Those tools are based on behavioral biometrics [1]. 
One of main examples of CAD tools for neurodegenerative 

disease assessment is handwriting [2], [3] analyzing both 

neuromuscular system parameters [4], and spatio-temporal 

models [5]. In particular, as reported in [1],[2],[4],[5] the 

sigma-lognormal (ΣΛ) model [8] of the kinematic theory of 

rapid human movements [9],[10] was employed, with 

successful results, in the early prediction of Parkinson 

Disease through handwriting [5].  

In the review presented in [2] authors subdivide the state of 

art in neurodegenerative disease classification problem with 

handwriting into two main categories: computational and 

cognitive. Our focus is mainly on computational models. 
Computational models try to model or reconstruct the final 

result of movements, in terms of velocity and acceleration 

profiles or stroke shapes by means of mathematics, physics 

and computer science. One example of this computational 

model is the kinematic theory of rapid human movements. 

This theory is defined in terms of two elements: the agonist 

(acting in the direction of the movement) and the antagonist 

(acting in the opposite direction) neuromuscular systems 

involved in the production of rapid human 

movements.[9][10]. Plamondon showed that these kinds of 

system have a log-normal impulse response that results from 
the limiting behavior of a large number of interdependent 

neuromuscular networks controlling the velocity of a 

movement [1],[2],[8],[9],[10]. An evolution of this theory 

uses the sigma-lognormal model (ΣΛ). The effectiveness of 

this theory in predicting Parkinson Diseases through 

handwriting has been already demonstrated [1],[2],[4],[5]. 

The hypothesis at the very basis of this work is that 

transposing the Plamondon’s kinematic theory of rapid 

human movements and its sigma-lognormal model (ΣΛ)  

from handwriting to gait analysis, it will still be possible to 

almost perfectly reconstruct and thus, model, the movement 
patterns of various body joints in terms of acceleration and 

velocity profiles. The intuition is that, during gait, several 

body parts share similar motor functions and neuromuscular 

parameters according to the sigma-lognormal model. Thus, 

these movements are dictated by the brain and are not 

involuntary. 

These built models will be used, in conjunction with other 

synthetized features, to classify if a person ‘gait is affected 

by some neurodegenerative disease or is healthy. As it will 

be shown later, the sigma-lognormal model will be used 

specifically for capturing small variations in acceleration 

profiles able to discriminate borderline subjects in early 
stages of the disease with the consequent increase of the 

overall accuracy of the developed decision support system. 

Pose estimation technique in conjunction with Barrel 

distortion removal algorithm and Kalman filter will be used 

to fix various problems discovered and thus, with the best 

possible fidelity, extract the coordinates of body joints. 

 

The main contributions of this work are the following: 

1. The first application of kinematic theory of rapid 

human movements to neurodegenerative disease 

assessment through gait and commercial 2D 
cameras 

2. Innovative pipeline comprehensive of gait phases 

segmentation 

3. Outstanding state of the art results and, thanks to the 

interpretability capabilities of the developed 

system, important findings on the body parts that 

play a major role in neurodegenerative diseases 

assessment through gait and computer vision 

 

The use of off the shelf 2D cameras for pose estimation is 

twofold: firstly, its cheap compared to infrared cameras, 

depth cameras or 3D tracking wearable sensors, in second 
instance, the system can easily be deployed in every 

hospital’s room or at patient’s home. This is important when 

it comes to remote monitoring, because there is no need from 

the patient side to wear anything, avoiding problems such as 

forgetfulness and rejection, but also for hospitals to reduce 

hospitalization costs.  
 

The paper is organized as follows. Section II describes 

neurodegenerative diseases and motor patterns in gait 

analysis from a pure pattern recognition perspective. Section 

III shows a synthetic review on the techniques used in human 

gait analysis. Section IV depicts the kinematic theory of 

rapid human movements and its sigma-lognormal model 

(ΣΛ). In addition, the intuition behind the use of sigma-

lognormal model in gait analysis is also provided. Section V 

describes the dataset used. Section VI sketches the 

experiment, implementation details and results. Section VII 

provides a comprehensive discussion from a purely pattern 
recognition perspective. Conclusions and future work are 

presented in section VIII.  

 

 
II. NEURODEGENERATIVE DISEASES MOTOR 
PATTERNS 

Neurodegenerative diseases affect long neuronal cells. The 

affected cells create physical disorder during the walk. Some 

neurodegenerative diseases are Parkinson’s disease (PD), 

Amyotrophic lateral sclerosis (ALS), Alzheimer disease (AD), 

the Huntington Korea (HD) and various forms of Dementias 

(DD) [11]. PD patients show slow automatic movements and 

slow balance. The symptoms are body rigidity with 

hypertonia, bradykinesia plus akinesia and lack of balance, 

especially when the disease is severe [12]. 

ALS shows an evolutionary muscular atrophy with decrease 

in strength, with phonation and chewing disorders [13]. 

AD neuronal damages affect the short-term memory 

comprehension and thus patients usually forget important 

information. Also, the walk pattern is affected: AD patients 

show uncoordinated movements with erect standing and 

walking, dysarthria, alteration of breathing, facial grimaces, 

dysphagia and hyperkinesia [14]. 
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DD represents a group of typical neurodegenerative diseases 

of old age, with irreversible loss or reduction of intellectual 

abilities. The HUN is a hereditary disease in which cognitive 

and motor skills are particularly compromised. The first clues 

are mood changes, memory loss, dementia, difficulty in 

walking, language and swallowing, strong depression in 

advanced stages and all its consequences.[14] 

The Gait Analysis studies the ways human Gait cycle is 

a succession of physical actions involved during walking. 

Formally, gait cycle is defined as the interval between two 
successive occurrences of the same event. Literature reports 

two ways of measuring gait cycle from a computational 

perspective. These methods make use of Temporal/Spatial 

features or Pressure measurements. In this paper gait cycle is 

analyzed with respect to the first method (temporal) along 

with its gait patterns [15], [16], [17]. This method is, by far, 

the most common and scientifically validated by 

neurologists and for which there are well-defined protocols 

(e.g. TUG test).  

Phases of a gait cycle include: 

• Initial contact (IC): when the foot touches the 

ground; 

• Loading response (LR): when the other foot is lifted 

for the swinging; 

• Mid Stance (MS): the swinging foot exceeds the 

foot that acts as a lever; 

• Terminal stance (TS): the right foot’s heel moves 

vertically until the left foot touches the ground; 

• Pre-swing (PS): now the left foot acts as a lever 

allowing the right foot to walk in 

• Initial Swing: the hip, knee, and ankle are flexed to 

begin advancement of the limb forward and create 

clearance of the foot over the ground. 

• Mid-swing (MS): the left leg’s tibia is vertical so 

that right leg can overcome it; 

• Terminal swing (TS): the progress of the limbs is 

completed when the right leg moves in front of the 

left thigh and the right foot touches the ground, 

going back to the IC phase. 

 

This gait cycle will be used in section VI to describe the 

segmentation phase. 

Gait abnormalities show deviations from normal gait 

patterns and are necessary to assess a specific 
neurodegenerative disease [18].  
The gaits abnormal patterns presented in [18] are important to 

understand, from a pattern recognition perspective, the 

features to be employed in the analysis as well as their 

connection with the disease. From this perspective, it is clear 

that spatio-temporal features, as well as kinematic features 

play an important role in discriminating healthy subjects from 

subjects with some form of neurodegenerative disease. Of no 

less importance is the analysis of which parts of the body to 

observe with greater importance. It seems natural to impute 

the lower parts of the body as legs, ankles and feet as the most 

important parts for gait analysis. As it will be shown later in 

the discussion provided in Section VII, nonlinear correlation 

among features, hardly observable with the naked eye, results 

in a rise of importance of other analysed body parts. 

 
III. LITERATURE REVIEW ON TECHNIQUES USED IN 
HUMAN GAIT ANALYSIS 

 

In this section, literature review is performed with respect to 

data acquisition, preprocessing, tasks and mostly related 

works. 

A. DATA ACQUISITION 
 

Several authors have used different types of sensors for real-

time data acquisition of human gaits. It is possible to divide 

the sensors in three main categories [19]:  

1. Wearable sensors on the patient’s body. 

2. Floor Sensors deployed on the floor, usually a 

matrix of pressure sensors. 

3. Cameras able to capture video information. 

4. Optical Motion Capture with model based 
optoelectronic motion capture system [57].  

 

Wearable sensors 

Accelerometers are used for measuring the acceleration 

of the body [20]. The gyroscope measures the angular 

velocity, thus is used for measuring human posture by 

analyzing patient’s feet, leg and torso angulation [19]. 

Magneto-resistive sensors estimate the change of orientation 

in relation to magnetic North. 

Inertial sensors measure body’s parts velocity, acceleration, 

orientation, and gravitational forces using what is called 

sensor fusion techniques based on accelerometers, 

gyroscopes and magnetometers. Flexible goniometers are 

used for measuring angles of ankles, knees, hips and 

metatarsal.  

Sensitive tissues are a mix of detection technology and 

electronic devices made by fabric materials. This type of 

sensor ensures a good level of comfortability because 

patients wear them without particular problems. 
Authors in [20] have integrated force sensors into shoes in 

order to detect clinical ground forces (GRF) measures during 

gait. Electromyography is used for detecting the activation 

of one or more muscles and it is important to evaluate 

patients with lower lib problems. 

Floor Sensors 

Force or pressure sensors deployed on the floor create the 

“force platforms”. These platforms collect, in a matrix 
format, differentiated pressure measurements of each part of 

the foot separately [21]. 
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Video-Image Sensors 

One or more cameras are used in conjunction with various 

image processing techniques for removing noise and 

preserving relevant information. Techniques such as 

threshold filtering and background segmentation allow for 

the separation of background from the silhouette of the 

human body [19], [21]. Among the most successful 
techniques, the Infrared Thermography, which make use of 

temperatures of human body, is able to reach accuracy rates 

of about 91% [22]. In recent years, human pose estimation 

from video clips has been another emerging field of gait 

analysis. These techniques use deep learning techniques to 

extract information about body parts from video frames. [23] 

Optical Motion Capture  

The typical optical motion capture system uses, in general, 
about six calibrated infra-red (IR) cameras which tracks 

about 44 reflective markers to be attached to the human 

body. These markers are necessary to extrapolate kinematic 

features from the body joints and thus provide spatio-

temporal features for gait assessment [58]. Such systems can 

be used only in laboratories. This is due to the setup, but also 

to the equipment, the need for calibration and trained 

operators. 

B. PREPROCESSING 
 

The pre-processing phase usually involves trimming of non-

relevant information as well as normalizing the environment. 

This last aspect is relevant when doing 3D image 

reconstruction because there is no zero-point in a three-

dimensional space. In order to overcome this problem, 

authors in [27] and [31] performed a series of “manual” 

calibrations in collaboration with patients. In [31] the gait 

analysis starts when the patient touches the force platform 

with the foot. In [41] measurements start after the patient has 

walked on to a starting platform located before the force 

platform used for real data capturing, while in [37] pre-

processing cuts noise. Especially in Silhouette analysis, pre-

processing techniques are used to remove noise, background 

information and in some image processing cases, 

overlapping obstacles [21], [29], [30], [32], [33], [38], [39], 

[40], [42].  

C. WALKING TASKS 

Most part of literature considers only healthy subjects. Only 

a small part of works, such as [24], [25] and [26] kept into 

consideration both healthy and un-healthy people (patients 

affected by PD). 

Another common factor among publications is that  authors 

performed tests with non-conventional protocols [24], [27],  

[28], [29], [30]: for example, authors in [30] trained some 
subjects to perform tests holding a ball as well as wearing a 

coat; authors in [28], instead, asked patient to move the leg 

up and down 5 times while a 3D ultra-wideband receiver 

estimated  the position of the leg during time. A very 
interesting task was done by authors in [31] where 5 males 

and 5 females subjects were asked to perform overground 

walking (30 trials), stair ascent (30 trials) and stair descent 

(30 trials), while their body parameters were collected. In a 

similar fashion, authors of work [26] asked students and 

professors as well as patients affected by PD to perform tests 

such as: random walking for 2-4 times, lifting a stair starting 

from being sitting. Another interesting work is presented in 

[32] where authors used Microsoft Kinect to extract patients’ 

skeleton by performing 25 meters on walkways and then 

stand in front of the Kinect with 3.5 meters distance and then 

performing swings on one side of the body. Similar approach 
was used by authors in [33]. In general, a common practice 

is to ask subjects to perform walk for different meters: 12 

meters in [27], 3 to 7 meters in [24], alternate walk and run 

[34] and [25], perform walk for only 20 seconds [35] or 

perform random walk [26]. Depending on the capturing 

sensor, the subjects were asked to walk on custom force 

platform [36], or run in front of a camera [37], [38], walk 

while being captured by 24 cameras all positioned with 

different angles in order to reconstruct the 3D movement of 

the person [39], perform random walk in front of the camera 

[29] and walk straight in front of a camera [40].  

 

D. RELATED WORKS 

In [43] authors used a pose estimation algorithm called 

Convolutional Pose Estimation, which used Deep Learning 
and Convolutional Neural Networks. This algorithm was 

used to extract individual joints movement trajectories and 

synthetize several features (e.g. kinematic, frequency). 

These features were then used to train random forests to 

detect and estimate the severity of parkinsonism and LID. 

Binary F1 score with an interpatient [6] separation scheme 

was 0.906.  

Ye et al. [44] observed that patients’ gait dynamic is non-

linear, for this reason, they proposed an Adaptive Neuro-

Fuzzy Inference System (ANFIS) which combined neural 

network adaptive capabilities and the fuzzy logic approach. 
A reduced set of features were adopted: left stride interval, 

right stride interval, left stance interval, right stance interval, 

and double support interval. An interpatient separation 

scheme was used for carrying out the binary classification. 

Accuracy ranges from 90 to 94%. At the same time, standard 

classifiers were adopted observing comparable results to 

those obtained by authors. In [45] authors used Gaussian 

radial basis function and SVM in conjunction with a similar 

separation scheme proposed in [44] to predict Parkinson’s 

disease patterns from human gait with accuracy of 83.3%. 

In [47] authors built a decision support system (DSS) with 

the aim of helping medical doctors in diagnosing the PD 
influenced patients. Authors made use of grid search 

optimization to develop an optimized deep learning model to 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3032202, IEEE Access

 

VOLUME XX, 2017 9 

predict the early onset of Parkinson’s disease by tuning 

several hyperparameters of the model. The grid search 

optimization consisted in optimization of the deep learning 
model topology, the hyperparameters, and the overall 

performance. The resulting binary classification accuracy 

was of 91.69%. 

 

In [48] authors used 3D body pose estimation technique 

using Deep Neural Network. The resulting 3D coordinates of 

joints time series are then fed in a classifier, with the aim of 

classifying healthy subjects, Parkinson’s disease patients, 

post stroke patients, and patients with orthopedic problems. 

By using deep learning, no feature engineering was used, 

differently from the solution proposed in this work, but also 

the interpretability of their model was limited. Their 
classification accuracy ranged from 56% to 96% for different 

groups. The average accuracy was 71.25%.  
 

Since neurodegenerative disease recognition from human 

gait is within the broader area of activity recognition in 

healthcare, it has been decided to compare results with state 

of the art shallow learning activity recognition techniques 

such as motion blobs [59] and optical flow [60]. In [59] 

authors analyzed human activities in sequence of frames. 

Firstly, they performed background subtraction in the video 

stream. Then, authors computed motion blobs of the current 

frame and a series of frames before the current frame to form 

a new feature image in certain rules. Finally, authors 

combined the non-zero pixels in the feature image into blobs 
using the connected component method. At the end, authors 

used Gaussian Mixture to model features and used standard 

classifiers to ensure the accuracy. The second technique used 

for comparison is the optical flow. Authors in [60] analyzed 

the use of local descriptor built by optical flow vectors along 

the edges of the human silhouette. As before, they first 

removed the background, then computed the optical flow on 

the silhouette along the boundary lines. From the centroid, 

radial lines are drawn at 5k degrees to intersect the boundary 

lines. The radial distances of the boundary points that lie on 

these radial lines along with the optical flow vectors 
computed at these points and are later used for classification 

through rbf-svm. For a more in depth analysis deep learning 

has been investigated. The 3D ResNet, a ResNet that 

captures 3D spatio-temporal relation has been used for 

comparison purposes as shown in [61]. 
 
 
IV. THE KINEMATIC THEORY OF RAPID HUMAN 
MOVEMENTS  

 
The Kinematic Theory of Rapid Human Movements can be 
defined as an instrument to analyze handwriting movements 
as a statistical process that leverages on neuromuscular 
parameters of human body and brain [8], [9].  

At the basis of this theory there is the intuition that any 
movement (movements of elbow, wrist, but also arms, legs, 
and so on), is the combination of primitives, called strokes, 
whose velocity and acceleration profile is lognormal [49].   

Following the Sigma-lognormal model in equation (1), the 
velocity profile of each stroke j has a lognormal shape Λ 
which is scaled by an input command D and time-shifted by 
the instant the command t0 starts: 

|𝑣⃗𝑗(𝑡)| =
𝐷𝑗

𝜎𝑗(𝑡−𝑡0𝑗)√2𝜋
𝑒𝑥𝑝 (−

[𝑙𝑛(𝑡−𝑡0𝑗)−𝜇𝑗]
2

2𝜎𝑗
2 ) (1) 

μj is the log-time delay generated by the action plan of the 
neuromuscular system, while σj is its log-response time. 
The model assumption is built around the fact that each 
stroke happens around a pivot making use of a starting angle 
θsj and an ending angle θej  as shown in equation (2) 

θ(t) =   θ𝑠 + 
θ𝑒−θ𝑠

𝐷
∫ |𝑣⃗𝑗(𝑡)|𝑑𝑡

𝑡

0
 (2) 

 
Equation (2) reveals that each movement could be composed 
by several lognormal strokes in continuous domain. 

 

FIGURE 1.  Sigma-lognormal velocity profile of healthy subject’ nose. 
The blue line is the reconstructed sigma-lognormal profile, the black 
line is the original signal’ coordinates of subject ‘nose while walking.  
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FIGURE 2.  Sigma-lognormal velocity profile of Parkinsonian patient’ 
nose. The blue line is the reconstructed sigma-lognormal profile, the 
black line is the original signal’ coordinates of patient while walking. 

 

 

Comparing the velocity profile (the upper side of the image 
with time as abscissa) in Figure 1 and Figure 2 it is possible 
to assert that: 

 

• The sigma-lognormal almost perfectly reconstruct 
the signal from the velocity profile. Its 
reconstruction signal to noise ratio (SNR) is of 
about 17-35 dB in average. 

• The patient’s nose walk (Fig.2) is composed of 
several small oscillations after a high spike, instead 
intensity and numerosity of spikes in normal 
subject (Fig. 1) are almost always in a predefined 
range without such high variations. 

The intuition behind this work is that, using the Kinematic 
Theory of Rapid Human Movements for capturing such 
small variations, it is possible to especially discriminate 
borderline subjects in early stages of the disease and thus add 
important information to the plethora of features used in 
reviewed works. Without loss of generality, an example of 
this intuition is that, features such as mean acceleration or 
mean displacement would smooth out such small 
oscillations, instead the sigma-lognormal model, if used 
correctly, would put them back in the game.  

The Sigma-Lognormal model has been already successfully 
used for detecting neurodegenerative diseases thorough 
handwriting [1], [2], [4], [5]. 

 

 

 
V. DATASET DESCRIPTION  

 

 

The reference dataset contains 115 videos regarding total 40 

subjects divided in patients and controls as follows: 

• 20 healthy control subjects 

• 20 patients with neurodegenerative diseases (with 
different severity levels) 

21 subjects are female, 19 have male sex. 

Overall, the dataset has: 

• 61 videos related to healthy subjects 

• 54 videos related to patients. 

The videos are variable in length and were made at different 

times and structures. Each video presents a patient's walk, 

which follows a linear path in both directions, from left to 

right and from right to left. All videos were fixed at 25 fps. 

The videos were made using the following guidelines 

reassumed in Figure 3: 

• The subjects traveled a fixed distance of 4 meters 

following a traced route, represented by a straight 

line highlighted on the floor. 

• The videos were recorded with a camera placed 

perpendicularly 4 meters away from the straight 

line highlighted on the floor and at a height of 2 

meters (or higher where needed). 

Some video presented a fish-eye effect that was mitigated as 

reported in section VI. 

The age of the patients is unbalanced: it was difficult to find 

subjects in their 80s who were perfectly healthy. Healthy 
subjects aging ranged [30-75] while patients aging ranged 

[65-90]. 

The dataset is also accompanied with the following 

metadata: 

• The ID of the patient  

• The sex of the patient 

• The neurodegenerative disease stage which could 

be one of the following: 

1. Mild 

2. Found 

3. Moderate 
4. Severe 

In this work, the classification performed is binary 

(healthy/unhealthy), but such disease’ stages, as will be 

discussed in section VIII, will be used to evaluate the 

importance of sigma-lognormal features in discriminating 

borderline subjects, especially subjects with a 

neurodegenerative disease in mild or found stage from 

healthy control subjects. The neurodegenerative disease 

stage assessment was performed with several cognitive tests 

performed by trained and experienced psychologists and 

neurologists. 
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FIGURE 3.  The camera setup for video acquisition 
 

Some video presented mirrors and various kind of obstacles 
(chairs, body of the physiotherapist and so on) which added 

lots of complexity to the overall computation pipeline 

depicted in Section VI. 

 
VI. EXPERIMENT AND IMPLEMENTATION DETAILS 
 
A.  PIPELINE & PREPROCESSING 

The classification pipeline is depicted in Figure 4. The 

necessary phases are, in order, the lens-distortion algorithm 

to remove the fish-eye effect (also known as Barrel 

distortion) [50] present in some videos followed by the 

subject selection phase. This second phase is necessary when 

there are more people in the video. In almost all patient’ 

videos, physiotherapist was present to supervise the patient 

during his/her performance. The third phase is the  

pose estimation, where for each frame of each video, joints 

coordinates of the body parts of the analyzed subject were 

extracted. 
 

 

 
FIGURE 4.  The classification pipeline 
 

The fourth phase is necessary to fix some missing data and 

outlier present in extracted coordinates and caused by 

occlusion, pose estimation errors due to different light 

conditions and variations and colors’ overlay. The fifth phase 

is of paramount importance: the step segmentation phase. 

Segmented steps will be smoothed in the sixth phase to 

remove unnatural and implausible coordinates. In the eight 

phase, for each segmented step, spatio-temporal features, 

sigma-lognormal features as well as angles features will be 
extracted. Various pattern recognition algorithms were 

trained with 10-Fold cross validation on an inter-patient 

separation scheme. In order to extract the relevant patterns 

that are able to discern subjects with some kind of 

neurodegenerative disease and healthy subjects, it is 

necessary to apply an inter-patient separation scheme as 

presented in [6]. The inter-patient scheme uses extracted 

features of some people ‘steps for training and extracted 

features of completely other people ‘steps for testing. This 

separation scheme is better suited for medical purposes, this 

is because, firstly, the model learnt must answer the question 

“what is the particular pattern of people with some form of 
dementia?” correctly, second because otherwise there would 

be bleeding of information from training to testing and third, 

but not of less importance, because without an inter-patient 

separation scheme, the i.i.d. (independently and identically 

distributed) assumption among instances, in this specific 

case, is not achievable.  

   

Fish-Eye effect removal 

 

For the fish-eye removal (Barrel distortion) the algorithm 

presented in [50] was used. Empirical parameters were 
estimated by fixing field of view (FoV) at 75.0. Results are 

shown in Figure 5.  
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FIGURE 5.  Before and after application of fish-eye removal algorithm 

 

Subject Selection 

 
In phase two, the user is asked to select with a click of the 

mouse the central point of the hips, which can be 

approximated to the center of gravity, of the subject 

protagonists of the analysis within the video. This procedure 

is necessary for both the start frame of the right walk and the 

start frame of the left walk. For all other frames, the 

algorithm seeks the center of gravity, which is closest, in 

Euclidean sense, to the position of the previous frame center 

of gravity. The subject selection window is presented in 

Figure 6. 

 

 
 
FIGURE 6.  The first frame where the operator is asked to select the 
subject to analyze. 

 

Pose Estimation 

 

For this task, OpenPose 1.6.1 was used. This version brought 

an improvement with respect to the previous especially in 

false positive detection rate. In general, the system takes as 

input a colored image and returns the 2D pixels coordinates 

of the anatomical key points of the people with respect to the 
image frame. Initially, a feedforward network forecasts 2D 

confidence maps of the positions of body parts and a set of 

2D vectors for the affinity parts (which essentially describe 

the degree of association between the parts). At the end, each 

confidence map is converted to "greedy inference", returning 

the key points of the body parts within the image. [23] 

There is no need of a calibration phase for performing pose 

estimation through OpenPose[23]. 

Microsoft COCO [51] image dataset training was used. The 

used body parts are listed in Table I. 
 

 

 

 

TABLE I 

MICROSOFT COCO BODY PARTS 

 Body Part MS COCO ID 

 Head   0  
 Nose   1 
 Neck   2 
 Shoulder Right  3 

 Right Elbow  4 
 Right Wrist  5 
 Left Shoulder  6 
 Left Elbow  7 
 Left Wrist  8 
 Right Hip   9 
 Right Knee  10 
 Right Ankle  11 

 Left Hip   12 
 Left Knee  13  
 Left Ankle  14 

 

Coordinates missing and adjusting  

 

The system proceeds with the elimination of peaks from the 
data sequences: since walking is a continuous and 

harmonious movement, it is unthinkable that the extracted 

data will report sharp jumps forward or backward. Therefore, 

having established a threshold equal to 50 pixels and 

considering the position of each part of the body in 

correspondence with the first frame of each walk, all those 

measurements whose ordinate component y go out of the 

interval defined by the threshold [y - 50, y + 50 ] were 

removed. In this way, any errors made during the acquisition 

or isolation of the subject are eliminated. Figure 7 presents 

the result of this operation. Once the peak removal operation 
is complete, the system takes care of estimating the missing 

coordinates of each part of the body by linearly interpolating 

them both in cases where these are not visible within the 

video, and in cases where they were eliminated following the 

peak elimination process. The result is depicted in Figure 8. 

This operation is essential because it allows to create a 

database of homogeneous information: each part of the body 

will have the same number of points identified. 

 

 
FIGURE 7. On the left, the hip pixels coordinates before jump removal 
algorithm, on the right after the application of the removal algorithm. 

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3032202, IEEE Access

 

VOLUME XX, 2017 9 

 
FIGURE 8. On the left, nose pixels coordinates before linear 
interpolation on the right after the application of the linear interpolation 
 

 

Step Segmentation 

 

Once the data modification phase is completed, the system 

proceeds with a new phase: recognition of the individual 

steps. To divide the entire walk into single steps, the system 

identifies stance phases discussed in Section II. In these 

phases the ankle remains still: these phases represent the 

initial part of a step and are followed by a swing phase, in 

which the ankle moves. To proceed with the identification of 

the stance phases, the system extrapolates from the entire 

database the x and y coordinates of the right and left ankles. 

Before being able to isolate the stance phases with enough 

accuracy, it is necessary to subject the ankle coordinates to 
further changes: the elimination of burrs. Despite the fact that 

the accuracy of data acquisition by OpenPose is quite high, 

it is inevitable that small smudges will be generated in the 

data, which would make it impossible to recognize the stance 

phases. The system then proceeds to analyze blocks of 

frames corresponding to a duration of 0.15 seconds 

(empirically estimated time as the minimum necessary to 

identify a stance phase), to check if there are any burrs, or if 

the central elements of the block have small variations 

compared to the elements that act as extremes for the 

considered block. If the system recognizes a burr, it proceeds 
to level the differences, replacing the values of the central 

elements of the analyzed block with the value present at the 

ends. Once the burr elimination procedure is over, the system 

can finally take care of recognizing the stance phases, saving 

the starting frame and the duration in the number of frames. 

Once all the stance phases were identified, the system 

proceeds with further analyzes aimed at eliminating any of 

the following situations: 

• The system combines two successive stance phases, 

if they are not interspersed with a swing phase: it 

could in fact be a slight movement of the foot during 
the stance phase that pushed the system to recognize 

two different phases instead of one. 

• The system combines two phases of successive 

stances, if the starting point of the second stance 

coincides with the end point of the first stance: the 

fake swing phase recognized by the system could, 

in fact, derive from a data acquisition error that 

pushed the system to recognize a definitely wrong 

swing phase as it does not produce displacement. 

• The system eliminates the first stance if it coincides 

with the start of the right or left walk, in order to 

avoid considering an incomplete stance phase. 
Once the analysis of the identified stance phases was 

completed, the system proceeds with the identification of the 

individual steps: a step is identified as the interval between 

the beginning of a stance phase and the beginning of the next. 

 

Step’s coordinate smoothing 

 

The sixth phase is the application of the Kalman filter [52] 

to the timeseries of data, of which every step is taken. This 

is necessary because consecutive frames, may suffer of high 

coordinate variance: key point of same body part in two 

consecutive frames, could have high variance due to small 
inaccuracies of the pose estimation algorithm. 

Kalman Filter is an important and widely used estimation 

algorithm. The Kalman Filter works by computing estimates 

of hidden variables with the hypotheses that these variables 

are inaccurate and under uncertain measurements. The aim 

of the algorithm is to predict the future state of the system by 

using the past estimations. The Kalman filter is used in 

control system, tracking, space navigation and so on. [52], 

[53] 

Given the entire sequence of joint coordinates of a 

segmented step, the Kalman filter, through 5 iterations of the 

estimation operation, outputs the smoothed sequence of 

coordinates. This task is performed for all key points. Results 

are shown in Figure 9. 

 

 
 

FIGURE 9. On the left, step’s coordinate before Kalman smoothing and 
after on the right. 
 
 

 
B.  FEATURE EXTRACTION 

 

The features are calculated on each analyzed step, 

distinguishing between right and left steps. For each step, all 

the features are calculated for each frame that makes up the 

video fragment relating to the analyzed step. Finally, after all 

the features were calculated, the timeseries containing the 

measurements relating to each feature are subjected to 5 

statistical measurements shown in Table II (mean, median, 

standard deviation, first percentile and ninety-ninth 

percentile), which are then used by the system for 
recognition and classification phase. This is because, as said 

previously, features are computed on timeseries of joints 

coordinates of each segmented step. 
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Features can be divided into three major macro categories: 

spatio-temporal features, angles, sigma-lognormal features. 

 
 

TABLE II 

STATISTICAL MEASURES 

 

Feature name Formulation 

Mean 
𝑥̅ =  

𝑥1 +  𝑥2+ . . + 𝑥𝑛

𝑛
 

Median given 𝑥 =  [𝑥1,  𝑥2, . ., 𝑥𝑛] 

thus 𝜇 = 𝑥[
𝑛

2
] 

Standard  

Deviation 𝜎𝑋 =  √
∑ (𝑥𝑖 − 𝑥̅)2𝑁

𝑖=1

𝑁
 

where  𝑥̅ =  
1

𝑁
 ∑ 𝑥𝑖

𝑁
𝑖=1  

1 and 99  

percentile 𝑛 = [ 
𝑃

100
 × 𝑁 ] 

 

 

 

TABLE III 

SPATIO-TEMPORAL FEATURES 

Feature name Formulation 

Displacement 
𝑑𝑖 = √Δ𝑥𝑖

2 + Δ𝑦𝑖
2 

Displacement x Δ𝑥𝑖 = 𝑥𝑖+1 − 𝑥𝑖 

Displacement y Δ𝑦𝑖 = 𝑦𝑖+1 − 𝑦𝑖 

Velocity 𝑣𝑖 =  𝑑𝑖/Δ𝑡𝑖 

Velocity x 𝑣𝑥,𝑖 = Δ𝑥𝑖/Δ𝑡𝑖 

Velocity y 𝑣𝑦,𝑖 = Δ𝑦𝑖/Δ𝑡𝑖 

Acceleration 𝑎 =  𝑣𝑖/Δ𝑡𝑖 

Acceleration x 𝑎𝑥,𝑖 = 𝑣𝑥,𝑖/Δ𝑡𝑖 

Acceleration y 𝑎𝑦,𝑖 = 𝑣𝑦,𝑖/Δ𝑡𝑖 

Tangent angle 

 

𝜌𝑖 = tan−1(Δ𝑦𝑖/Δ𝑥𝑖) 

 

 

 

Spatio-temporal features are shown in Table III. These 

features are synthetized from the timeseries of coordinates of 

each segmented step. These features are reassumed using the 

statistical measures used in Table II.  

By carefully viewing the walking of patients with very 
serious neurodegenerative pathologies and referring to the 

literature reviewed regarding abnormal gait and reported in 

Section II, the following angles were computed: 

- nose, neck, hip (right or left), this because patients 

tend to walk with their heads more inclined 

downwards; 

- neck, hip (right or left), knee (right or left), this 

because patients tend to walk with their torso more 

inclined forward; 

- shoulder (right or left), elbow (right or left), wrist 

(right or left), this because patients tend to walk 
with their arms much more curled up; 

- hip (right or left), knee (right or left), ankle (right or 

left), this other because patients tend to walk with 

their knees more bent; 

- knee (right or left), hip (right or left), knee (left or 

right) this also because patients tend to take smaller 

steps, with a much smaller opening of the legs. 

For angles computation, the formula provided in equation (3) 

was used. 

 

 

𝛾 = 𝑑𝑒𝑔(𝑎𝑟𝑐 𝑐𝑜𝑠 (
𝐴𝐵⃗⃗ ⃗⃗ ⃗⃗ ∗𝐵𝐶⃗⃗ ⃗⃗⃗⃗

|𝐴𝐵|∗|𝐵𝐶|
))  (3) 

 

 

In equation (3), deg converts radians to degrees. 𝐴, 𝐵⃗⃗ and 𝐶 

are, in order, the coordinates of the joints discussed in the 

previous bulleted list. The timeseries containing the 

measurements of these angles are subjected to 6 statistical 

measurements, instead of 5: the statistical measure shown in 

Table II plus the maximum amplitude reached of each angle. 

 

 
TABLE IV 

SIGMA-LOGNORMAL FEATURES 

Feature name Description 

Lognormal 

stroke number 
Number of lognormal strokes 

D parameter D parameter for all lognormal strokes 

μ parameter μ parameter for all lognormal strokes 

σ parameter σ parameter for all lognormal strokes 

θs parameter 
θs parameter for all lognormal 

strokes 

θe parameter 
θe parameter for all lognormal 

strokes 

 

The sigma-lognormal features reported in Table IV, with the 
exception of the first, the number of lognormals found 

(which is calculated only once), are calculated, based on the 

type of step, for each part of the visible body: nose, neck, 

shoulder (right or left), elbow (right or left), wrist ( right or 

left), hip (right or left), knee (right or left), ankle (right or 

left). For all those, apart the first, the statistical measures in 

Table II are applied.  

The dataset which contains all the features (velocity, angles 

and sigma-lognormal) is composed by 675 synthetized 

segmented steps (the rows) and for a total of 679 features 

(columns). 

In addition to this dataset, two additional datasets were 
created as the combination of one or more different features. 

Specifically, the first is composed only by velocity-based 

features and angles. The third is composed by only sigma-

lognormal features. These datasets are fed into the 

classification models explained in section C. 

 
C.  CLASSIFIERS AND EXPERIMENTAL SETUP 

The classification is performed with 10-Fold cross validation 

with 70-30 ratio maintaining the inter-patient separation 

scheme: 28 subjects in training and 12 in test set randomly 

kept 10 different times. The produced train-test sets within 

10-Fold cross validation may be imbalanced [54]. For this 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3032202, IEEE Access

 

VOLUME XX, 2017 9 

reason and only when there was relevant imbalance between 

healthy and sick, it was decided to perform, before feature 

selection, a novel oversampling technique called LICIC [54]. 
This oversampling technique creates new instances 

balancing the minority classes by preserving nonlinearities 

and the particular pattern present in each specific class.  

It works by copying most important components and 

permutating less important components among instances of 

the same class, and thus, create new offspring. It was avoided 

to use LICIC at the beginning of the pipeline for the dataset 

as a whole, because it would bleed specific patterns of 

samples used for testing, also in training, thus making 

results, less reliable. This kind of bleeding is not considered 

cheating, but it is not suitable for medical application 

research. 

Before doing the final classification, feature selection was 

performed using Extra Trees [55] with ordered feature 

importance.  Extra Trees is an ensemble technique which 

uses the results of multiple de-correlated trees, aggregating 

them and outputting the classification result. The feature 

importance metric used was the Gini Index. At the end of the 

procedure, the features were ordered with respect to their 

Gini index, from higher to lower and the top 100 features in 

descending order were kept. 

 

For the binary classification, the following 5 classifiers were 
used: 

1. K-Nearest Neighbors 

2. Random Forest  

3. AdaBoost with Decision Tree as base learner 

4. Linear Support Vector Machines 

5. Radial Basis Function (rbf) Support Vector 

Machines 

K-Nearest Neighbor was configured with 5 nearest 

neighbors. Support Vector Machine with linear kernel and C 

= 1. The rbf version of Support Vector Machine used 

automatic gamma adjusting and C=1. Random Forest 

classifier was used with 50 trees and maximum depth of 5 
for conquering overfitting. Finally, AdaBoost with 10 

decision trees as week learner each with 10 as max depth. 

 For comparison purposes, two widely known activity 

recognition algorithm were used for shallow learning. These 

two algorithms are Motion Blobs [59] and Optical Flow [60]. 

Both techniques extracted their respective features who were 

tested against AdaBoost with 50 decision trees and SVM 

with linear classifier and C=1.  

For deep learning, the ResNet deep learning architecture 

making use of 3D CNN [61] for encoding spatio-temporal 

information was used. In this work it has been used the 34-
layer 3D ResNet with Adam [62] as optimizer. The training 

time took over 8 days on GPU enabled server with Nvidia 

Tesla V100 with 16GB video RAM. For additional 

comparison purposes, well known ResNet-50 [64] and 

Inception-V3 [65] deep neural network architectures were 

tested in exactly same conditions. These two last networks 
were trained end-to-end on a frame by frame basis. 

 
TABLE V 

RESULTS ON COMPLETE DATASET 

 

 

 

 

TABLE VI 

RESULTS WITH AND WITHOUT SIGMA-LOGNORMAL FEATURES 

 

 

 

 

TABLE VII 

RESULTS COMPARISON BETWEEN LEFT STEPS, RIGHT STEPS AND BOTH 

 

 

 

 

 

 

Algorithm F1 Sensitivity Specificity Precision Mean 

Acc 

AUC 

KNN 0.949 0.930 0.968 0.968 0.949 0.951 

Random 

Forest 

0.942 0.945 0.939 0.943 0.942 0.945 

Ada Boost 0.932 0.936 0.939 0.943 0.942 0.943 

Linear 

SVM 

0.955 0.953 0.957 0.959 0.955 0.961 

RBF 

SVM 

0.954 0.959 0.949 0.952 0.954 0.955 

Algorithm F1 Sensitivi

ty 

Specificit

y 

Precisio

n 

Mean 

Acc 

 

AUC 

SVM  

All 

Features 

 

0.955 0.953 0.957 0.959 0.955 0.961 

SVM 

without 

Sigma-

lognormal 

Features 

0.950 0.947 0.952 0.955 0.950 0.951 

SVM only 

Sigma-

lognormal 

features 

0.948 0.982 0.929 9.951 0.948 0.947 

Algorithm F1 Sensitivity Specificity Precision Mean 

Acc 

AUC 

SVM 

Right + 

Left steps 

0.955 0.953 0.957 0.959 0.955 0.961 

SVM 

Right 

steps 

0.975 0.981 0.969 0.971 0.975 0.976 

SVM Left 

Steps 

0.990 0.981 0.999 0.987 0.991 0.990 
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TABLE VIII 

RESULTS COMPARISON BETWEEN OTHER WORKS ON SAME DATASET 

 

 

 
D.  RESULTS 

The averaged results of 10-Fold cross validation performed 

on the whole dataset by the 5 different algorithms is shown 

in Table V. The best performing classifier is the linear SVM. 
Table VI, instead, shows results of Linear SVM, with and 

without sigma-lognormal features. This comparison is 

important and will be discussed in more details in Section 

VII. To evaluate the possibility that the right and left steps 

can generate different features due to their intrinsic nature, it 

was decided to try to classify the right and left steps also 

separately. The results are presented in Table VII. 

Table VIII contains comparison results with other state of the 

art techniques on the same dataset.  

 
 
VII. DISCUSSION 

 

The results presented in Table V show a mean accuracy of 

the system of 95.5% when linear SVM is used. This result is 

higher with respect to other reviewed works, but a rigorous 
comparison among other systems cannot be done because 

also other reviewed works, make use of private datasets to 

remain compliant with the privacy laws, in this case the 

GDPR (European). 

The hypotheses at the basis of this work is that sigma-

lognormal features would help in discriminating healthy 

from unhealthy subjects.  

 

Table VI shows that mean accuracy is increased when sigma-

lognormal features are used by 0.5%. This sensible increase 

in accuracy is important because, thanks to the inter-patient 
separation scheme, it was therefore possible to make an 

analysis to understand to whom, the badly classified steps, 

belonged to when no sigma-lognormal features were kept 

into consideration.  

As results, all badly classified instances belonged to mild and 

found stages. In this case, adding sigma-lognormal features, 

increased the chance of recognizing borderline subjects, 

especially subjects with an early stage disease.  

This finding confirms our hypotheses and empirically shows 

that sigma-lognormal features and, more in general, the 

Plamondon’s Kinematic Theory of Rapid Human 

Movements [8], [9], [10] can be effectively transposed from 
the handwriting domain to a more general scenario. That is, 

these sigma-lognormal features can capture small grain 

movement details, otherwise impossible to be captured by 

effective but coarse features such as velocity, displacement 

and angles.  

 

Sigma-lognormal features, at the end, contribute in 

classifying the most difficult, borderline, instances, 

contributing, in an important way, in the realization of the 

big picture of this work: early stage neurodegenerative 

disease classification. From Table VI is also possible to note 
that when sigma-lognormal features are considered in 

isolation, the sensitivity, which is the number of sick patients 

correctly identified as sick, is higher with respect to other, 

hitting 0.982. This finding contributes in confirming the 

hypothesis that the Kinematic Theory of Rapid Human 

Movement and its sigma-lognormal model captures fine 

grained variabilities present in borderline subjects. 

 

Another interesting finding is that the separate classification 

of the right and left steps produces better results than the joint 

classification. This is because, the classification algorithm 

would learn more discriminated and correlated patterns when 
features are synthetized on exactly same walking direction 

and orientation.  In this specific scenario, the highest 

accuracy of 99.1% was achieved by using all types of 

features but analyzing only the left walk orientation, as 

shown in Table VII. 

 

The comparison results in Table VIII shows that our 

technique is at least 7 percentual points more accurate than 

all others. Motion Blobs and Optical Flows perform better 

than the 3D (spatio-temporal) Deep Learning technique 

called 3D ResNet and also all other DL architectures tested. 
This result contradicts the common opinion in the 

community that deep learning is on par or outperforms other 

techniques. The hypothesis is that DL architectures were 
biased toward several scene’s details: algorithms may learn 

several scene parameters, such as the surrounding 

environment, the presence of another person (nurse), the 

camera orientation and the focus with respect to the subject 

acting. This is particularly visible when interpatient 

Work F1 Recall Precision Accuracy 

Motion 

Blobs + 

SVM 

[59] 

0.9074 0.8964 0.9074 0.9152 

Motion 

Blobs + 

AdaBoost 

[59] 

0.9254 0.9232 0.9129 0.9254 

Optical 

Flows + 

SVM 

[60] 

0.9238 0.881 0.9628 0.8823 

Optical 

Flows + 

AdaBoost 

[60] 

0.9032 0.8235 0.9634 0.8353 

3D 

ResNet 

[61] 

0.84 0.88 0.83 0.84 

2D 

ResNet 

50 

0.82 0.86 0.79 0.82  

Inception 

V3  

0.82 0.86 0.80 0.82  

This 

Work 

0.990 0.976 0.987 0.991  
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separation scheme is applied, in fact few videos of patients 

walking were recorded at the exact same room, some, 

different, healthy subject videos were recorded in another 
place with wooden surroundings.  

 

 

 

 

 

     

 

 

 

 
 
FIGURE 10. Lime result of patient performing gait (a) and healthy 
subject performing gait (b). In red the areas that contributed less in the 
classification of healthy/unhealthy subject, in green areas that 
contributed most.  

 

For understanding what the DL models have learnt, it has 

been used the local interpretable model-agnostic 

explanations (LIME) [62] technique. This explainable 

artificial intelligence [56] technique is one of the most 

widely used implementation of local surrogate models. 

Surrogate models are trained to approximate the predictions 

of the underlaying neural network model. In this specific 

case, LIME focused on training local surrogate models to 
explain individual predictions of the 3D ResNet. 

Figure 10 shows that LIME [62] algorithm found the 

environment, as most important parts for discriminating 

healthy from unhealthy subjects. This confirms the 

hypotheses of scene bias of some deep learning techniques 

applied to this kind of tasks.  

 

FIGURE 11. Top 13 ranked features used for classification 

Returning to the original technique developed in this work, 

thanks to the interpretability brought by Decision Trees 

integrated within Extra Trees algorithm used in feature 
selection, it is possible to rank features from the most to the 

least important. Figure 11 shows the top 13 features. 

As it is possible to observe, velocity, acceleration and 

displacement of nose, hip and neck are the most important. 

By important, it is meant, the characteristics that allow to 

better distinguish the pattern of a healthy person from the 

pattern of a sick person. 

Interesting is also the presence of the input command D of 

the sigma-lognormal model for the hip in 13th position (the 

green bar in Figure 11).  

The ability for such a system to be interpretable is of 

paramount importance in computer aided diagnosis tools. 
Explainable Artificial Intelligence (briefly XAI) [56] allows 

the human being to understand, but also trust, what the 

system has predicted.  

In this case, the high interpretability of this system allowed 

to draw different conclusions with respect to what other 

authors in [6], [15], [18], [19], [25], [28], [34] reported. From 

a pure computer vision and pattern recognition perspective, 

differently from the global medical assumption of measuring 

legs muscle activities, there is important evidence that the 

upper side of the body, such as nose, hip, neck and shoulders, 

play a major role in discriminating healthy from unhealthy 
subjects.  

 
VIII. CONCLUSIONS AND FUTURE WORK 

 

In this work, an early neurodegenerative disease assessment 

computer aided tool was developed. The high accuracies 
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achieved by this system suggests that the proposed pipeline 

is effective.  

It is important to assert that there is enough evidence that the 
Kinematic Theory of Rapid Human Movements can be used 

also in this specific domain. In this case, this theory and its 

sigma-lognormal model were capable of capturing fine 

grained movements that allowed to correctly classify 

borderline people affected by some kind of 

neurodegenerative disease in early stage, thus achieving the 

goal of this work.  

Though this is a preliminary work in the field, thanks to the 

interpretability of the resulting model, it is possible to state 

that, from a pure computer vision perspective, the most 

important body parts when it comes to neurodegenerative 

disease classification trough 2D cameras are in the upper side 
of the body, in particular nose, neck, hip and shoulders. 

Despite the numerosity of the dataset, results are 

encouraging and higher with respect to the reviewed works.  

In a future work, 3D pose estimation will be performed and 

these features plus other new features from signal processing 

domain will be used on the 3D estimated pose. In addition, 

multi-class classification will be performed with the aim of 

predicting the severity of the disease. 

With the help of trained psychologists and neurologists, 

more data will be collected. Of extreme importance is 

balancing the dataset finding healthy control subjects in their 
80s.  

 

The final aim of this research is to early predict the nature of 

different neurodegenerative diseases by means of computer 

vision. This is only our first step towards this big picture. 
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