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ABSTRACT The perception of slip is one of the distinctive abilities of human tactile sensing. The sense of 

touch allows recognizing a wide set of properties of a grasped object, such as shape, weight and dimension. 

Based on such properties, the applied force can be accordingly regulated avoiding slip of the grasped object. 

Despite the great importance of tactile sensing for humans, mechatronic hands (robotic manipulators, 

prosthetic hands etc.) are rarely endowed with tactile feedback. The necessity to grasp objects relying on 

robust slip prevention algorithms is not yet corresponded in existing artificial manipulators, which are 

relegated to structured environments then. Numerous approaches regarding the problem of slip detection and 

correction have been developed especially in the last decade, resorting to a number of sensor typologies. 

However, no impact on the industrial market has been achieved. This paper reviews the sensors and methods 

so far proposed for slip prevention in artificial tactile perception, starting from more classical techniques until 

the latest solutions tested on robotic systems. The strengths and weaknesses of each described technique are 

discussed, also in relation to the sensing technologies employed. The result is a summary exploring the whole 

state of art and providing a perspective towards the future research directions in the sector. 

INDEX TERMS Force, grasp, manipulation, prosthetics, robotics, sensor, slip, slippage, tactile.

I. INTRODUCTION 

HE human hand emblematically represents the evolution 

of the human race. To have an idea of its impressing 

dexterity, one may think that the human hand’s number of 

Degrees of Freedom (DoF), i.e. twenty-one, is higher than 

the sum of the DoFs of lower and upper limb (including 

wrist). No similar biological structure can be found in the 

Regnum Animale [1]. Moreover, the sense of touch is also 

crucial when considering the capabilities of human hand. By 

exploiting different kinds of sensing units, this sense allows 

recognizing a great quantity of properties of a touched 

object: roughness, shape, dimension, weight, hardness, 

humidity, temperature. Based on this set of properties, the 

human hand is able to regulate the applied force of each 

finger when grasping an object. This gives the hand the 

possibility of carrying out a fundamental action, i.e., to avoid 

slip when the contact condition modifies disadvantageously. 

A sudden movement between the finger and the object can 

be promptly detected by specialized receptors, which indeed 

transduce the mechanical information into electrical signals. 

Such signals are collected by peripheral nerves innervating 

the hand, and then transmitted to the brain very quickly. 

Elaboration and response, in terms of force adjustment, are 

quick as well, taking even less than 100 ms [2].  

These skills are still difficult to reproduce into artificial 

systems. Industrial robotic manipulators rarely rely on tactile 

data [3], as artificial tactile sensors have a number of 

drawbacks. For instance, hysteresis and non-linearity are 

highly common. Although human tactile receptors 

embedded in human skin are hysteretic and non-linear [4], 

these (as well as other) drawbacks somehow complicate the 

use of tactile information by artificial control software. Also, 

high-power consumption, temperature susceptibility and 

difficulty in real-time elaboration of large amounts of tactile 

data hindered, through the past decades, the identification of 

one or more solutions that can have an impact on the 

industrial market. At the beginning of 1990s, tactile sensors 

were still absent in the industrial domain [5],  yet they were 

envisaged to characterize robots in a near future, allowing 

them to act in unstructured environments.  

T 
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At the dawn of the new millennium, even though progress 

was reported w.r.t. the preceding decade, tactile sensing had 

no meaningful application in any industrial scenario [6]. 

Nowadays little has changed, as artificial touch remains less 

reliable and developed than as e.g. artificial vision [7]. 

As a result, although there exist commercial robots 

endowed with force/torque (F/T) sensors, robot manipulators 

are principally found in structured environments, relying on 

a priori knowledge rather than on active tactile sensing. In 

other words, robots can deal with predefined items with e.g. 

known mass, also measuring the contact force, but they 

cannot correct the grasp under unexpected circumstances. 

Moreover, robot sensors do not provide other tactile 

properties such as shape, roughness and temperature. This is 

in contrast with the large number of tactile sensors that can 

be found in literature, as witnessed by several reviews in the 

last years [4],[7],[8],[9],[10],[11]. Further, the combination 

of static and dynamic sensing is not straightforward. The 

detection of dynamic events like slip often requires the 

exploitation of a dedicated sensing unit resorting to a 

different transducing principle (unless using multiaxial force 

sensors, commonly rather bulky). A direct consequence is 

the difficulty to endow robotic end effectors with slip 

sensors, as their encumbrance can be problematic if added to 

the presence of e.g. a force sensor. The routing of the power 

and signal cables, together with the sensors embedment 

within the manipulator structure, represent unneglectable 

issues. Also, the complexity in the design of algorithms for 

real time functioning would rise. This applies to all domains 

of robotics, e.g. prosthetics.  

Surprisingly, prosthetic hands are still devoid of tactile 

sensory systems in spite of the large prosthetic market. A 

recent report [12] points out the almost total lack of tactile 

feedback, including slip detection, in commercial prostheses. 

The property of detecting slip events with as fast response as 

to promptly react is one of the most advanced capabilities 

that distinguishes the human upper limb from non-human 

ones. Notwithstanding the considerable amount of research 

carried out on this topic, to provide robotic hands with 

reliable anti-slip perception remains unsolved. This problem 

gained higher attention in the latest ten years, as confirmed 

by the trend in the number of related scientific publications 

(Fig. 1). Before, academia and industry were devoting major 

effort towards the development of tactile sensors which were 

commonly unsuitable for detecting dynamic events. As a 

matter of fact, the first review on the topic of artificial slip 

sensing came out in 2013 [13]. This might be interpreted as 

a demoralizing statistic, given that the first attempt to mount 

slip sensors onto an artificial hand dates back to 1967 [14].   

In light of the above considerations, the present paper 

intends to collect the main techniques and sensors proposed 

over the last decades for slip detection in robotics. The idea 

is to deliver a comprehensive survey of the state of the art, 

providing the reader with satisfactory insights about a field 

of robotics whose potential is still overly underestimated. 

Many of the existing reviews on tactile sensing aim at 

classifying tactile sensors and their potentialities; this also 

applies, somehow, to the reports dealing with slip detection. 

E.g., the aforementioned [13] focuses only on the different 

sensing modalities rather than on techniques and approaches. 

A fresher report [15] concentrates on friction estimation and 

on the best sensor solutions to achieve this goal.  

Hence, the objective of the present paper is twofold: I) to 

go beyond the conventional review approach, which led to a 

plurality of valuable reviews focusing exclusively on sensing 

principles, fabrication techniques, pros and cons of the 

specific sensor technology and so on; II) to provide the 

reader with a detailed analysis of the slip detection 

procedures which were so far experimented in robotics, 

regardless of the tactile sensors involved in each work. 

Nevertheless, sensor technologies are cited throughout the 

text when explaining the various detection approaches.  

We also would like to specify that all the remaining well-

known problems in the state of the art of robotic grasping are 

not solved in the present survey. Such problems include: 

object drop, object damage, control algorithms for force 

regulation or minimization, vibration suppression, grasp 

stabilization, measurement of stiffness or other physical 

properties of the grasped object. 

The article is organized in this manner: in this Section, we 

gave some general hints about both human and artificial 

tactile sensing, introducing the subproblem of slip 

identification, i.e. the core of the paper. The human hand 

constitutes a substantial inspiration for the design of robotic 

hands [16]: therefore, Section II briefly explains the human 

sense of touch, concentrating on its slip perception and 

correction modalities. Section III presents the methods based 

on the friction coefficient and on multi-axial forces, whereas 

Section IV deals with vibrations-based approaches. After 

these two Sections, which contain the majority of works, 

Section V offers an overview on methods resorting to other 

physical quantities. Section VI terminates the methods 

categorization by illustrating alternative approaches, 

including e.g. neural networks whose applications lately 

extended to slip identification. A profound discussion of all 

the methods is available in Section VII; finally, Section VIII  

 

FIGURE 1.  Number of scientific publications per year. Keywords: 
“Robotic slip sensor”. Source: Web of Science. 
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concludes the paper and refers the authors’ point of view 

about the future directions in this research area. 

II. HUMAN SENSE OF SLIP: PHYSIOLOGY 

The human sense of touch is composed of a wide range of 

sensations. The human skin is commonly solicited by diverse 

kinds of stimuli, which might be mechanical, thermal or even 

electrical (e.g. electrostatic discharge, ESD). According to 

the nature of the stimulus, as it is delivered to the skin, one 

or more typologies of receptors activate. These are 

responsible for transducing the stimuli into electrical signals, 

i.e. sequences of spike potentials; such potentials are then 

collected by the afferent nerves, which relay them to the 

brain. Interestingly, the most rapid fibers (i.e. myelinated) 

are the ones conveying the mechanical stimuli from the 

related receptors, i.e. mechanoreceptors. These are known 

for their high sensitivity, thanks to which even very weak 

mechanical perturbations (e.g. light touch) may elicit their 

response. For this reason, mechanoreceptors are also called 

low-threshold receptors [17].  

Table 1 summarizes the main features (retrieved from 

[18], [19]) of the four types of mechanoreceptors that are 

embedded in the human skin. It is worth mentioning that Fast 

Adapting (FA) units, both I and II (according to the size of 

the receptive field), respond only to dynamic stimulation. In 

particular, FA II units exhibit high sensitivity to acceleration 

and quick transients [20]. A similar property makes them the 

most adequate receptors to sense the relative movement 

between the hand and the grasped object. This is also due to 

their sensitivity to higher frequency vibrations, from 50 to 

500 Hz [19] with a significant peak between 200 Hz and 300 

Hz [18],[21]). When the stimulus frequency overcomes 100 

Hz, displacements as little as 1 µm can lead to activation of 

FA II units [20]. FA I units instead produce strong firing 

especially for skin vibrations at frequency lower than 40 Hz 

and higher than 5 Hz. They are excited particularly by the 

skin indentation. However, it has been suggested that FA I 

are involved in grip adjustment when a stable grasp is 

disturbed with sudden loads [21],[22]. Moreover, FA I units 

play a role in determining the direction of the slip [13]. This 

information is also provided by the Slow Adapting (SA) 

receptors, which continue firing during static pressure but 

have also dynamic sensitivity. There is evidence that SA II 

units respond to skin stretch and have a clear directional 

sensitivity, as the discharge rate tended to increase/decrease 

when applying stretches in a direction or in the opposite one 

[23]. Such a property of SA II was found in animal models 

too [24]. Thus, SA II can be viewed as actual physiological 

stretch sensors. Consequently, their function can intervene in 

the adjustment of applied forces during tasks in which shear 

stresses are subject to frequent variation (e.g. tools 

manipulation) [18]. In other words, it is reasonable to 

imagine that there might be a contribution of SA II receptors 

in slip avoidance processes, despite their reduced sensitivity 

to high frequency vibrations.   

The sensations related to fine touch and slip notoriously 

ascend to the Primary Sensory Cortex (S1) via the Dorsal 

Column-Median Lemniscal (DCML) pathway of the spinal 

cord. Before being relayed to the Central Nervous System 

(CNS), tactile signals need to be transduced at the skin by 

means of the mechanoreceptors and then sent through the 

peripheral nerves (e.g. forearm nerves). Once the signals are 

received by S1, they are elaborated and then a reaction can 

take place at the involved body area. Such a reaction may be 

faster than 100 ms, as observed in pioneering studies in the 

1980s [2],[25]. Specifically, when a grasped object tends to 

slip, a time interval extending up to 90 ms can elapse before 

the first grip correction is applied. The same finding was later 

confirmed a decade later [26]. It is fundamental to highlight 

the automatic nature of the efferent signals activating the 

muscles in response to slip phenomena. Naturally induced 

slip may lead to delay in the force correction as low as around 

70 ms. Conversely, voluntary reaction to externally induced 

stimulation of the fingers skin can produce changes in the 

grip forces even after 200 ms [25]. Therefore, modification 

in both finger position and pressure required to prevent a slip 

event might be regarded as spontaneous. That is, efferent 

signals involved in immediate reactions for slip 

compensation probably originate unconsciously. They are 

likely to be yielded by predictive strategies exploited by the 

CNS to perform advanced manipulation. Indeed, humans are 

able to store in memory information about object properties, 

e.g. weight, and to use such information to successfully lift 

the object and to eventually modify the contact conditions in 

order to maintain a stable grasp. However, this process 

resorts to visual cues as well, which are important for gaining 

insights about the object properties. Nonetheless, it is the 

tactile input that determines the entity of the error between 

expected sensory inputs and the real available ones. If the 

latter do not correspond to the former, the stored information 

will be updated. For more explanations about the predictive 

schemes underlying the skilled manipulation, see e.g. [27]. 

TABLE I 

BASIC PROPERTIES OF HUMAN MECHANORECEPTORS 

Name 
Receptor 

type 

Field size 

(mm2) 

 

Encoded quantity 

 
 

Meissner 

Corpuscles 

I (fast) 12.6 High frequency 

vibrations 
(<50Hz) and 

acceleration 

  

Pacinian 

Corpuscles 
II (fast) 101 High frequency 

vibrations (>50 
Hz) 

  

Merkel 

Disks 

I (slow) 11 Static load, skin 

indentation 
  

Ruffini 

Endings 
II (slow) 59 Skin stretch, 

stretch direction 
  

     

 



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2987849, IEEE Access

 

VOLUME XX, 2017 9 

III. ROBOTICS: FRICTION COEFFICIENT AND MULTI-
AXIAL FORCES 

Grasp stability unavoidably depends on friction, which is a 

crucial element of grasp stability [15]. As a consequence, the 

knowledge of friction inspired multiple approaches for slip 

prevention. The following subsections present methods 

mainly based on what can be judged as a gold standard: the 

estimation of friction. This can be pursued e.g. by means of 

multi-axial force components, or else through specific 

sensors. Using more force sensors allows avoiding slip even 

without knowledge of friction.  

A. FRICTION-BASED METHODS 

A fundamental parameter in the detection of slip is the 

static friction coefficient. The tactile receptors of human 

body can sense frictional variations during a grasp action, 

allowing the CNS to program the response in order to adjust 

the grasping forces. Several studies [28],[29]) have 

demonstrated that the applied forces are considerably 

conditioned by the weight of the object and the static friction 

coefficient µs, which is defined as: 

 

𝜇𝑠 = 𝐹𝑡/𝐹𝑛                                   (1) 

 

where Ft and Fn are the tangential force and normal force, 

respectively. If two bodies in mutual contact start moving 

against each other, the static friction coefficient assumes a 

new value µd, which is generally lower than µs [30]. Equation 

(1) is a limit condition; to ensure stable grip of an object, the 

ratio Ft/Fn should be lower than µs (Coulomb’s model). Such 

a condition defines the friction cone, which must contain all 

the resultant forces acting on a grasped object [31]. Consider 

e.g. the schematization of Fig. 2. The two normal forces Fni 

and Fnt should balance the weight W of the held object in 

such a way that the ratio with the corresponding tangential 

loads Fti and Ftt is littler than (1). This way, the resultant 

force vectors Ri and Rt will be located inside the cone, whose 

vertex semi-angle is α=tan-1(µs). If the tangential force 

grows until (1) holds true, the resultant force will be located 

on the cone surface. This would lead to incipient (or initial) 

slip, whereas further augmentation of tangential load would 

yield global (or gross) slip whenever it is not adequately 

compensated by increasing normal load. Referring to a 

practical situation in which external disturbance is missing, 

slip can happen if e.g. the friction coefficient (or else the 

object weight) is underestimated, leading to insufficient 

normal force. In general, given a constant Fn, a diminishment 

of the static friction coefficient is accompanied by an 

increment of the tangential force; these effects have to be 

mitigated by increasing Fn to prevent object from slipping. 

Intuitively, the lower is the static friction coefficient, the 

more slippery is the corresponding surface.  

Thus, the straightest methodology to prevent slip is to 

monitor the force ratio at the surface-object interface. This 

can be accomplished by measuring both the tangential and 

normal loads and computing their ratio. To this end, a three-

axial force sensor is needed, as in [32]. This approach may 

be pursued through more sensing technologies, such as 

piezoresistive (Force Sensing Resistor, FSR, [33]) and 

capacitive [34]. The first technology exploits the variation of 

an electrical resistance produced by an exerted force, while 

the second is based on electrical capacitances which value 

depends on geometrical properties, electrical properties 

(such as dielectric permittivity) and to compression due to 

pressure. Electrical resistance variation might be exploited to 

sense three-axial forces with a vast quantity of fabrication 

processes and materials, including organic ones [35] and 

micro-electro mechanical systems (MEMS) [36],[37]. 

Capacitive sensors allow reconstructing shear forces even if 

the sensing unit is covered with plastic material such as 

silicone skin [38]. Both technologies are widely utilized in 

the construction of tactile sensors, though the first one is 

often preferred. Three-axial force sensors might be achieved 

by means of further transducing modalities, such as Quantum 

Tunnel Effect. Relevant examples can be found in [39],[40] 

where a Quantum Tunnel Composite (QTC) sensor capable 

of detecting normal and tangential forces was mounted onto 

an anthropomorphic mechatronic hand to provide forces 

information and slip correction. Notwithstanding their very 

high sensitivity and their high conductive behavior if 

pressed, QTC materials still constitute a quite uncommon 

solution for sensorization of artificial manipulators. Further, 

the detection of slip by means of three-axial force 

information and knowledge of the static friction coefficient 

was lately proposed with optical sensors [41]. 

The use of six-axis F/T sensors, generally relying on 

resistive transduction, is not rare. In [42] a six-axis sensor 

was mounted on the thumb of an articulated hand (i.e. 

Salisbury Hand) so as to measure shear and normal forces 

applied onto the grasped objects. In case of inconvenient 

variation of the friction ratio, the normal force could be 

augmented to prevent slip of the object. A very similar 

method was adopted in [30] and in [43], where the torque 

sensors output of a two-fingered robot hand was used to 

 

FIGURE 2. Forces acting on a grasped object. The two fingers apply a 
normal force that, in absence of any disturbance, compensates for the 
weight of the object. The friction cone must contain the resultant force 
vector to prevent slip. Note that the two cones have different dimensions, 
as the applied forces are independently applied by each finger.    
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retrieve the applied forces and to determine the friction 

coefficient.  

The force signals provided by these sensors might also be 

employed in combination with other systems, e.g. cameras. 

This was done in [44] where a camera and a six-axis 

force/torque sensor were mounted on a single DOF gripper. 

The Hertzian model was employed; this is able to 

mathematically represent the contact between an elastic 

spherical surface and a rigid plate under the effect of a 

normal pressure. Such a model was extended to find out a 

solution for the case in which a tangential force was applied 

too. A slip margin γ was defined as γ=1-Φ where Φ is equal 

to Ft/µsFn. Intuitively, when Φ is little the slip margin has a 

value close to one, meaning that the contact region is in a 

stick-state. As Φ increases, γ becomes lower and slip is more 

likely to happen. The maximum value allowed for Φ is one, 

i.e. (1) is satisfied thus leading to object slip. The following 

equation was studied: 

 

𝛿 = 3𝑓𝑡(2 − 𝜈)[1 − (1 − 𝛷2 3⁄ )] 16𝑎𝐺𝛷⁄ ,         (2) 

 

in which δ is the displacement of a reference point on the 

contact surface, a is the radius of the contact area, ft is the 

tangential force, ν is the Poisson ratio of the elastic surface 

and G is its shear modulus. Last two quantities are known a 

priori. Once δ and a are estimated through the camera and ft 

is known thanks to the F/T sensor, two solutions Φa and Φb 

could be derived by solving (2) both for incipient and gross 

slip, respectively. Grip force can be controlled based on such 

solutions, thus not requiring knowledge of the static friction 

coefficient to prevent slip.  

Additionally, torque information may be included into a 

stiffness control for multi-fingered manipulators, in order to 

maintain the grasping force within the friction cone [45]. 

Torques information was combined with the trend of the 

normal force measured by a four-axis MEMS piezoresistive 

sensor embedded into a soft fingertip. It was reported that 

normal force and moment around one of the two planar 

directions could provide useful insight about the onset of 

gross slip without the information of the static friction 

coefficient at the contact interface. The variation in standard 

deviation of torques measured by a six-axis F/T sensor 

integrated into the fingers of a robotic hand (Universal Robot 

Hand II) was utilized to predict slip in [46]. A more recent 

technique was proposed in [47], where a three-fingered end 

effector was endowed with six-axis F/T sensors to estimate 

the Break Away (BF) friction ratio. This was studied through 

the LuGre model, which considers the tiny irregularities of a 

surface as elastic bristles. An applied friction ratio depending 

on the disturbing force, on the normal force and object 

gravity was defined. The implemented controller compared 

the actual friction ratio µa with a threshold µsl obtained from 

normal force measurements and from the variation of the 

applied friction ratio. If the difference between µa and µsl was 

greater than a safety margin, the grasping force and the hand 

joints position were adjusted by the controller. Even though 

the applicability and performance of this approach were 

extended by the same authors [48], it suffered from certain 

drawbacks that will be discussed later (see Section V). Quite 

recent is the six-axis F/T optoelectronic sensor proposed in 

[49] as well, yet the slip avoidance was carried out in a 

classical manner, i.e. relying on (1). Two voice coil 

actuators, each one equipped with one sensor, were used to 

grasp an object, while a third actuator served to disturb it. 

Preliminary experiments showed the feasibility of estimating 

the friction coefficient and controlling grip forces through 

the developed optoelectronic sensors.  

B. ALTERNATIVE ESTIMATION OF FRICTION 

Alternatively, it is possible to compute the friction 

coefficient with an ad hoc sensor, i.e. a sensor purposely 

conceived for this task. For instance, a clutch disk sensor was 

mounted on the right finger of a two-fingered robotic hand 

[50]. The static friction coefficient could be found as a 

function of the torque applied to the disk by a DC motor and 

of the disk radius, permitting normal force adjustment when 

required thanks to a force sensor based on strain gage (one 

sensor per finger). A singular approach was proposed in [51] 

with the idea of estimating the friction coefficient through an 

acoustic resonant tensor cell (ARTC). An ARTC sensor is 

composed of a cavity contained into an elastic packaging 

which possesses an ultrasound transmitter and a receiver. 

The sound propagates inside the cavity at a resonant 

frequency depending on the cavity shape, which in turn is 

influenced by the applied stresses. By knowing the vertical 

strain and the tangential stress of the cavity, the friction 

coefficient could be obtained. In this way, slip might be 

contrasted before it actually happened as the friction 

coefficient was measured without requiring any movement 

of the object contacting the sensor. However, to effectively 

use the sensor, the touched object had to be harder than the 

elastic sensor material and with a smaller curvature. The 

static friction coefficient can be inferred also by means of 

piezoresistive doped beams embedded in an elastomeric 

material [52]. The coefficient depended on the electrical 

resistance changes of the beams due to vertical and tangential 

strains met by the elastomer, whereas such stresses were 

proportional to the normal force. 

  Moreover, the ratio of normal and tangential loads 

exerted by a robotic finger is mathematically estimable 

starting from a monoaxial force information, provided that 

joint angles and dimensions of links are available. This was 

done on a fingertip mechanism constructed as in [53]. Slip 

was detected by observing changes in the force ratio. To 

compute such a ratio, more sensors are required, e.g. FSR 

force sensors for the monoaxial force and potentiometers for 

the joint angles. 

C. FRICTION-INDEPENDENT METHODS 

As in some of the previously described approaches, the 
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calculation of the static friction coefficient may be 

completely avoided. Structured environments, where objects 

properties are a priori known, do not require sophisticated 

algorithms for the estimation of the surface features of the 

manipulated objects. In this sense, the Mindlin’s model 

offers a good solution, allowing arithmetic prediction of the 

shear traction trend in the case of contact between a flexible 

spherical surface and a rigid flat one. The shear traction can 

be written as: 

 

𝜏(𝑟) = 3𝜇𝑃√(1 − 𝑟2 𝑎2)⁄ 𝑏⁄ − 3𝜇𝑠𝑃𝑐√(1 − 𝑟2 𝑐2)⁄ 𝑏⁄ ,      (3) 

 

where P and Pc are normal and critical normal load, r is the 

radial coordinate of the contact point, c is the radius of the 

stick area, a is the radius of the whole contact area, µs is the 

static friction coefficient (known a priori) and b=2πa2. Even 

though the Mindlin’s model involves µs, we put this 

approach in the present Subsection as it does not require the 

coefficient computation. According to the model, gross slip 

happens when the tangential load equals the shear traction 

τ(c), i.e. when r=c and the second part of the right term in (3) 

goes to zero. Pre-sliding can be detected as the tangential 

load reaches a critical value τ' (lower than τ(c)). In [54], τ' 

was set to 0.8τ(c), whereas normal and tangential forces were 

measured with multi-axial piezoresistive sensors inserted 

into some semispherical parts made of polydimethylsiloxane 

(PDMS). The sensors were mounted on the fingers of a 

robotic hand, and slip tests were performed with a ball. The 

model proved ability to detect both incipient and gross slip 

of the ball. 

  Further, it is possible to detect slip events analyzing the 

information from multiple force sensors. This is supposed to 

add some robustness to the sensory system but might 

complicate the system itself. For example, [55] performed 

slip detection integrating the output of a number of strain 

gages. A ridged structure embedding five strain gages was 

used as a slip sensor while additional gages positioned onto 

a posterior double-leaf spring structure measured normal and 

tangential forces, thus forming a force sensor. The increment 

in both the output of the slip sensor and the force ratio 𝐹𝑡 𝐹𝑛⁄  

obtained through the force sensor was viewed as an 

indication of partial slip, i.e. the slip of only a part of the 

touched object (the remaining part sticks). Strain gages 

might also be mounted on a rubber skin to measure the strain 

when utilized to cover robotic fingers. If the inner side of the 

skin is in contact with a solid structure (bone) and the 

grasping force is insufficient, the consequent strain sensed 

by the gages can be addressed to the control system as a pre-

slip warning. Hence, the grasping force can be increased 

avoiding the total slip at the external surface of the skin 

which holds the grasped object. Similarly, strain distribution 

[56] is evaluated to infer the presence of incipient slip on the 

surface of an elastic finger-shaped sensor. Albeit the friction 

coefficient is not needed, the last two approaches featured a 

high number of sensors (from five to fifteen gages).   

Alcazar and colleagues [57] combined the signals from 

tactile capacitive matrices integrated in a three-fingered 

robotic hand (Barrett Hand). There were forty-six units on 

each finger and twenty-four on the palm. A convolution 

matrix was computed for each finger phalanx and for the 

palm by convoluting the current vector of raw tactile data 

with the previous vector (i.e. at the previous acquisition). 

Slip indexes were obtained based on such matrices and on 

the tactile units position in the array. A final slip vector was 

calculated by subtracting the slip indexes with the previous 

value, in both planar directions. Besides, the study of the 

gradient and rotor of such slip vectors enabled the detection 

of rotational slip. 

In [58], the covariance matrix built on the differences di of 

the recorded force at two consecutive time instants was set. 

A stable grasp would result in a diagonal matrix, as all 

covariance would be null. To do so, the infinity norm C∞ of 

a matrix C having null diagonal and the covariances off the 

diagonal, was evaluated. The littler was C∞, the more stable 

was the grasp. A binary slip signal was generated depending 

on C∞.  Experiments were performed on two bidigital robotic 

hands. The first had one FSR sensor per finger whereas the 

second had a 4x4 tactile array on the left finger. Grasping 

force could be successfully regulated, avoiding slip in the 

majority of the cases with both fragile and rigid objects. 

IV. VIBRATIONS 

The idea to add slip measurement into artificial hands 

began being considered during the second half of the 1960s. 

Salisbury and Colman [14] integrated a piezoelectric crystal 

into the thumb of a mechanical hand (namely USAMBRL 

Hand). Baits and colleagues replicated soon after this choice 

on a two-dimensional gripper [59]. The purpose was, in both 

cases, to detect vibrations due to slip and to insert a related 

signal into the control loop of the manipulator. However, no 

experimental studies were executed to prove the capability 

of the so sensorized systems to detect slip. Nonetheless, 

vibrations generated by sliding movements between two 

surfaces in contact were often exploited as a slip indicator 

even in the successive years. The following sections describe 

methods that were conceived to exploit the vibration-slip 

relation. They were divided, in the present work, in these 

three main groups: piezoelectricity-based methods, 

frequency and time-frequency transform techniques, and 

filters.         

A. PIEZOELECTRICITY AND ACOUSTIC SIGNALS 

Piezoelectric materials started being considered for slip 

detection at a very early stage in the process of robotic hands 

sensorization. In this context, they constitute a hugely 

widespread solution. The physical principle at the basis of 

piezoelectricity is rather intuitive. When a piezoelectric 

material undergoes mechanical stimulation, such as a 

pressure, it produces electrical charges on its opposite faces. 

This results in an electrical field whose voltage is associated 
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with the exerted pressure. Such an effect is reversible, given 

that the application of an electrical field gives place to a 

deformation of the piezoelectric material. 

The described physical process reminds how the human 

mechanoreceptors transduce mechanical stimulations into 

voltage signals. That is, the human skin exhibits a 

piezoelectric behavior [60]. This makes piezoelectric 

materials particularly adequate for the realization of artificial 

tactile sensors. Due to their large frequency response, 

piezoelectric tactile sensors work more easily as dynamic 

sensors [4]. Their sensitivity to high frequencies (even higher 

than 5 kHz) outperforms the one of FA II mechanoreceptors 

and, as a consequence, renders piezoelectricity-based tactile 

sensors particularly suitable for slip detection.  

As already referred at the beginning of the current Section, 

the first attempts to endow artificial hands with piezoelectric 

slip sensors were done in [14],[59]. Such sensors, based on 

unspecified piezoelectric crystals, were expected to sense 

vibrations generated by the sliding of the grasped object. The 

signal from the sensors was fed back to the controller which 

could regulate the grasping forces. Mingrino et al. [33] 

employed a polyvinylidene-fluoride (PVDF, also named as 

PVF2) film as a dynamic sensor and mounted it on the end 

effector of a robotic arm (PUMA 560). Vibrations due to 

object motion activated the sensor, which response showed 

quick spikes, i.e. the slip signal. The PVDF sensor was 

placed above a three-axial force sensor for static force 

measurement (described in previous Subsection). A similar 

approach was followed in [61], where authors showed that 

the amplitude of the piezoelectric signal grew with the slip 

speed. Differently from [33], the PVDF transducer was 

collocated under a (hemispherical) three-axial force sensor. 

Discrimination of translational slip from rotational slip was 

preliminarily demonstrated, though it required the study of 

the curl of the tangential force measured with the force 

sensor.  

PVDF is probably the most utilized piezoelectric polymer 

in the artificial slip sensing, as reported in a recent survey 

[62]. It was also exploited in the fabrication of synthetic 

ridged finger skin, of which each ridge embedded two PVDF 

strips [63]. Both the filtered and differentiated output of the 

strips were used as inputs for an artificial neural network 

(ANN), which decided whether the touched object was 

sliding or not. Designing the skin of sensorized fingertips 

with external nibs [64] or knobs [65] enhances the frequency 

response of the PVDF element. 

In the new millennium, PVDF found increasing 

application in prosthetics. The possibility to construct 

flexible and low-cost sensors attracted many researchers in 

the last decade. Examples are illustrated in [66],[67],[68]. 

Very thin layers of PVDF (<100 µm) were integrated into 

prosthetic fingers to achieve dynamic force information. The 

methodology was basically common: the magnitude of the 

PVDF response increases when a sliding movement induces 

vibrations on one of its surfaces. A threshold can be applied 

to the voltage output of a piezoelectric sensor, as depicted in 

Fig. 3 [68]. Chuang and colleagues [69] proposed instead a 

structural electrode, obtained by sandwiching a PVDF layer 

with two flexible printed circuits (FPC). A plastic 

microstructure was put between the electrode surface and the 

polymeric encasement of the sensor to convey the applied 

force from the sensor surface to the PVDF element. The two 

microelectrodes patterned on the FPCs could detect 

compressive and tensile stresses when a pressure acted on 

the microstructure. Opposite peaks in the voltages of the two 

microelectrodes were judged as a slip event. The sign of the 

two signals provided the movement direction.  

The state of the art includes some other piezoelectric 

materials adopted for the construction of slip sensors. The 

most common is the lead zirconium titanate (PZT), which 

belongs to the ceramic domain. This material, as the PVDF, 

exhibits fast voltage fluctuations when its surface moves 

against another one, or vice versa. Such a property was 

exploited in [70], where a flat bimorph PZT sensor was 

mounted in the distal part of a cantilever structure (acting as 

a fingertip) of a prosthetic hand (Southampton REMEDI 

Hand). Slip could be identified following the same logic as 

in Fig. 3. Meaningful frequency content during slip was 

observed in the range 200-1000 Hz. Piezoresistive (FSR) 

units were placed close to the PZT element in the fingertip in 

order to provide static force information. This approach was 

followed by other authors in the sensorization of 

myoelectrically controlled prostheses [71],[72], where slip 

was detected with a threshold mechanism on the rectified 

piezoelectric signal and contact forces were measured by 

FSR sensors. The sensors were not integrated in the 

prosthesis fingers but simply attached to them.  

An older example of sensorized robotic fingertip featuring 

force sensors and a dynamic piezoelectric sensor is described 

in [73]. Here, a ceramic bimorph element was added to a 

piezoresistive array structure to sense microvibrations 

produced by slip. The piezoceramic bandwidth extended up 

to 500 Hz. The combination of piezoresistive (often FSR) 

force sensors with piezoelectric elements for dynamic events 

detection is frequently considered. 

As an alternative, microvibrations that originate during a 

sliding movement might be perceived through acoustic 

 

FIGURE 3.  Signal obtained from the mean of more PVDF sensor outputs 
as in [68]. Peaks over threshold (dotted line) are associated with slip. 
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sensors. Microphones opportunely placed below an air-filled 

structure are able to collect the mechanical energy released 

when an object slips on the structure surface. For instance, a 

sensor composed of a void tube and a microphone located 

beneath it was proposed in [74] with a myoelectric 

prosthesis. The so constructed sensor was mounted on the 

thumb of the Southampton Hand [75] and on the Oxford 

Intelligent Hand [76]. Vibrations at frequencies up to 1 kHz 

were considered significant in slip identification. 

Finally, Acoustic Emission (AE) yielded by slip events 

may be evaluated. AE is characterized by high frequencies, 

i.e. 50-1000 kHz [77], and travels within the material where 

it is induced in the form of elastic waves. These can be 

revealed by piezoelectric transducers, provided that an 

appropriate acoustic coupling medium is put between the 

transducer and the investigated material. An attempt to 

measure slip endowing one finger of a gripper with an AE 

sensor was carried out in [77]. However, acoustic and AE 

transducers received less attention than piezopolymers such 

as PVDF. 

B. TRANSFORM TECHNIQUES 

Slip vibrations usually occur at high frequency. Therefore, 

the relating signal may be analyzed in terms of spectral 

features. This way, when the tactile signal shows high 

frequencies, an indication of incipient or gross slip can be 

extracted. The idea to measure slip by studying the tactile 

signals in the frequency domain paved the way to several 

works, particularly in the last decade. Although the first 

attempts date back to the 1990s, the availability of greater 

computational power in computers progressively induced 

researchers to privilege transformation of temporal signals 

into frequency signals (see Fig. 4). To this purpose, one of 

the most popular technique is the Fast Fourier Transform 

(FFT). The Cooley-Tukey algorithm [78], not covered here, 

is the most common FFT algorithm and allows fast 

computation.  

Among the first, Holweg et al. [79] showed a comparison 

between two slip detection algorithms based on the FFT. The 

first one utilized the center of force distribution, calculated 

on the pressure outputs of a 16x16 piezoresistive matrix. The 

second performed the FFT and the Power Spectrum Density 

(PSD) of the normal pressure gathered from the elements of 

the tactile matrix. The suitability of the two algorithms was 

demonstrated on two different setups. In the first the tactile 

matrix was held still, and the object was moved between the 

sensor and a lever by means of a weight. In the second, a 

robotic gripper with sensorized fingers was horizontally 

translated upon a surface. Different frequency contents, 

achieved with and without slip, were observed. However, 

events quicker than 60 ms could not be detected by 

evaluating the changes in the center of force distribution. 

This was attributed to computational hardware limitation.  

The FFT was reproposed several times in the following 

years. In [80], it was performed on the output of a tactile 

sensor based on strain gages. The selected time window for 

implementing the Cooley-Tukey algorithm was comparable 

with [79], i.e. 64 ms. The sensor, covered with a 

hemicylindrical metallic piece, allowed measuring forces 

along the normal and tangential directions. The tangential 

force appeared to be the most important in terms of high 

frequency fluctuations, thus the slip detection algorithm was 

applied onto it. Power spectrum was then computed by 

multiplying the FFT result by its complex conjugate and then 

dividing by N (samples of the window). 

The use of the power spectrum proved to be more reliable 

than the FFT when applying a threshold mechanism. The 

applicability of the algorithm for slip identification was 

demonstrated with commercial strain gages, six-axis F/T 

sensors of a robotic hand (Barrett Hand) and a piezoresistive 

tactile matrix. Another robotic hand was covered with a 

ridged, silicone skin embedding in the palmar area a large, 

flat piezoresistive FSR tactile sensor [81]. Slip was deemed 

to occur whenever the FSR signal peak frequency, retrieved 

via FFT, fell between 1 Hz and 20 Hz. The hand was 

controlled in such a way that the grip force was proportional 

to the frequency peak.  Success rate in maintaining 

cylindrical and rectangular objects decreased with increase 

of sliding speed.  

A technique combining statistical parameters with 

frequency analysis was introduced few years ago in [82]. The 

signals taken from two tactile arrays mounted on a robotic 

manipulator were used to compute the correlation 

coefficient. The FFT was subsequently calculated on a 

temporal sequence of correlation coefficients, considering 

slip to happen when the first frequency component was 

higher than an experimental threshold. In this way, slip could 

be inferred by observing the variation in the correlation 

between the two tactile sensor arrays. Statistical tools were 

also employed in [83], where a principal component analysis 

(PCA) was executed on the signals gathered from tactile 

piezoelectric sensors. The tactile sensors were used to 

sensorize the fingers of a robotic hand. The Short Time 

Fourier Transform (STFT) was utilized to achieve time-

frequency information about the tactile signals. STFT can be 

regarded as a FFT shifted by a predefined window function. 

For each STFT obtained over eight FFTs, a feature extraction 

procedure was done and the features were classified with a 

nearest neighbor classifier. Three states could be 

distinguished: slip, non-slip with tactile signal and noise (no 

tactile signal). Very recently, the STFT was also adopted to 

preliminarily investigate the presence of high-frequency 

 

FIGURE 4.  Basic approach for transformation of non-deterministic 
signals into the frequency domain. An operator, e.g. FFT, can be applied 
to the force signal f(t) to extract its spectral content. The resulting signal 
f(ω) is now a function of the frequency f or angular frequency ω=2πf. 
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vibrations with FSR force sensors integrated in the thumb of 

a prosthetic hand [84]. Yet, the slip associated with 

vibrations was verified by means of the Hilbert-Huang 

Transform, which decomposes a given signal into a set of 

Intrinsic Mode Functions (IMF) thanks to an Empirical 

Mode Decomposition (EMD). As the first IMF overcame a 

pre-established threshold, a slip event was found. 

Furthermore, PCA was employed in [85] to select the 

prevailing elements of a vector composed of both frequency 

features, such as FFT, and temporal ones such as mean and 

standard deviation. All the features were computed on the 

three-axial force measured by a force sensor attached to the 

fingertips of a robotic hand. 

Several works were centered on the concept of spectral 

power. In [86] arrays of small capacitive pressure sensors 

were inserted in the skin of a robotic hand. Considering the 

voltage output of all the capacitive units, an estimation of the 

center of pressure (CoP, conceptually analogous to [79]) 

could be achieved. The CoP power spectrum grew as slip 

was automatically induced under various load and velocity 

conditions, on different test surfaces. Heyneman and 

Cutkosky outlined that signal power ratio and signal 

coherence are usable to distinguish between object/world 

slip and object/hand slip [87]. Signal power ratio was defined 

as the ratio between the local power L(f,ω) and the ensemble 

power E(f, ω). The first was the power of the signal 

calculated within a given frequency band ω centered at a 

frequency f, and summed for all the sensing units in contact 

with an object. Conversely, the second was the sum of all the 

power contributions of each unit, computed in for the same 

frequency interval as for L(f,ω). The ratio was written as 

 

Г(𝑓, ω) = E(f, ω) 𝑁 𝐿(𝑓, ω)⁄ ,                      (4) 

 

where N is the number of units involved. The Group Square 

Coherence (GSC), calculated as the average of the 

normalized power taking into account the signal from each 

sensing unit, was combined with the power ratio. Results 

indicated good classification of object/world slip and 

object/hand slip in experiments on plates with various 

roughness and sensors (i.e. biomimetic fingertip as in [88], 

capacitive tactile sensors and PVDF sensors). 

Another operation which lately attracted the attention of 

researchers is the Discrete Wavelet Transform (DWT). This 

transformation method decomposes the original signal into a 

set of subbands through a series of filters, both low-pass (LP) 

and high-pass (HP), yielding the so-called approximation 

coefficients and detail coefficients respectively. To avoid 

redundancy, the coefficients are subsampled by 2 at each 

level.  This has the effect of enlarging the temporal window, 

thus shrinking the frequency resolution. For more extensive 

discussion on DWT, the reader is invited to consult [89].  

The high-frequency components (details) of the DWT 

were exploited to detect slip events in [90] and [91]. In the 

first, the DWT was performed on the output of a slip sensor 

made of a pressure conductive rubber laying on two spiral 

electrodes. The sensor was mounted on a two-fingered 

parallel hand for experimental tests, though a supplementary 

force sensor (six-axis F/T) was required on one of the fingers 

to measure forces for grasping control. The frequency 

components of slip, 1 kHz or above, were identified by 

means of the Continuous Wavelet Transform (CWT). In the 

second, the DWT was instead applied on the signals of a 

three-axial tactile force sensors arranged into a 3x3 matrix 

fashion. Thus, no additional sensors for load measurement 

were needed. Each sensitive unit of the matrix featured a 

pressure conductive rubber layer, attached on an electrode 

substrate and covered by a PDMS dome. The thumb of a 

prosthetic hand was endowed with the tactile sensor to 

evaluate its functioning. In both works, when the high 

frequency signal produced by the tested sensors was greater 

than a threshold, slip could be revealed (even in its initial 

phase [90]). A slightly different approach was proposed in 

[92] where the DWT was computed on the output of a 

capacitive tactile sensor. A system comprising a 

dynamometer and a clamp exerted the force onto the sensor 

and slid several objects above the sensor surface. Rather than 

applying a threshold logic, the trend of the pairwise details 

was studied to infer the occurrence of slip. Specifically, 

thanks to the properties of the employed DWT (Haar 

Wavelet) two consecutive components of the DWT had the 

same absolute value but different sign. It could be 

distinguished the load phase from the slip phase as in the 

former case the sign of pairwise components switched from 

negative to positive, while the contrary happened in the latter 

case. Fig. 5 depicts the outcome of a trial. 

Other publications report the use of the Haar Wavelet as a 

tool for slip identification in artificial hands. The DWT 

power can be estimated utilizing the Haar Wavelet on the 

same sensor as in [90], mounted on one finger of a three-

finger robotic hand [93]. The adoption of a Centre of 

Pressure sensor avoided the necessity of using force sensors 

in addition to the slip one. Moreover, the wavelet coefficient 

energy calculated on the force signal obtained through an 

FSR sensor provided useful information about slip events 

 

FIGURE 5. Pairwise high frequency components from a trial (readapted 
from [92]). When a load is applied onto the object, variation from negative 
to positive value occurs. Slip is represented by opposite variation trend.  
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[94]. The FSR sensor was placed on the thumb of a single 

DOF prosthetic hand and the wavelet signal was included 

into a fuzzy-logic control to manage the grasping force of the 

held object.  

Finally, DWT is applicable on acceleration data to detect 

incipient slip as well as gross slip, e.g. if accelerometers are 

located on a prosthetic fingertip and yield high frequency 

outputs when relative movement with an object occurs [95]. 

The threshold mechanism on the DWT signal was a common 

element when using both DWT power and wavelet 

coefficient energy, as well as accelerometers.  

A DWT-derived technique is the Stationary Wavelet 

Transform (SWT), which works similarly to the DWT except 

for the absence of downsampling. An up-to-date example of 

SWT application to slip identification is provided in [96], 

where a biomimetic fingertip was moved at different force 

and velocity levels upon naturalistic surfaces. Slip could be 

found with very high accuracy, regardless the experimental 

conditions (i.e. varying velocity and exerted force), thus 

suggesting the SWT as an effective tool to solve the problem 

of slip detection. 

Notwithstanding the DWT can be viewed as a sequence of 

filtering operations, it was chosen to deal with DWT-based 

methods in the present subsection together with the other 

transform operations. The next subsection will summarize 

approaches relying on filter functions.  

C. FILTERS 

In the previous subsections, the concept of high frequency 

vibrations as indicator of slip emerged. During the last ten 

years, a further manner to extract such vibrations arose. It 

consists in filtering the tactile signal with purposely designed 

functions or circuits. Cut-off frequencies and filters order 

should be carefully defined to enhance the signal 

components within a certain band.  

Being the slip frequency content much richer at high 

values of frequency, the most convenient way to conceive a 

filter is to penalize low frequencies. These usually prevail 

when slip does not occur; hence, HP filters do appropriately 

fit this task. However, band-pass (BP) filters are also suitable 

as they allow selecting only a particular range of frequency. 

Very subtle bandwidth might be chosen in order to discern 

meaningful frequencies from the rest of the spectrum. 

Probably due to this property, they were chosen more often 

with respect to the HP filters. In this concern, in [97] a 

flexible, piezoresistive tactile sensor based on conductive 

nanocomposite (carbon nanotubes, CNT) was developed and 

used for force and slip measurement. Slip events could be 

identified by filtering out from the sensor output all the 

frequencies higher than 45 Hz and lower than 40, as the most 

accentuated difference between signals of slip and nonslip 

events was observed in a very narrow band (i.e. 40-45 Hz). 

To this purpose, a fourth-order BP Chebyshev filter was 

implemented. Obviously, higher orders correspond to higher 

efficacy of the filter, though its complexity increases. For 

example, [98] illustrates a control scheme of a prosthetic 

hand (Motion Control Hand) based on a network composed 

of seven fourth-order BP filters. Each filter resonated at 

frequencies in the interval 20-50 Hz, with a 5 Hz pace. In this 

way, it was possible to isolate the slip frequencies from the 

tangential force signal of some strain gages located on the 

thumb of the prosthetic hand (covered with a cosmetic 

glove). A LP filter was added to the seven fourth-order 

functions so as to penalize frequencies above the meaningful 

bandwidth. This was identified through FFT of the force 

signals, as well as in the previously described work [97]. In 

both cases, the absolute value of the filtered signals was 

computed to obtain a monopolar signal, and then sent to the 

control. Force signal filtering was performed in [99] as well. 

Two jaw grippers (mounted on the arms of a PR2 robot), 

whose fingers featured a tactile matrix, were used to execute 

grasp experiments with a broad set of objects. To ensure slip 

avoidance, the force values fn from all the matrix elements 

(twenty-two) were HP filtered and summed, achieving the 

following index (readapted for sake of simplicity): 

 

𝐹𝑓 =  ∑ 𝐻ℎ𝑝(𝑧) 𝑓𝑛
15
𝑛=1 ,                                 (5) 

 

where Hhp(z) is the Butterworth filtering function designed 

to cut off frequencies below 5 Hz from the force signals. This 

was done for both the gripper fingers. Only the sensing 

elements placed in the main surface of the gripper, i.e. 

fifteen, were included in the calculation of Ff. Additionally, 

the force summation was filtered with a Chebyshev BP filter 

from 1 to 5 Hz in order to reduce the influence of too quick 

force variation. A slip event was detected whether Ff was 

higher than a threshold (depending on the force summation) 

and, contemporarily, the BP signal was lower than an 

empirical threshold. 

Higher frequencies were accounted for in [88], where the 

pressure signal from two biomimetic fingertips was filtered 

in the band 60-700 Hz. Subsequently, the absolute value of 

the filtered signal was compared with the signals of an 

inertial measurement unit (IMU) in terms of latency from the 

slip onset. The filter-based detection offered better 

performance than the IMU (attached to the tested objects). 

This was probably due to the textured skin covering the 

fingertips, which contained a conductive fluid. Textures with 

very small pace were responsible for the high frequency 

vibrations of the fluid; such vibrations were relayed to the 

pressure transducer when the touched object started slipping 

against the fingertips surface. Interestingly, rotational slip 

could be distinguished from linear slip through a neural 

network with 80% accuracy.  

Lately, filter networks were also exploited in [100]. A 

robotic finger was endowed with a biomimetic fingertip 

featuring four MEMS tactile sensors, which in turn had four 

sensitive units (i.e. sixteen channels). Filtering stage 

included a fourth-order Butterworth BP filter, with the two 

cutoff frequencies at 10 Hz and 50 Hz. Two additional 
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stopband (SB) filters were cascaded to the BP filter to 

attenuate all the useless frequency content, e.g. due to contact 

of the fingertip before the sliding movement. The filtered 

signal was rectified to make it unipolar; exponentiation was 

also performed in order to augment the difference between 

the portion of signal associated with slip and the peaks due 

to false positives (contact and release). Finally, the signal 

was enveloped with a 40-ms window to eliminate the quick 

and discontinuous spikes, achieving a smooth curve. The 

result of the various computational blocks is given in Fig. 6 

for a test signal.  All the sixteen outputs were jointly analyzed 

with logic operators. A final ON/OFF signal was obtained 

through a threshold mechanism on the enveloped signals. 

100% in slip detection was achieved, whereas only around 

1% of false positives in the worst case. The algorithm was 

formerly evaluated in a simpler configuration [101]. A 

single, second-order HP filter was built to cut off frequencies 

below 700 Hz from the normal force signal gathered by an 

FSR sensor, acting as a force/slip sensor. Such a sensor was 

placed on the index of a mechatronic hand (IH2 Hand), while 

two other FSR sensors were placed on the thumb and middle 

fingers for force measurement only. The ON/OFF signal was 

fed back to the hand control, which increased the grip force 

avoiding the grasped objects (e.g. egg and plastic cup) fall 

when automatically disturbed by the end effector of a robotic 

arm. In this work, an ad hoc hardware, i.e. a PCB, was 

devoted to the algorithm implementation. A further 

development of this method was successfully employed in 

an in-vivo experimentation [102].  

Likewise, an ON/FF signal was generated by means of a 

purposely designed chip in [103]. The chip architecture was 

based on circuits composed of a number of silicon retinas 

(ST), whose transfer function was comparable with the one 

of a HP filter. STs are 2-D arrays of processing elements. 

Such elements are locally interconnected and are able to 

sense microvibrations and to carry out real-time processing. 

The chip functioning was proven on the raw force signal 

from a linear array of sixteen piezoresistive sensors. 

A filtering tool which lately draw the attention of some 

researchers for the realization of slip prevention algorithm is 

the Kalman Filter (KF). It allows measuring unknown 

variables based on previous estimations which are affected 

by a certain amount of noise. As such, it can be regarded as 

a statistical tool. Remarkably, the KF works properly on 

dynamic systems, usually linear, and hence might be used to 

observe the dynamic behavior of rapidly changing quantities. 

Therefore, over the last years, KF filters began being 

considered for slip identification in the robotic field, 

especially in prosthetics. Wettels and colleagues utilized a 

KF in a classical framework, retrieving both tangential and 

normal forces by means of a biomimetic tactile sensor array 

[104]. The array was integrated into the thumb of an 

anthropomorphic robotic hand (Ottobock M2), forming an 

antecedent version of the biomimetic fingertip used in [88]. 

The KF took inputs from four electrodes (i.e. voltage) of the 

fingertip core, whereas a fifth input was given by the 

previous value of the tangential force. Once the tangential 

force was estimated through the KF, the force ratio was 

computed as in (1) being the normal force arithmetically 

reconstructed through the electrodes voltage output. 

Adjustments in grasping actions were carried out according 

to the force ratio; a Styrofoam cup was correctly handled 

even when rapidly filled with water. Schematization of the 

algorithm is drawn in Fig. 7.  

Furthermore, slip identification was possible utilizing the 

residual of KFs applied to the tangential component of the 

applied force. In [105], an optoelectronic six-axis tactile 

sensor was employed to perform incipient slip detection. The 

KF residual was integrated with the Tustin’s method. The 

static friction coefficient was also involved in the KF 

residual analysis, and was obtained by means of an exploring 

phase of the surface object. Likewise, friction coefficient 

estimation and KF residual were combined to infer slip 

occurrence in [106]. KF residual was this time LP filtered (5 

Hz cut-off) to achieve a slip signal, which was compared 

with a threshold. The algorithm was tested on a commercial 

six-axis F/T sensor. Extensive dissertation about KFs is 

findable in [107]. 

 

FIGURE 6. Signal elaboration according to [100]. 

 
 

  

 

FIGURE 7. Flow chart of the algorithm developed in [104] (readapted). 
Normal force was reconstructed from the fingertip electrodes output. 
Tangential force was estimated on the electrodes output through the KF. 
Force ratio determined whether to correct the grip force or not. 
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V. PHYSICAL QUANTITIES 

Slip can be inferred from physical quantities relating to 

peculiar physical phenomena, which have to be observed 

with proper sensors. Piezoelectricity-based transducers were 

referred in the precedent Section as they represent a 

consolidated solution for slip detection, and strongly depend 

on vibrations. Here, we report works investigating the 

additional physical quantities that might relate to slip. 

A. OPTICS  

The investigation of optical sensors as slip sensors 

initiated during late 80s. Hopkins and collaborators [108]  

suggested that macropixels, i.e. groups of single pixels 

captured with RAM cameras, were able to reduce 

computational times, storage memory required and noise 

(given the filtering effect of averaging many pixels). The 

basic idea was to compare the output of such macropixels 

and to recognize slip as a certain difference appeared in such 

an output. To do so, the camera collected the light reflected 

by a photoelastic element with a reflective layer, against 

which the object was slid. Photoelasticity was also used in 

[109], however the emitted light hitting the photoelastic layer 

was not reflected but rather caught by a receiver with a 

modified intensity. This descends from the fact that light is 

divided into some components following the directions of 

the so called principal stresses, originated when an external 

load is applied onto the photoelastic material. The intensity 

of the received light is expressible as a function of the 

principal stresses, which in turn are function of normal and 

tangential loads. Hence, said intensity is modified by the 

object slip, as it yields variation in such stresses. 

Disadvantageously, if the principal stresses remain constant 

during the object slip, this one cannot be observed.  

In [110], a hemispherical optical sensor was built featuring 

concentric rubber ridges, with an optical fiber positioned in 

each groove between two adjacent ridges. The developed 

sensor had sixteen fibers providing as many channels. 

Experiments were performed mounting the sensor on one 

side of a gripper interfaced with a PUMA 560 robotic arm, 

which lifted an object and gradually released it. Light 

intensity in the fibers changed as a ridge deformation, even 

partial, occurred during contact with the object. Slip was 

detected before it could totally happen in 85% of cases.  

Further, optical sensors were integrated in the fingertips of 

a robotic hand (DLR/HIT) connected to the right arm of a 

mobile robotic platform (TUM-Rosie) [111]. The sensor 

consisted of a miniature camera and a laser emitter, and a 

microcontroller was dedicated to computation. The so 

equipped fingertip permitted recognition of slip events when 

the grasped object surface translated w.r.t. the sensor lens.  

Other sensors comprising a camera and a light source are 

available: one is the GelSight. This has an elastomeric body 

covered with an opaque membrane which reflects the light, 

allowing to reconstruct the geometry of the contacted 

surface. In a recent version [112] tested on a gripper, the 

membrane was provided with randomly distributed markers 

which could track the deformation of the elastomer. The 

displacement tracked by means of the markers correlated 

with the shear force during grasping of items, e.g. a metallic 

can. Regions of pre-slip and total slip could be identified 

studying the entropy of the shear field magnitude. Besides, 

Ito et al. [113] showed a tactile sensor which could detect 

slip events by collecting images through a CCD camera. The 

images were obtained as the light emitted from a LED was 

captured by the camera after being reflected by contacted 

objects. A spherical, transparent body of silicone rubber 

acted as a contact mean; such a body was patterned with a 

21x21 matrix of dots. Checking the brightness of each 

recorded pixel allowed understanding which rubber area was 

in contact with a certain object, and a stick ratio could be 

calculated. The displacement of the dots w.r.t. a reference dot 

was studied to localize the slip region. The stick ratio R was 

defined as Ns/Nc, where Nc was the number of dots enclosed 

by the contact region and Ns was the quantity of dots for 

which |dk-dref|<τ. That is, if the difference between the 

displacement dref of the reference dot and of the k-th dot dk 

was smaller than a threshold τ, this dot was then aggregated 

to Ns. Additionally, tangential load, normal load and to the 

moment around normal axis could be retrieved from dots 

displacement. Very recently, a camera was used to monitor 

the position of some pins located hexagonally in an optical 

tactile sensor [114]. Such a sensor was interfaced to a robotic 

arm (UR5); the position of the pins was processed in real 

time through a support vector machine (SVM) classifier to 

analyze the slip presence as the sensor contacted a test object. 

Another technique employing a sensor made with one 

photodiode (PD) and two phototransistors (PT) was 

presented in [115]. The infrared light emitted by the PD is 

reflected by an object and then gathered by the PTs. Forces 

were sensed with a pressure sensitive rubber, which 

completed the sensor structure. By computing the cross-

correlation between the voltage outputs of the two 

transistors, slip velocity was retrieved and the applied force 

was corrected proportionally to such a velocity. A drawback 

concerning this sensor resided in that it allowed measuring 

movements only of polychromatic and patterned surfaces. 

An optical sensor comprised of a LED and a PT was 

mounted on the middle finger of a prosthetic hand (i-Limb), 

which was in turn interfaced to a robotic arm [116]. The raw 

data from the sensor were first LP-filtered at a rather low 

frequency (i.e. 10 Hz) to reduce noise, and the difference 

between two consecutive filtered samples was continuously 

stored and summed to the previous difference value, being 

the initial difference set to 0. When such a sum was higher 

than a threshold, a spike signaling slip was generated. The 

threshold was dynamically adapted basing on the difference 

of each pair of consecutive samples. This algorithm 

produced good response time in slip detection when the hand 

was grasping a bottle gradually filled with 500 ml of water. 

Finally, we report the PapillArray slip sensor [117], which 
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consisted of a silicone pillar mimicking the papillae in the 

human finger pad skin. The pillar had a 15-mm diameter and 

a 20-mm height: it was constructed with an inner cavity 

hosting a diffusive reflector illuminated by two LEDs 

installed on the opposite side of the cavity. Between the 

LEDs there was a pinhole aperture, below which a quadrant 

PD collects the inverted image projected by the reflector. The 

PD signals were mapped into 3D force and displacement. 

B. VELOCITY AND ACCELERATION   

Intending slip as a movement, its detection can be 

associated to the detection of a velocity. A Laser Doppler 

Velocimeter (LDV) was adopted in [118], whose principal 

components were a laser diode (LD), a PD and micromirrors. 

The LDV had very little dimensions: 7.8 mm2 large and 1 

mm thick. The two laser beams, emitted from the LD and 

reflected by the micromirrors (made of aurum), were 

scattered by the slipping object and then collected by the PD. 

By observing the resultant shifts of the peak frequency in the 

PD voltage, velocities from 10 µm up to 2 cm/s could be 

caught. The movement of plastic, metallic and cardboard 

objects was produced by means of a voice coil actuator. 

However, the tested objects were not in contact with the 

LDV, but simply put in front of it. This does not represent a 

proper slip condition. 

Not only velocity but acceleration as well was exploited 

to get insight about slip. Howe et al. [119] probably 

presented the first accelerometric slip sensor for robotics in 

1989, while [32],[120] showed few years later the first 

applications in robotic manipulation. A central foam rubber 

was covered with a rubber skin endowed with small 

protuberances enhancing vibrations during slip. Such 

vibrations activated the accelerometer placed on the inner 

side of the skin, in the contact region. A slip sensor was thus 

obtained, and mounted on a two DOFs robotic finger. The 

RMS of the sensor output was used as a slip signal, obtained 

after filtering and amplifying the raw acceleration as 

depicted in Fig. 8. By gradually reducing the force exerted 

by the fingertip against an object (attached with a mass) until 

slip occurred, the sensor capabilities were tested with several 

materials, e.g. sandpaper, smooth paper and Teflon [120]. 

Wet surfaces did not worsen the sensor performance, 

contrarily oiled objects could not generate slip signals. [32] 

described an improved version of the slip sensor, in which an 

accelerometer was added on the side of the rubber foam in 

the fingertip core. In this manner, noisy signals at the skin 

could be more easily discarded whereas vibrations due to 

sliding could be sensed by the side accelerometer. Similar 

experiments were conducted but only with a Teflon piece 

covered with sandpaper. Plus, a three-axial force sensor was 

placed behind the fingertip embedding the slip sensor, 

through which the friction coefficient was constantly 

updated for optimal grip (see Subecton III.A).  

Although first demonstrations were encouraging, few 

other works adopted accelerometers as slip sensors in 

artificial manipulation. Previously mentioned articles 

[71],[95] made use of acceleration to detect slip events. 

DWT on accelerometers output positioned on a fingertip was 

computed in the first; the amplitude of such an output was 

instead checked together with the output of a PZT sensor in 

the second, where both the accelerometer and piezoelectric 

units were attached to the thumb surface. All the 

acceleration-based methods listed so far foresaw to 

implement threshold mechanisms.  

Differently, in [121] the acceleration information was 

merely used to confirm pre-slip and gross slip sensed by an 

acoustic pressure transducer. The end-effector of a robotic 

arm, composed of two rectangular, flat fingers, was provided 

with both the pressure transducer and the accelerometer. 

Experiments regarded the grasping of a cork ball and a glass 

bottle. Gross slip was also perceived with an accelerometer 

integrated in a sensorized prosthetic finger [122]. 

Note that, even though some acceleration-based methods 

resort to vibrations, this does not apply to all of them. 

Therefore, we chose to place such methods in the present 

Section, dedicated to physical quantities in general. 

C. THERMAL, MAGNETIC AND OTHERS 

In this work, quantities adopted more sporadically are 

treated as well, for the sake of completeness. E.g., few 

attempts were done with thermal sensors as well. When slip 

occurs between two surfaces, an amount of convective heat 

is released and could be marked as a slip index. This 

principle was adopted in [123], where a thermal probe was 

electrically kept at a constant temperature through a 

microheater. The heat q generated by the probe is modellable 

through the Fourier equation:  

 

𝑞 = 𝛿𝑇 𝛿𝑡⁄ + 𝑣∇𝑇 − 𝛼∇2𝑇                         (6) 

 

in which T is the temperature, v is the slip velocity and α is 

the thermal diffusivity of the slipping body. When fast 

relative movements (i.e. slip) took place, heat was 

convectively dissipated according to the term v∇T. Heat 

dissipation was compensated by increasing the power 

supplied to the probe. A temperature threshold, above which 

 
FIGURE 8. Elaboration of an acceleration signal from a slip sensor as in 

[120]. The raw output can be band-pass filtered to cut off undesired 
frequencies. Subsequently, amplification and calculation of RMS are 
reasonable steps. 
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slip was signaled, was established. Albeit it was possible to 

detect slip regardless the material roughness (on plastic and 

wood), the sensor failed to discard contact events from actual 

slip. A basically equivalent slip identification method and 

sensor, this time grounded on a flexible substrate, was 

illustrated in [124].  

Magnetic tactile sensors were also developed to sense 

force and slip. A way to create a magnetic force sensor is to 

assembly a deformable medium together with a rigid 

medium [125]. The first hosted a permanent magnet at its 

center, while the second embedded four chip inductors. A 

displacement of the magnet yielded by a pressure applied on 

the deformable medium induced voltage in the inductors. 

Such a voltage depended on the variation of the magnetic 

flux, which in turn could be expressed as a three-dimensional 

space-varying function. Hence, appropriate integration of the 

magnetic flux allowed reconstructing three-axial force. The 

voltage Vi in each inductor was linked to the vertical 

component of the magnetic flux Bzi as follows: 

 

𝑉𝑖 = −𝑀 𝛿𝐵𝑧𝑖 𝛿𝑡⁄ =

−𝑀𝛿 (𝑎√(𝑥𝑖 + ∆𝑥)2 + (𝑦𝑖 + ∆𝑦)2 + 𝑏) 𝛿𝑡⁄ .                    (7)  

 

In (7), M=NA is the product of the number of coils N and the 

coil area A of the i-th inductor, whereas Δx and Δy indicate 

the displacement of the permanent magnet w.r.t. to the 

inductor position denoted by xi and yi. The constants a and b 

depended on the displacement along the normal direction. 

Slip could be identified as a fast, prominent peak in the four 

induced voltages (one per inductor) during experimental 

tests done on a linear rail. The same sensor was modified by 

adding four giant magnetoresistances (GMR) in the substrate 

hosting the inductors [126]. GMRs voltage output served to 

estimate the three-axial force while slip was detected as in 

the previous work. A later magnetic tactile sensor [127], 

recalling the one of [125] in terms of structure and 

functioning, was proposed for stick-slip identification as 

well. It confirmed the capability of the inductors voltage to 

exhibit significant peaks when the stick slip led to friction 

force variation. 

A dome-shaped silicon rubber sensor, including tiny 

carbon coils (10 µm diameter), was used in [128]. 

Deformation of the so composed sensor, i.e. Carbon Micro-

Coil (CMC) sensor, produced an LCR behavior, which could 

be quantified in terms of amplitude and phase. When the 

sensor was mechanically stimulated, impedance changed in 

both the R component and the LC component. Peaks greater 

than a threshold in their voltages revealed the occurrence of 

slip (Fig. 9). 

A method based on the CoP analysis was illustrated in 

[129]. Unlike previously mentioned articles where the study 

of the CoP was conducted with spectral techniques, here the 

voltage output of a CoP sensor was directly observed to find 

correlation with slip events in the time domain. The sensor 

was made of two conductive sheets sandwiching a pressure 

sensitive layer. All materials were flexible; thus, two sensors 

could be wrapped around the two cylindrical fingers of a 

robotic gripper for experimental tests. The voltage output 

was inserted into the control loop of the gripper. If significant 

drop in such a voltage was found, the gripper increased the 

applied force. Slip was prevented with objects of diverse 

mass, though disturbance was generated manually.  

Furthermore, pneumatic devices are eligible for slip 

detection. A pneumatic tactile sensor for sensing roughness, 

hardness and slip was shown in [130]. The sensor was 

composed of a latex tube acting as an air bladder, inside 

which a pressure transducer measured the pressure changes 

due to external forces on the tube surface. The tube was 

protected with a plastic parallelepiped structure, and a kind 

of fingerprint was attached to the tube surface in order to 

amplify the slip vibrations. Indeed, slip was observed in 

terms of fast oscillations in the pressure transducer voltage 

output, recalling the approaches described in previous 

sections. 

VI. ALTERNATIVE APPROACHES 

Hereto, a plurality of works about the most popular 

techniques for the investigation of slip phenomena in 

artificial hands were summarized. Although some principal 

approaches are prominent, e.g. those resorting to contact 

friction or else on vibrations typical of sliding, the problem 

of slip detection in artificial tactile sensing can be fit into a 

larger framework. The following contains an exhaustive 

synthesis of alternative methods retrieved from literature, 

covering approximately the last thirty years with 

considerable concentration within the last ten.  

A. DIFFERENTIATION 

The differentiation of the tactile signals constitutes 

another option to study slip. As it does neither demand multi-

axial force sensors nor it does strictly depend on the presence 

of vibrations, we chose to classify differentiation-based 

methods in a distinct Section. When investigating quickly 

varying waveforms yielded by sliding events, the idea to 

calculate derivative functions might lead to useful results. 

Although differentiation took root in the last decade, the first 

 

FIGURE 9. CMC sensor output for a typical trial. Both R-component and 
LC-component showed sudden variation when slip occurred. Readapted 
from [128]. 
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attempt to attain a derived measure from tactile force sensors 

was done in [131]. Authors showed that a slip vector could 

be derived from FSR sensors mounted on a prosthetic hand. 

The FSR outputs, fifteen in total, were arranged into a 4x4 

matrix (the missing one was considered constantly active) 

and their original analog values were combined 

arithmetically. Subtraction operations were chosen to create 

the derived slip vector, so that linear and twisting motion 

could be recognized. Movement of grasped items on a 

particular direction (left-right) was distinguished with 

elevated accuracy (94%).  

Lately, a growing trend about derivative methods for slip 

prevention in artificial hands can be noticed. Probably, in this 

sense, the most recent work exploited the differentiation of 

the force signal collected from a CNT-based piezoresistive 

tactile sensor [132]. FSR force sensors, which stand in the 

piezoresistive domain as well, were diffusively chosen to 

carry out such methods; an earlier demonstration was given 

in [131]. In [133], a prosthetic hand was endowed with five 

FSR sensors (one per finger), observing the slip of various 

objects through the absolute value of the derivative of the 

FSRs signals. The grasped objects were disturbed by 

attaching a weight inducing vertical displacement. A 

fluctuating signal, resembling the filtered (and rectified) 

signals, was generated during the sliding phase. This allowed 

applying a threshold logic to produce a binary slip signal, as 

illustrated in a preceding work [134]. Here, the derivative 

was calculated on each k-th sample of the force signal, 

according to the five-point stencil. However, in [133] the 

average derivative of the FSRs was computed on consecutive 

ensembles of five points, and was coupled with the derivative 

of some position sensors. These were mounted on the 

anterior part of thumb, index and middle fingers. Non-null 

derivative indicated a movement of the grasped object; this 

information was adopted to render the slip detection 

procedure more robust. Moreover, combined use of more 

sensors was tried in [135] where a prosthetic hand (Bebionic 

v1) was sensorized with a strip of five barometric force 

sensors and one FSR force sensors. The sensors were 

encapsulated in a plastic cuff and fixed to the prosthesis 

index finger. A second-order derivative was computed on 

both the barometric sensors and the FSR output, i.e. normal 

force. Negative peaks in the derivative were observed to 

relate to slip of the object held by the prosthesis, while 

positive peaks related to mere contact. Barometric sensors 

showed capability to detect slip even with very small change 

in the force signal, having a resolution as fine as 0.001 N. 

Yet such sensors saturated at low pressure levels (1 N). 

Conversely, FSR could measure forces up to 10 N but needed 

greater force changes in order to recognize slip. However, 

the slip signals were not fed back to any controller. An 

almost equivalent approach was soon after presented by the 

same authors [136]. It exploited only FSR sensors purposely 

fabricated in cuff structures and mounted on each prosthesis 

finger: one cuff on thumb and two on the other fingers. When 

a negative peak was found in the (first-order) derivative of 

the FSR signal, the closing action of the prosthesis (Bebionic 

v2) was triggered by a 100 ms wide spike. Fig. 10 plots the 

results of a grasping trial. In [137] the derivative of the 

normal force square root was computed and then evaluated 

through an empirical threshold. Force was measured by 

FSRs attached on the thumb and index of a prosthetic hand 

(IH2 Azzurra). Normal force was also differentiated in [88], 

in addition to the aforementioned filter-based technique (see 

above). Three-axial forces, including the normal one, were 

retrieved from the electrodes positioned in the biomimetic 

fingertip core, through a weighted sum of their outputs. As 

the object gripped between two biomimetic fingertips was 

made to slip, the derivative of the normal force component 

could reveal the movement of the object. Nonetheless, the 

differentiated normal force performed worse than the filtered 

pressure, though better than the IMU. This is reasonable, 

given that the filtered signal could rely on the 

microvibrations induced by the textured skin. Hence, initial 

slip could be detected only by the filtered pressure. 

Finally, literature reports differentiation of the output of 

three-axial optical force sensors [138]. In this case, the 

derivative function was applied to the shear force. The sensor 

had sensing elements with conic extrusions (feelers), and 

was mounted on the tip of a robotic finger. Experiments were 

limited to the exploration of a sole parallelepiped object, and 

the fingertip moved along a rectangular trajectory. As the 

estimated shear force overcame a dual (same value with 

opposite sign) threshold defining a sort of band, slip was 

deemed to occur. Therefore, exerted force was raised up by 

moving the fingertip downwards. 

The second derivative of the wavelength shift was studied 

to infer the presence of slip. Fiber Bragg Grating, included 

in fiber optics sensors, show a wavelength shift when a 

pressure is applied onto them. When the second derivative of 

such a shift overcame a threshold, slip was found according 

to the method conceived in [139]. 

B. LEARNING PARADIGMS 

Unlike e.g. force or position, slip has not a measurement 

 
FIGURE 10. Grasping trial performed in [136]. Negative peaks in the 
derivative signal produced spikes triggering the prosthesis closure.    
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unit as other physical quantities. The control system should 

decide whether to intervene in order to modify grasping 

parameters (e.g. fingers force or position) basing on 

information collected by tactile sensors. A manner to 

elaborate such information is to build neural networks, which 

are inputted with data from sensors and provide an ultimate 

slip signal. A neural network needs a training phase to 

establish the weight of its neurons; these are usually 

distributed in at least two layers (sometimes only one). The 

network is able to produce an output which is somehow 

linked to the input in a black box fashion. Some works 

employing ANN were cited earlier [63],[88], though they 

showed some preprocessing of the tactile signals. One of the 

first studies proposing to feed an ANN with unelaborated 

tactile data is [140], where sixteen force values were used to 

train a neural network whose output was defined as a sliding 

coefficient S. The force values were gathered from as many 

thin-film piezoelectric (PVDF) sensors, organized in a linear 

array with eight sensor couples. Each couple could measure 

normal stress with one sensing unit and tangential stress with 

the other one. The sliding coefficient approximated the ratio 

T/µN, with T, N and µ denoting tangential force, normal 

force and friction coefficient, respectively. Hence, as the 

output S of the ANN approached the unitary value, slip was 

judged to be in its incipient status. The network was trained 

with a back-propagation (B-P) algorithm, which is a rather 

common choice. For instance, B-P was used to train an ANN 

receiving inputs from the scattered energy emanated by slip 

vibrations [141]. Such an energy was estimated through a 

tactile stylus embedded into a robotic gripper. Additionally, 

the falling velocity of the grasped object acted as an input for 

the ANN. The optimal grasping force to avoid slip, which 

was the output of the ANN, reached a 70% accuracy. A 

rather recent approach relying on B-P algorithms was 

presented in [142], where the ANN output again consisted in 

the optimal grasping force. The input for the ANN was the 

force ratio of (1) exerting on the distal part of the same 

sensorized fingertip mechanism as in [53] (see Section IIIA). 

A vector of force ratio values was converted into binary 

format, while the ANN output, with the same format, 

activated the actuator of the hand. The grasped objects were 

limited to a prism-shaped item covered with three different 

materials (i.e. wood, glass and spongy rubber). A neural 

network trained with B-P was also exploited in [143] to 

distinguish between sliding and slipping events in non-

prehensile tasks. To this purpose, a fingertip endowed with 

twelve piezoresistive cells was mounted on each finger of a 

prosthetic hand (Shadow Hand), and their normalized output 

(in the range 0-1) were utilized to train the network after a 

preprocessing in the frequency domain. The hand was 

interfaced to a robotic arm, which allowed performing trials 

on plywood, PVC and aluminum surface. Accuracy was as 

high as 96.4%.  

Hebbian networks (HN) found application as well in slip 

detection. An example is given in [144]. Here, a robotic hand 

was equipped with soft sensorized fingertips and a vision 

sensor. The former had six strain gages randomly distributed 

within the fingertip. The latter was a CCD camera located 

above the hand. The HN had two layers, i.e. one for the 

tactile inputs from the gages and one for the camera (Fig. 11). 

Initially, the HN could recognize slip as a variation occurred 

in the displacement between the fingertip and the contacted 

object. That is, slip was observable only through the camera. 

After a given number of learning trials, slip could be caught 

relying only on tactile sensors. 

Learning methods go beyond ANNs. E.g., Long Short 

Term Memory (LSTM) networks offer a worthy solution, 

boasting outstanding perception of spatiotemporal 

correlations as proved in [145] where another camera-based 

sensor was experimented. The sensor was made of an 

elastomer, inside which some markers were located with the 

aim of tracking feature points. The nearest points 

correspondences between two consecutive frames were 

achieved through the K-nearest neighborhood method. 

Images were acquired from 3 channels, i.e. the two planar 

directions and magnitude, and fed to the LSTM.  

Spectral analysis was combined with LSTM in [146] to 

process tactile data from a six-axis F/T strain-gage-based 

sensor, a three-axis optical force sensor, and a biomimetic 

fingertip hosting multiple sensors (e.g. an electrode array). 

Millions of sensory data were processed to effectively train 

slip detectors, obtaining a maximum detection time of 60 ms. 

Furthermore, Gaussian Process (GP) regression was 

adopted to train the control of a robotic platform to avoid slip 

[147]. The platform had two arms, each featuring a tripod 

manipulator provided with a six-axis F/T sensor. The 

training data for the GP were the maximum linear friction 

force and rotational friction torque acquired by means of the 

F/T sensors. This approach permitted determination of 

torque and force limits to be exerted on a grasped object in 

order to prevent slip. 

 

FIGURE 11. HN built in [144]. The S1…6 inputs from the six strain gages 
activated the nodes of the tactile layer. The two gray circles represent the 
vision nodes activated by image displacements along planar directions. 
The output consists in the final decision about slip occurrence.   
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Recently, a multi-channel fingertip was employed to 

collect data used to learn some slip predictors [148]. 

Learning paradigms, such as support vector machines and 

random forest classifiers, were implemented to perform slip 

prediction. In [149] a Hidden Markov Model was trained to 

predict slip with signals acquired by means of a six-axis F/T 

sensor, several strain gages and PVDF sensing units.  

Learning approaches guaranteed high accuracy in both 

grip stabilization and slip prediction, on varied objects and 

surfaces. Inconveniently, such approaches require huge 

amount of tactile data to train the learning algorithms.  

VII. DISCUSSION 

The most spread methods for slip detection in artificial 

manipulation were presented in the sections above. Every 

described approach offers some advantages that led 

researchers to investigate the relevant potential. Nonetheless, 

more undeniable drawbacks prevented the adoption of a 

single solution and the development of a defined 

technology/algorithm that could impact the market. Figure 

12 summarizes the strengths and weaknesses of the main 

methodologies employed in the effort to avoid slip. 

A. FRICTION COEFFICIENT AND MULTIAXIAL FORCES 

 Friction-based methods are grounded on classical 

physics, i.e. they are inspired by the well-known Coulomb’s 

model of friction. Such methods were largely considered 

across the last twenty years of the previous century until the 

first years of the third millennium. A number of works 

studying slip as a friction-dependent problem can be found 

in more recent literature, though new techniques arose lastly. 

Friction-based algorithms, which can be implemented 

resorting on various sensor technologies such as 

piezoresistive, capacitive, optical and QTC, allow accurate 

detection of slip phenomena even at the initial stage. Indeed, 

they provide information about the static friction coefficient 

of the contacted object, which directly relates to the exerted 

forces. By monitoring the value of the force ratio, it is 

possible to understand whether such a value is approaching 

to a limit region within which slip commences. In this 

situation, the tangential forces are growing, leading the 

grasped object to slid w.r.t. the sensor surface. Thus, 

opportune corrections in the grip force are to be applied, i.e. 

the normal force should be incremented to tighten the grip. 

Detecting the incipient slip allows the gripping system to 

correct applied force faster, as there is no need to wait for the 

gross phenomenon.  Notwithstanding, to monitor the friction 

coefficient implies the use of multiaxial force sensors. At 

least two components of force are required in order to 

compute the ratio as indicated in (1). This constitutes an 

inconvenience also from an economic point of view, as 

multiaxial sensors are often more expensive than monoaxial 

ones. Alternatively, the friction coefficient might be 

estimated by means of dedicated sensors, though additional 

constraints can be introduced. For instance, in [51] the 

proposed sensor for friction coefficient estimation had to be 

softer than the touched object and with greater curvature, or 

else in [50] the friction sensor functioned along with a force 

sensor in order to control the pressure applied onto the 

grasped item. Estimation of friction coefficient may also be 

avoided by evaluating the strain distribution on a given 

surface, yet more force sensors (e.g. strain gages) are needed 

[55],[56].  

Furthermore, the validity of Coulomb’s model was 

brought into question since the end of the 80s [150] by the 

fact that its basic assumption, i.e. the proportionality between 

friction coefficient and normal force, is not valid for soft 

materials. When studying the interaction forces on a 

deformable surface, e.g. the compliant skin covering a 

robotic finger, the friction limit described in (1) should 

account for not only the tangential force Ft but for a torsion 

term as well, resulting in Ft+AMn≤µFn, where Mn denotes an 

applied moment and A is a constant. This formulation was 

demonstrated to improve robustness in predicting slip 

phenomena especially for what concerns soft and very soft 

structures [151]. Other analytical models of contact often 

involve supplementary parameters, besides multiaxial 

forces. Although the Hertzian model does not depend on 

friction, it necessitates other sensing units (e.g. vision 

sensors) to determine the radius of the contact area and the 

displacement of a reference point within such an area as in 

[44]. Mindlin’s model suits better structured environments 

[54], as it may be applied provided that object properties 

(static friction coefficient above all) are known. LuGre 

model yields precise friction measurements despite the huge 

number of parameters but is mainly limited in that such 

measurements are satisfactory only when the object surface 

is quite smooth and regular [48].  

B. VIBRATIONS 

Piezoelectric materials theoretically offer a high-quality 

solution for the development of slip sensors. This descends 

from their notable sensitivity to high-frequency vibrations, a 

property which mimics human FA II behavior. Whenever 

slid over a surface, the output of a piezoelectric sensor will 

exhibit dense fluctuations that are evident even if the sensor 

is slid at low velocity. This applies to all materials, regardless 

the friction. Of course, the rougher is the surface, the stronger 

will be the piezoelectric output. On the other hand, the 

performance of piezoelectric sensors is affected by a certain 

temperature dependence; for instance, the activity of the 

most used piezopolymer (PVDF) in tactile systems has a 

variation of about 0.5%/°C [70]. Such a variability might 

lead to significant modification in the sensor output for 

abrupt temperature excursions. Despite the excellent 

flexibility of PVDF, this possesses low sensitivity, i.e. 

maximum 30 pN/C (four times less than PZT). Temperature 

influence on piezoelectric voltage is considered among the 

major shortcomings [4].  

Moreover, piezoelectric signals should be properly 
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processed before being fed back to the controller of a 

robotic/prosthetic hand. Given their bipolar nature, at least 

the signal rectification removing negative oscillations is 

required to prevent signal instability. This operation is 

usually preceded by one or more filters, which greatly help 

selecting a meaningful bandwidth or even to elude aliasing 

[64],[70]. Nonetheless, false positives associated with 

contact events are difficult to discard as piezoelectric sensors 

show sharp voltage peaks even when a contact occurs.  

Due to their high frequency response, piezoelectricity-

based sensors are mainly conceived to work as dynamic 

sensors. In fact, PVDF and PZT sensors found application in 

conjunction with additional sensing units devoted to force 

measurement [33],[61]. Piezoelectric sensors were rarely 

demonstrated to be able to provide both slip and force 

information. An example is given in [67], yet the tested force 

range was rather limited (1.8-7.5 N). Though piezoelectric 

sensors can be miniaturized and flexible, the encumbrance 

caused by the use of more sensors for more tactile 

information represents another substantial drawback.  

Algorithms in the frequency domain have quite often the 

same objective as the ones employing piezoelectricity: to 

detect vibrations due to sliding movements. Analyzing the 

frequency of a tactile signal with transform operations such 

as FFT and DWT allows noticing some signal properties 

which are not observable if its mere time variation is studied. 

A considerable advantage of frequency transforms is the 

independence from the material friction. Indeed, as for the 

piezoelectric transducers, the vibrations produced by a slip 

event are usually at higher frequencies than static pressure 

signals, and this is true regardless the touched surface. 

However, a source of concern can be identified in the scarce 

applicability of FFT to normal force signals. It is well known 

that the most fluctuating force components during slip are 

the ones tangential to the surface, thus their frequency 

response is more powerful. This resulted e.g. in [80] where 

frequencies above 100 Hz could be found in tangential force, 

whereas in [81] a FFT peak between 1 Hz and 20 Hz was 

deemed as a slip. This can generate some ambiguity given 

that the normal force commonly shows low-frequency 

variation even in absence of slip. From this perspective, the 

DWT may be preferable over FFT as it offers superior 

performance on normal force as well thanks to its 

decomposition of the signal into approximations (low 

frequencies) and details (high frequencies). E.g., [91] 

illustrates the application of the DWT on both normal and 

tangential forces with comparable results, whereas examples 

of successful functioning on monoaxial output were 

provided in [94] (normal force) and [90] (monoaxial 

voltage). Moreover, Wavelet transform allows overcoming 

another widely known disadvantage implied by FFT, i.e. the 

loss of time information. FFT decomposes a signal into a 

sum of sinusoidal waves; even though this has valuable 

outcome in the frequency domain, it possesses no correlation 

between the individuated frequency components and the 

time domain. Diversely, DWT decomposes the signal by 

passing it through a series of filters which span the whole 

signal band, resorting on dilatations and translations of both 

wavelet and scaling functions. The resulting wavelet 

coefficients, which carry the various frequency components 

of the original signal, can thus be plotted on a time-scale. 

This is possible only in part with the STFT, which employs 

 
FIGURE 12. Summary of the main methodologies for slip detection with relevant pros and cons. 
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a fixed temporal window to create a spectrogram of the 

signal. Even if time information is somehow preserved in this 

manner, a fixed window cannot be able to detect all spectral 

elements of the signal. Besides, attention must be paid to the 

size of the window in order to keep computational times 

quite low. The transform-based techniques performance 

depends on the size of the chosen window. To perform real-

time algorithms, the window should be as short as possible. 

For instance, in [83] such a window is 17 ms long, or else in 

[96] it is 21 ms long. 

 Computational burden must be taken into account as well, 

especially when a number of frequential and/or temporal 

features are used. As in [85], only the most significant 

features should be processed in order to avoid excessive 

slowdown in computation, which would compromise real-

time operation. 

The slip vibrations might also be isolated with the help of 

filters. They constitute an alternative to FFT and DWT as 

they allow obtaining a slip signal from tactile sensors output. 

Filters proved to perform optimally in a wide range of 

applications, including normal force component [101], 

tangential force component [98] and hydroacoustic 

pressured [88]. Given that slip frequencies are normally 

concentrated towards high values, ideal configurations are 

HP filters or else BP filters. An indisputable advantage of 

detecting slip by means of filtering functions is the 

unnecessity to know surface properties such as friction or 

roughness. Although this is shared with other techniques 

relying on transform operations or piezoelectric sensors, 

filters allow higher precision in extracting the relevant 

portion of the tactile signal spectrum. Indeed, such a portion 

can be very subtle, and is identifiable e.g. through FFT prior 

to the filter design [97],[98]. By combining more filters 

together into a network, very accurate slip signals may be 

achieved and used to control prosthetic hands [98] or even to 

generate a unique, binary slip indicator from a big number of 

tactile channels [100]. However, filtered signals require a 

certain degree of post processing, being bipolar and unstably 

fluctuating in their original form. Further, the 

implementation of filters implies the property of causality, 

which is fundamental to guarantee real-time functioning. 

Causal IIR filters, which depend only on past and present 

values of the input signal, introduce an unavertable delay in 

their output. This is due to their nonlinear phase, which 

yields a variable distortion at different frequencies. FIR 

(finite impulse response) filters get around such an 

inconvenience as they have linear phase, though the delay in 

the output cannot be avoided in any case. Moreover, FIR 

filters need higher order to satisfy tight constraints, such as 

fast roll-off at the transition between passband and stopband. 

For this reason, FIR filters are not the best choice when fine 

bandwidth has to be privileged and fast transition band is 

demanded, as in the case of slip detection. In all cases, the 

main drawback of causal filters resides in the delay that the 

filtered signal will show in the time domain, which might 

influence negatively the performance of a filter-based 

method. [100], the average delay between the onset of slip 

and its detection was found to be lower than 50 ms. This is 

acceptable from a physiological point of view, yet a similar 

kind of analysis was rarely carried out. Consider e.g. [88]: 

the developed algorithms were demonstrated to identify slip 

faster than an IMU mounted on the grasped object, but it was 

not stated how fast the IMU itself could recognize slip.  

Few attempts to prevent slip events by means of a 

particular type of filter, i.e. KF, were reported as well. KFs 

do provide accurate statistical measures and fit well dynamic 

systems, though they usually require complicated analytical 

procedures, and need to be fed with multiple inputs. Also, 

KF applications on slip detection often regarded the 

estimation/elaboration of tangential forces [104],[105], thus 

presuming the availability of multiaxial force information or 

even their presence in the algorithms.  

C. ALTERNATIVE APPROACHES 

Differentiation was employed in the effort to figure out 

new slip detection methods working without knowledge of 

surface properties. The derivative of a force signal is 

computationally simple, even for a higher order than first, 

and permits a certain ease in the study of the variation in the 

tactile sensors output. At the slip moment, significant 

changes occur in the tactile signal; when the derivative of a 

force signal overcomes a given empirical threshold, slip 

might be identified. Successful application was shown on 

normal force component [134],[137],[135],[136], on 

tangential force component [138] and on hydroacoustic 

pressure [88]. Notwithstanding, unneglectable variations 

happen also when the tactile sensor touches an object, i.e. 

TABLE II 

SENSOR TECHNOLOGIES WITH PROS AND CONS 

Technology Advantages Drawbacks 

Optical 
[108],[109],[110],

[111],[112],[113],

[114],[115],[116], 

[117] 

Immunity to 

electromagnetic 
disturbance 

 

Independence from 
surface roughness 

 

Very high Sensitivity 
 

Bulky 

 
 

 

Complex data 
elaboration 

 

Typically require more 
than one sensing unit 

Velocity – 

Acceleration 
[32],[71],[95], 

[118],[119],[120],

[121],[122] 

Broad frequency 

response 
 

High sensitivity 

 

Sensitive to external 

disturbances/vibrations 
 

Unsuitable for static 

load 

Thermal 
[123],[124] 

Immunity to external 

vibrations 

 

Independence from 
surface roughness 

Unsuitable for static 

load 

 

Long response time 
 

Magnetic 
[125],[126],[127], 

[128] 

Immunity to external 

vibrations 

Able to sense both 
static and dynamic 

loads 

Bulky 

 

Performance depends 
on fabrication 

materials 
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when said sensor becomes active as force jumps from zero 

to another value. Derivative functions will exhibit 

correspondent peaks, which may be hard to discard without 

the help of other sensors. For example, [134] does not discuss 

the algorithm performance during contact and release phase 

of the prosthetic hand endowed with FSR sensors. Although 

the sole normal force component could be enough as an input 

for the derivative method, the force derivative was integrated 

with the derivative of position in a subsequent work [133].  

Note that, in general, thresholding is widely adopted not 

only for differentiated signals but for e.g. transformed and 

filtered ones as well. It constitutes an immediate technique 

for the generation of binary slip signals, though thresholds 

are commonly determined through empiric procedures. Plus, 

this technique is sensitive to false positives, and authors 

rarely describe how to discard them.  

Another option for predicting slip is to adopt learning 

paradigms. ANNs do yield elegant implementation of slip 

detection strategies enabling the control system to elude 

ambiguities. These can derive e.g. from contact events, 

which might be misunderstood as slip events, or from generic 

noise sources (such as vibrations produced by actuators). 

Data with significant variability can be correctly interpreted 

by an ANN, that is able to learn and approximate complex, 

nonlinear models. Although the implementation of ANNs is 

theoretically simple, they usually resort on a plurality of 

sensory data [140],[143], often of different types [144]. From 

this, it derives a drawback relating to complexity. Neural 

networks can require huge sets of data for the training phase, 

which might necessitate long times. Also, more layers are 

commonly needed to elaborate all the available information 

and, as a result, the overall functioning of a neural network 

is viewed as a black box. That is, one knows what the 

network can do in terms of output but has no insights about 

how it actually works, in terms of information processed and 

exchanged by its neurons. Generally, learning paradigms still 

have a number of drawbacks. These range from the long 

training phase, slow real-time execution [148] to the large 

quantity of data collected from many sensing units, which 

are necessary for the training. However, such approaches 

commonly offer high-accuracy performance. 

Finally, Table II summarizes the main advantages and 

disadvantages of slip detection executed with tactile sensors 

based on the physical quantities presented in Section IVC. 

VIII. CONCLUSION 

This article surveyed the state of the art regarding slip 

detection with artificial tactile sensors. First, the sense of slip 

was described from a physiological point of view, referring 

to human tactile system. Next, the literature was deeply 

explored and a number of works were reported according to 

the methodology employed for the slip identification. These 

involved: 1) the use of multiaxial force components to study 

e.g. the static friction coefficient, or else of more force 

sensors to ensure grasp stability; 2) the piezoelectric 

phenomenon (exploited since the oldest attempts to provide 

artificial hands with slip sensors), as well as transform 

techniques and filters, to investigate the presence of 

vibrations in tactile signals; 3) the differentiation of force 

signals containing information associated with rapid changes 

occurring at the slip moment. Finally, other rather late 

methods, regarded with growing attention during the last 

decade, were presented to complete the summary of the 

literature. Such methods resorted on: 1) neural networks, 

which can predict slip if opportunely trained with tactile 

data; 2) physical quantities such as temperature, 

electromagnetic induction, light intensity and acceleration. 

From a general overview, it can be stated that the methods 

and approaches employed to detect slip with tactile sensors 

cover a wide range of physical principia and technologies. 

Notwithstanding the number of publications in this research 

field exhibits a constant growth, the feeling is that a unique, 

generally accepted methodology has yet to be defined. For 

example, one may think to the first slip sensors mounted on 

artificial hands, which date back to half a century ago [14] 

and was of piezoelectric type. Though many successive 

attempts were done with disparate sensors and methods, 

piezoelectric sensors did not cease being regarded as an 

actual possibility, even if the number of relevant works 

decreased. The same applies to friction-based techniques; 

despite the concept of friction cone was already utilized at 

the end of the 80s, there are still some researchers proposing 

algorithms which are centered around such a concept. In 

other words, latest techniques were not yet able to 

completely convince the scientific community so far. Hence, 

experimental comparison among performance of classical 

and newer techniques is still ongoing to find out whether a 

real advancement subsists [116],[152]. As a matter of fact, 

much research is being carried out on new slip detection 

approaches featuring e.g. filters and DWT application. 

Similar approaches allow using monoaxial, low-cost sensors 

to perform both force and slip measurement, thus simplifying 

the entire process. Moreover, force calibration is not 

mandatory (e.g., the raw voltage can be processed). In this 

scenario, differentiation is also suitable but the discard of 

false positives must be better addressed.  

According to our opinion, simplicity is a highly desirable 

property when attempting to endow robotic hands with 

tactile sensors. These should act as force sensors and slip 

sensors as well, in order to achieve minimal complexity and 

encumbrance. The impressive sensitivity and richness of 

information of human tactile sensors would suggest the 

creation of complicated sensory systems; not rarely, 

researchers tried to build sophisticated solutions involving 

more sensors and onerous computation. This might lead to 

greater performance but reduces the ease of applicability. 

The more complex is the methodology, along with the 

hardware required to implement it, the more difficult is 

expected to be the portability of said methodology and 

hardware. Moreover, human mechanoreceptors remain 
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frustratingly hard to be reproduced artificially. They are of 

different types, specialized for diverse tasks; however, to 

achieve all their characteristics is not mandatory for artificial 

tactile sensing. Albeit physiology is for sure a great 

inspiration for artificial systems design, exquisite 

biomimicry is not crucial [16]. A complete, bio-inspired 

tactile system would be expected to boast a certain degree of 

multimodality, i.e. to provide information about temperature 

and humidity, besides pressure and slip. Therefore, obtaining 

e.g. the last two information from a unique sensing unit 

would be of great help, given that temperature requires an 

additional unit. Nonetheless, a given subset of properties 

may be selected depending on the application. For instance, 

if only the estimation of the contact force and the detection 

of slip are required, two different sensors can be dedicated to 

each of the two quantities. However, a similar procedure will 

always challenge designers in terms of e.g. bulkiness and 

power consumption. Oppositely, a single sensing unit 

providing at least one force component can be elaborated in 

such a way to infer the presence of slip, as it can be evinced 

from a number of works in the above Sections. 

In conclusion, it can be stated that, in spite of the 

increasing effort produced by researchers, a gold standard 

solution has not been identified yet. Many approaches are 

still being investigated; we conjecture that a definitive 

convergence is quite far, as the number of relevant 

publications grows and possible directions appear multiple. 

By means of this survey, we give an overview of the 

heterogeneous state of the art, auspicating that it will serve 

as a meaningful guide for scientists and technicians involved.  
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