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Abstract. This report shows how one can find a solution to the K-
SAT equations with the use of purely local computations. Such a local
network, inspired by the Survey Propagation equations driven by an ex-
ternal input vector, potentially has an exponential number of attractors.
This gives the network powerful classification properties, and permits
to reconstruct either noisy or incomplete inputs. It finds applications
from bayesian inference to error-correcting codes and gene-regulatory
networks, and its local structure is ideal for an implementaion on FPGA.
Here we write its algorithm, characterize its main properties and simulate
the corresponding VHDL code. One shows that the time of convergence
towards a solution optimally scales with the size of the network.

1 Introduction

The fast development of components efficiently performing parallely simulta-
neous computations (FPGAs, CPLDs) increases the interest of computations
making massively use of local parallelism, such as computations on graphs [8].

Belief propagation algorithms are well known algorithms which permit, by
the use of purely local messages, to converge towards the exact distribution
of a posteriori probabilities in tree-like graphicals models, or towards a good
approximation even in loopy networks [11].

But when the graph is too constrained, such classical local algorithms fail to
converge towards the desired distribution of probabilities.

The graphical model K-SAT (described below), recently studied and solved
using techniques of statistical mechanics, can be viewed as a toy-model of such
a constrained graph. The Survey Propagation equations are a generalization of
the Belief Propagation equations which permit to solve the K-SAT formulas in a
range of parameters in which the graph is highly constrained, and in which the
Belief Propagation equations fail [9, 10, 4].
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But while the Survey Propagation equations use fully local computations,
the decimation based on these and which permits to converge to one particular
solution of the K-SAT problem uses a global criterion [10, 4], and is as such not
suitable for low-level parallelization.

In the present article, one builds a fully local network based on the Survey
Propagation equations, the dynamic of which lets it converge towards a desired
instance of the K-SAT equations. We then propose an algorithm and its VHDL
code, which will permit the implementation of this network on a FPGA. To
conclude, we will then shortly review the fields in which such an implementation
can be applied.

2 Solving and Properties of the K-SAT Equations

2.1 K-SAT Formulas

The K-SAT formula consists of N Boolean variables xi ∈ {0, 1} , i ∈ {1, ..., N}},
with M constraints, in which each constraint is a clause, which is the logical OR
(∨) of the variables it contains or of their negations. A clause is written as

(zi1 ∨ ... ∨ zir
∨ ... ∨ ziK

) (1)

where zir
= xir

(resp. x̄ir
) if the variable is directed (resp. negated) in the

clause. The problem is to find an assignment (if it exists) of the xi ∈ {0, 1} =
{directed,negated} which is such that all the M clauses are true. We define the
energy E of a configuration x = (x1, ..., xN ) as the number of violated clauses.

2.2 The Solution Space Becomes Divided into an Exponential
Number of Clusters

When the number of constraints M = αN is small, the solutions of the K-SAT
formulas are distributed close one to each other over the whole N−dimensional
space, and the problem can be solved by the use of classical local search algo-
rithms. When α is included in a narrow region αd < α < αc, the problem is
still satisfiable but the now limited solution phase breaks down in an exponen-
tial number of clustered components. Solutions become grouped together into
clusters which are fart apart one from the other.

2.3 Survey Propagation Equations with External Inputs

Recently, statistical physics methods derived from spin glass physics (making use
of the cavity method) have permitted to derive closed set of equations, which
allow, after decimation, the retrieval of a large number of different solutions
belonging to different clusters [9, 10, 4, 2, 3].

The principles of the method are schemed on Fig. 1. The message ηa→i rep-
resents the probability that the clause a sends a warning onto the variable i, i.e.
the probability that i is forced to be fixed at a value which satisfies a. As the
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Fig. 1. Factor graph representation of the K-SAT formula. A constraint (called a
clause) is represented by a square ; the variables are represented by a circle

clause a is an OR function, it corresponds to the probability that both j1 and j2
do not satisfy a (resp. βj1→a and βj2→a). If one assumes independence between
j1 and j2 when the link (the “cavity”) a − i is absent, this writes

ηa→i =
∏

j∈V (a)\i

βj→a , (2)

in which V (a) means “all the variables belonging to the clause a”.
One then writes without further derivation the dependency of βj→a (the

probability that j does not satisfy a) on the ηb→j (see Ref.[4, 10] for further
details) :

β±
j→a =

Π±
j→a

Π±
j→a + Π∓

j→a + Π0
j→a

, (3)

β+
j→a (resp. (−)) meaning that j is negated (directed) in the clause a. And :

Π±
j→a =

⎡

⎣1 − λ
(
1 − πδξj ,±

) ∏

b∈V±(j)\a

(1 − ηb→j)

⎤

⎦ ·

· (1 − πδξj ,∓
) ∏

b∈V∓(j)

(1 − ηb→j) (4)

Π0
j→a = λ

(
1 − πδξj ,+

) (
1 − πδξj ,−

) ∏

b∈V (j)\a

(1 − ηb→j)

in which V +(j) \ a means “all the clauses in which j is directed, except the
clause a”. By putting the real parameter λ to 0, one retrieves the well known
Belief Propagation equations. Last, these equations include the external input
field imposed onto the variable i, which has an intensity π and a direction ξi ∈
{−1, 0, 1}. The fact that πξi = ±π means that an a priori probability π of
assuming the value ±1 is being assigned to the variable i. If, on the other hand,
ξi equals 0, the variable i is a priori left unconditioned.
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The Equations (2, 3) form a closed set of equations between the ηa→i, called
“Survey Propagation (SP) equations with external inputs”. Iterating these equa-
tions permits to find the fixed point η∗

a→i, probability that, among all the clusters
of solutions, a sends a warning to i.

2.4 Temporary Local Field

At each sweep, to perform the local updates of the intensity of the external
inputs, as will be explained below, one needs to compute the local temporary
field for each variable i, i.e. the temporary tendency of the variable i to be equal
to 1(+), 0(−) or left unconstrained.

The tendency of the variable i to be equal to 1(+) (resp. 0(−)) then reads:

W
(±)
i =

Π̂±
i

Π̂±
i + Π̂∓

i + Π̂0
i

. (5)

in which Π̂±,0
i is equivalent to Π±,0

i of Equ. 4, but by now considering all the
inputs including the clause a.

3 Presentation of the Network

3.1 A Fully Parallel Decimation of the K-SAT Equations

We shall now introduce the important corollary of the SP algorithm with external
forcing field, which allows the retrieval of solutions close to any N-dimensional
point ξ in ln(N) time when implemented on a fully distributed device (SP-
parallel). On each variable i, the direction of the forcing field is fixed at the
external input value ξi ∈ {−1, 1}, while the intensity πi of its external forcing
field is now regularly updated : it equals π with probability 1 (resp. with prob-
ability p) when the temporary local field is aligned (resp. unaligned) with the
external forcing ; its value is 0 otherwise. In words, if, locally, the network wants
to align with the external forcing, one further stabilizes it in this direction ; if
the network really does not want, one still tries to drive it in that direction (so
that one obtains a solution as close as possible from the external forcing), but
not too much (with a probability p < 1) in order not to generate contradic-
tions.

Good properties of convergence are obtained by updating the direction of the
forcing field once every two steps, i.e. once every two parallel updates of all the
etas. At the end of a unique convergence, using a right and formula-dependent
choice of π and p, most variables are completely polarized, and a solution of
the K-SAT formula is finally found by fixing each variable in the direction of its
local field. As the update of the forcing is reminiscent of the Perceptron learning,
one calls such an algorithm the “Perceptron-like algorithm” : it is an efficient
distributed solver of the K-SAT formulas in the hard-SAT phase.
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3.2 “Perceptron-Like Decimation” Algorithm

INPUT: the K-SAT formula, an external input vector; a maximal number of
iterations tmax, a requested precision ε, and the parameters π and p for the
update of the external forcing
OUTPUT: if it has converged before tmax sweeps: one assigment, close from
the input vector, which satisfies all clauses.

0. At time t = 0: for every edge a → i of the factor graph, randomly initialize
the cavity bias ηa→i(t = 0) ∈ [0, 1]. The intensities of the input forcing field
are initially set to πi = 0.

1. For t = 1 to t = tmax:
1.1 update parallelely the ηa→i(t) on all the edges of the graph, using sub-

routine CBS-UPDATE.
1.2 half of the times, update parallelely the intensity π ∈ [0, 1] for all vari-

ables xi, using subroutine FORC-UPDATE.
1.3 If |ηa→i(t)−ηa→i(t−1)| < ε on all the edges, the iteration has converged

and generated η∗
a→i = ηa→i(t): GOTO label 2.

2. If t = tmax return UN-CONVERGED. If t < tmax return the satisfying
assignment which is obtained by fixing the boolean variable xi parallel to its
local field : xi = sign{W (+)

i − W
(−)
i }.

Subroutine CBS-UPDATE(ηa→i).
INPUT: Set of all ηb→j arriving onto each variable node j ∈ V (a) \ i
OUTPUT: new value for the ηa→i.

1. For every j ∈ V (a) \ i, compute the values of Π±
j→a,Π∓

j→a,Π0
j→a using Eq.

(4).
2. Compute ηa→i using Eq. (2, 3).

Subroutine FORC-UPDATE(πi).
INPUT: Set of all cavity bias surveys arriving onto the variable node i, including
the forcing field (πi, ξi).
OUTPUT: new value for the intensity πi of the additional survey.

1. Compute the local fields W
(+)
i ,W

(−)
i ,W

(0)
i using Eq.5.

2. Compute πi : πi = π with probability P (πi = π) = p + (1 − p) × θ(W (ξi)
i −

W
(−ξi)
i ), πi = 0 otherwise.

3.3 Choice of the Network

The results of the experiments presented below are performed with K5 “regular”
formulas, in which : first, the number of clauses where any given variable appears
negated or directed is kept strictly equal ; second, the number of clauses to which
belongs a given variable (the connectivity of the variable) is kept strictly constant
for all variables (here one chooses c = 84, i.e. α = 16.8).

The choice has been motivated by the good reconstruction properties of such
graphs when used to implement “lossy data compression” [2, 3]. Except if stated
otherwise, ones takes networks of N = 10000 variables, above which size conver-
gence properties don’t dramatically change (Fig. 7).
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4 Characterization of the Network

4.1 Distance Between the Input Forcing and the Output Solution

One presents to the network an input vector i. The network, driven by i, pro-
gressively converges towards a stable solution σo, which is also the output of the
network.

The optimal intensity πopt and the optimal probability of flip popt, for which
one obtains in average the closest solution σo from the input vector i, are respec-
tively equal to 0.52 and 0.72. For such choices of the parameters, the average
Hamming distance d(i,σo) = 1

2N (N − ∑N
i=1 iiσo,i) between the input vector

and the corresponding solution equals 0.314, which is slightly better (but in
agreement with) the value 0.329 found by performing the classical serial deci-
mation [2, 3].

4.2 Time of Convergence

At each sweep (i.e. at each parallel update of all etas), one constructs a tem-
porary assignment σt in which each coordinate σt,i = sign(W+

i − W−
i ) is fixed

parallel to the temporary local field. Fig. 2 represents the evolution respectively
of the energy E of the temporary assignment σt and of the Hamming distance
d(i,σt) between the input vector and σt. The algorithm converges towards a
solution after an average of 350 sweeps.
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Fig. 2. Time of convergence towards a solution, by imposing a random forcing input

4.3 Stability of the Network - Resistance to Noise

The stability of the network is examined by taking a solution σo of the K-SAT,
and forcing the network with a noisy input vector i increasingly distant from
the solution σo. One recovers a solution σ which tends to belong to the same
cluster as σo (Fig. 3). In the language of the attractor network, the critical
distance dc = 0.265, for which the cluster converges in half of the cases towards
the initial cluster Cl(σo) is a measure of the average radius of the basin of
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Fig. 3. Stability of the cluster of solutions Cl(σo) to noise. Forcing the system with
the input i increasingly distant from a solution σo permits to recover a solution σ.
P (Cl) is the probability that σ belongs to the same cluster as σo

attraction of the cluster Cl(σo). Conversely, the curve P(Cl) of the probability
of convergence towards the same cluster Cl(σo) as a function of the distance
d(σ,σo) between the initial solution and the output solution is a measure of the
sharpness of the boundary of the basis of attraction of Cl(σo).

4.4 Associative Properties of the Network

The associative properties of the network have been used (in the context of se-
rialized computation) to build “lossy data compressors” [2, 3]. By presenting a
truncated part of the solution, one recovers after convergence a whole solution
from the same cluster. Without further optimization, and by choosing an inten-
sity π = 0.99 and a probability of flip p = 0.99, Fig. 4 shows that 18% of the
solutions is enough to recover a whole solution from the same cluster.
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Fig. 4. Stability to missing inputs. One forces the system with a fraction of the initial
solution σo . E is the energy of the assignment found at the end of the convergence
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5 Electronic Implementation

The previous algorithm is translated into a VHDL code, in view of a FPGA
implementation. All calculations are performed synchronously.

5.1 Structure of the VHDL Code

At the descriptive level : a component called graph is linked to the external word
(which can be a computer), receiving the vector i as input, and providing the
corresponding solution σo as output. Graph links together components called
computational-unit, each of them performing the calculations involving directly
a given variable. If two variables i and j belong to the same clause in the K-SAT
formula, then the two computational-unit representing respectively each of the
variables are linked by a signal (Fig. 5).
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Fig. 5. Scheme of the transmission of the βj→a when COMMAND reads “01”

Main input/output lines of “computational-unit” representing the variable j
are drawn in Fig. 6. The INPUT-BETA-IA line transmits the value βi→a from
the variable i belonging to the same clause a as j. The OUTPUT-BETA-JA line
transmits to all variables belonging to clause a the value βj→a. The EPS line is
not compulsory : it transmits the information about local convergence.

Moreover, all components are wired together through a common clock signal
(CLK), an enable signal (ENABLE) and a two-bit command line (COMMAND).
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Fig. 6. Main input/output of the “computational-unit” component
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At the behavioral level, each unit constantly repeats four synchronized op-
erations, determined by the value of the COMMAND line. When COMMAND
equals :

– “00” : calculate βj→a using Eq. (3), for all clauses a to which belongs j

– “01” : transmit βj→a

– “10” : read βi→a, calculate ηa→j using Eq. 2
– “11” : update intensity of the forcing πi

5.2 Bit Representation of the Reals

For space optimization, the reals (βj→a, ηa→j ∈ [0, 1]2 have to be represented by
the possibly smallest number of bits. Convergence can be consistently achieved
if the reals are encoded in 12 bits, and if the update of the forcing is performed
once every two updates of the etas.

5.3 Logarithmic Dependence of the Time of Convergence on the
Size of the Graph

Fig. 7 shows that the time to converge to a solution depends logarithmically on
the size of the graph : t � 37 × ln(N) for N ≥ 2000.
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Fig. 7. Logarithmic dependence of the time of convergence on the size of the graph.
The fit is performed for N ≥ 2000. Graphs until a size of 3000 inc. have been done
using ModelSim and the VHDL code. Beyond, one used a C code performing the same
task

For such constrained graphs, information from local messages has to propa-
gate through the whole graph before convergence. This can’t be done faster than
in a logarithmic time. Thus, this time of convergence to find a K-SAT solution
on a distributed device is, in terms of scaling, the best possible.
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6 Conclusion

One has built a network and written its VHDL code which permit to find so-
lutions of the K-SAT formulas in ln(N) time, the best achievable scaling on
a distributed device. A physical interpretation of alternative methods of paral-
lelization will be described in detail in another manuscript [5]. This algorithm
or its derivatives, which define a local network with an exponential number of
attractors, has applications in error-correcting codes [2, 3] and gene-regulatory
networks [6]. Its powerful reconstruction properties are also likely to be used
in probabilistic inference for constrained graphs [8], artificial intelligence and
theoretical neuroscience [1, 7].
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