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Abstract. Interval temporal logics take time intervals, instead of time instants, as

their primitive temporal entities. One of the most studied interval temporal logics

is Halpern and Shoham’s modal logic of time intervals HS, which associates a

modal operator with each binary relation between intervals over a linear order (the

so-called Allen’s interval relations). A complete classification of all HS fragments

with respect to their relative expressive power has been recently given for the

classes of all linear orders and of all dense linear orders. The cases of discrete

and finite linear orders turn out to be much more involved. In this paper, we make

a significant step towards solving the classification problem over those classes of

linear orders. First, we illustrate various non-trivial temporal properties that can

be expressed by HS fragments when interpreted over finite and discrete linear

orders; then, we provide a complete set of definabilities for the HS modalities

corresponding to the Allen’s relations meets, later, begins, finishes, and during,

as well as the ones corresponding to their inverse relations. Given the results

presented here, the only missing piece of the expressiveness puzzle is that of the

definabilities for the modality corresponding to the Allen relation overlaps (those

for the inverse relation overlapped by would immediately follow by symmetry).

1 Introduction

Interval reasoning naturally arises in various fields of computer science and artificial in-

telligence, ranging from hardware and real-time system verification to natural language

processing, from constraint satisfaction to planning [4,5,14,22,23,25]. Interval tempo-

ral logics make it possible to reason about interval structures over linearly ordered do-

mains, where time intervals, rather than time instants, are the primitive ontological en-

tities. The distinctive features of interval temporal logics turn out to be useful in various

application domains [8,11,21,22,25]. For instance, they allow one to model telic state-

ments, that is, statements that express goals or accomplishments, e.g., the statement:

‘The airplane flew from Venice to Toronto’ [21]. Moreover, when we restrict ourselves

to discrete linear orders, such as, for instance, N or Z, some interval temporal logics
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are expressive enough to constrain the length of intervals, thus allowing one to specify

safety properties involving quantitative conditions [21]. This is the case, for instance,

with the well-known ‘gas-burner’ example [25]. Temporal logics with interval-based

semantics have also been proposed as suitable formalisms for the specification and ver-

ification of hardware [22] and of real-time systems [25].

The variety of binary relations between intervals in a linear order was first studied

by Allen [4], who investigated their use in systems for time management and planning.

In [16], Halpern and Shoham introduced and systematically analyzed the (full) logic of

Allen’s relations, called HS in this paper, that features one modality for each Allen rela-

tion. In particular, they showed that HS is highly undecidable over most classes of linear

orders. This result motivated the search for (syntactic) HS fragments offering a good

balance between expressiveness and decidability/complexity [6,7,9,10,12,18,20,21]. A

comparative analysis of the expressive power of HS fragments is far from being trivial,

because some HS modalities are definable in terms of others, and thus syntactically dif-

ferent fragments may turn out to be equally expressive. Moreover, the definability of a

specific modality in terms of other ones depends, in general, on the class of linear or-

ders over which the logic is interpreted, and the classification of the relative expressive

power of HS fragments with respect to a given class of linear orders cannot be directly

transferred to another class. More precisely, while definabilities do transfer from a class

C to all its proper sub-classes, there might be new definability relations that hold in

some sub-class of C, but not in C itself. Conversely, undefinabilities do transfer from a

class to all its proper super-classes, but not vice versa. Proving a specific undefinability

result amounts to providing a counterexample based on concrete linear orders from the

considered class. As a matter of fact, different assumptions on the underlying linear

orders give rise, in general, to different sets of definabilities [2,13].

Contribution. Many classes of linear orders are of practical interest, including the class

of all (resp., dense, discrete, finite) linear orders, as well as the particular linear order

on R (resp., Q, Z, and N). A precise characterization of the expressive power of all HS

fragments with respect to the class of all linear orders and that of all dense linear orders

has been given in [13] and [2], respectively. The classification of HS fragments over

the classes of discrete and finite linear orders presents a number of convoluted technical

difficulties. In [12], the authors focus on strongly discrete linear orders, by character-

izing and classifying all decidable fragments of HS with respect to both complexity of

the satisfiability problem and relative expressive power. In this paper, we make a signif-

icant step towards a complete classification of the expressiveness of all (decidable and

undecidable) fragments of HS over finite and discrete linear orders, and in doing so we

considerably extend the expressiveness results presented in [12]. As a matter of fact,

given the present contributions, the only missing piece of the expressiveness puzzle is

that of the definabilities for the modality corresponding to the Allen relation overlaps

(those for the inverse relation overlapped by would immediately follow by symmetry).

Structure of the paper. In the next section, we introduce the logic HS. Then, in Sec-

tion 3, we introduce the notion of definability of a modality in an HS fragment, and we

present the main tool we use to prove our results. In order to provide the reader with

an idea of the expressive power of HS modalities, we also illustrate some meaningful

temporal properties, like counting and boundedness properties, which can be expressed



On the expressiveness of HS over finite and discrete linear orders 3

HS modalities

〈A〉

〈L〉

〈B〉

〈E〉

〈D〉

〈O〉

Allen’s relations

[x, y]RA[x
′, y′] ⇔ y = x′

[x, y]RL[x
′, y′] ⇔ y < x′

[x, y]RB [x′, y′] ⇔ x = x′, y′ < y

[x, y]RE [x
′, y′] ⇔ y = y′, x < x′

[x, y]RD[x′, y′] ⇔ x < x′, y′ < y

[x, y]RO [x′, y′] ⇔ x < x′ < y < y′

Graphical representation
x y

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

x′ y′

Fig. 1. Allen’s interval relations and the corresponding HS modalities.

in HS fragments when interpreted over discrete linear orders. Then, as a warm-up, in

Section 4 we present a first, simple expressiveness result, by providing the complete

set of definabilities for the HS modalities 〈A〉, 〈L〉, 〈A〉, and 〈L〉, corresponding to

Allen’s relations meets and later, and their inverses met by and before, respectively.

Section 5 contains our main technical result, that is, a complete set of definabilities for

the HS modalities 〈D〉, 〈E〉, 〈B〉, 〈D〉, 〈E〉, and 〈B〉, corresponding to Allen’s relations

during, finishes, and begins, and their inverses contains, finished by, and begun by, re-

spectively. The proofs of the results in this section are rather difficult and much more

technically involved than the ones in Section 4. Therefore, we limit ourselves to giving

an overview of the proofs, and we refer the interested reader to [3] for the details. We

conclude the paper with some final remarks.

2 Preliminaries

Let D = 〈D,<〉 be a linearly ordered set. An interval over D is an ordered pair [a, b],
where a, b ∈ D and a ≤ b. An interval is called a point interval if a = b and a strict

interval if a < b. In this paper, we assume the strict semantics, that is, we exclude

point intervals and only consider strict intervals. The adoption of the strict semantics,

excluding point intervals, instead of the non-strict semantics, which includes them, con-

forms to the definition of interval adopted by Allen in [4], but differs from the one given

by Halpern and Shoham in [16]. It has at least two strong motivations: first, a number

of representation paradoxes arise when the non-strict semantics is adopted, due to the

presence of point intervals, as pointed out in [4]; second, when point intervals are in-

cluded, there seems to be no intuitive semantics for interval relations that makes them

both pairwise disjoint and jointly exhaustive. If we exclude the identity relation, there

are 12 different relations between two strict intervals in a linear order, often called

Allen’s relations [4]: the six relations RA (adjacent to), RL (later than), RB (begins),

RE (ends), RD (during), and RO (overlaps), depicted in Fig. 1, and their inverses, that

is, RX = (RX)−1, for each X ∈ {A,L,B,E,D,O}.

We interpret interval structures as Kripke structures, with Allen’s relations play-

ing the role of the accessibility relations. Thus, we associate a modality 〈X〉 with

each Allen relation RX . For each X ∈ {A,L,B,E,D,O}, the transpose of modal-
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ity 〈X〉 is modality 〈X〉, corresponding to the inverse relation RX of RX . Halpern

and Shoham’s logic HS [16] is a multi-modal logic with formulae built from a finite,

non-empty set AP of atomic propositions (also referred to as proposition letters), the

propositional connectives ∨ and ¬, and a modality for each Allen relation. With every

subset {RX1 , . . . , RXk
} of these relations, we associate the fragment X1X2 . . .Xk of

HS, whose formulae are defined by the grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X1〉ϕ | . . . | 〈Xk〉ϕ,
where p ∈ AP . The other propositional connectives and constants (e.g., ∧, →, and ⊤),

as well as the dual modalities (e.g., [A]ϕ ≡ ¬〈A〉¬ϕ), can be derived in the standard

way. We define the modal depth of a formula as the largest nesting of modal operators

in it. For a fragment F = X1X2 . . .Xk and a modality 〈X〉, we write 〈X〉 ∈ F if

X ∈ {X1, . . . , Xk}. Given two fragments F1 and F2, we write F1 ⊆ F2 if 〈X〉 ∈ F1

implies 〈X〉 ∈ F2, for every modality 〈X〉. Finally, for a fragment F = X1X2 . . .Xk

and a formula ϕ, we write ϕ ∈ F or, equivalently, we say that ϕ is an F -formula,

meaning that ϕ belongs to the language of F .

The (strict) semantics of HS is given in terms of interval models M = 〈I(D), V 〉,
where D is a linear order, I(D) is the set of all (strict) intervals over D, and V is a

valuation function V : AP 7→ 2I(D), which assigns to each atomic proposition p ∈ AP
the set of intervals V (p) on which p holds. The truth of a formula on a given interval

[x, y] in an interval model M is defined by structural induction on formulae as follows:

– M, [x, y] 
 p if and only if [x, y] ∈ V (p), for each p ∈ AP ;

– M, [x, y] 
 ¬ψ if and only if it is not the case that M, [x, y] 
 ψ;

– M, [x, y] 
 ϕ ∨ ψ if and only if M, [x, y] 
 ϕ or M, [x, y] 
 ψ;

– M, [x, y] 
 〈X〉ψ if and only if there exists [x′, y′] such that [x, y]RX [x′, y′] and

M, [x′, y′] 
 ψ, for each modality 〈X〉.

Formulae of HS can be interpreted over a class of interval models (built on a given

class of linear orders). Among others, we mention the following classes of (interval

models built on important classes of) linear orders: (i) the class of all linear orders Lin;

(ii) the class of (all) dense linear orders Den, that is, those in which for every pair of

distinct points there exists at least one point in between them (e.g., Q and R); (iii) the

class of (all) discrete linear orders Dis, that is, those in which every element, apart from

the greatest element, if it exists, has an immediate successor, and every element, other

than the least element, if it exists, has an immediate predecessor (e.g., N, Z, and Z+Z);

(iv) the class of (all) finite linear orders Fin, that is, those having only finitely many

points. A formula φ of HS is valid over a class C of linear orders, denoted by 
C φ, if it

is true on every interval in every interval model belonging to C. Two formulae φ and ψ

are equivalent relative to the class C of linear orders, denoted by φ ≡C ψ, if 
C φ↔ ψ.

3 Definability and expressivenesss

Definition 1 (Definability). A modality 〈X〉 of HS is definable in an HS fragment F
relative to a class C of linear orders, denoted 〈X〉 ✁C F , if 〈X〉p ≡C ψ for some

F -formula ψ over the atomic proposition p, for any p ∈ AP . Then, the equivalence

〈X〉p ≡C ψ is called a definability equation for 〈X〉 in F relative to C. We write

〈X〉 6✁ CF if it is not the case that 〈X〉✁C F .
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As we have already noted, smaller classes of linear orders inherit the definabilities

holding for larger classes: if C1 and C2 are classes of linear orders such that C1 ⊂ C2,

then all definabilities holding for C2 are also valid for C1. However, more definabilities

can possibly hold for C1. On the other hand, undefinability results for C1 hold also for

C2. In the rest of the paper, we omit the class of linear orders when it is clear from

the context (e.g., we will simply write 〈X〉p ≡ ψ and 〈X〉 ✁ F for 〈X〉p ≡C ψ and

〈X〉✁C F , respectively).

It is known from [16] that, when the strict semantics is assumed, all HS modalities

are definable in the fragment containing modalities 〈A〉, 〈B〉, and 〈E〉, and their trans-

poses 〈A〉, 〈B〉, and 〈E〉, while in the non-strict semantics, the four modalities 〈B〉,
〈E〉, 〈B〉, and 〈E〉 suffice, as shown in [24]. Given two HS fragments F1 and F2, we

say that F2 is at least as expressive as F1, denotedF1 � F2, if each operator 〈X〉 ∈ F1

is definable in F2, and that F1 is strictly less expressive than F2, denoted F1 ≺ F2, if

F1 � F2 holds but F2 � F1 does not. The notions of expressively equivalent fragments

and expressively incomparable fragments can be defined likewise.

Definition 2 (Optimal definability). A definability 〈X〉✁F is optimal if 〈X〉 6✁F ′ for

each fragment F ′ such that F ′ ≺ F .

3.1 Proof techniques to disprove definability

In order to show non-definability of a given modality in a certain fragment, we use the

standard notion of N-bisimulation [15,17,19], suitably adapted to our setting.

Definition 3. Let F be an HS-fragment. AnFN -bisimulation between two modelsM =
〈I(D), V 〉 and M ′ = 〈I(D′), V ′〉 over a set of proposition letters AP is a sequence of

N relations ZN , . . . , Z1 ⊆ I(D) × I(D′) such that: (i) for every ([x, y], [x′, y′]) ∈ Zh,

with N ≥ h ≥ 1, M, [x, y] 
 p if and only if M ′, [x′, y′] 
 p, for all p ∈ AP (local

condition); (ii) for every ([x, y], [x′, y′]) ∈ Zh, with N ≥ h > 1, if [x, y]RX [v, w] for

some [v, w] ∈ I(D) and some 〈X〉 ∈ F , then there exists ([v, w], [v′, w′]) ∈ Zh−1 such

that [x′, y′]RX [v′, w′] (forward condition); (iii) for every ([x, y], [x′, y′]) ∈ Zh, with

N ≥ h > 1, if [x′, y′]RX [v′, w′] for some [v′, w′] ∈ I(D′) and some 〈X〉 ∈ F , then

there exists ([v, w], [v′, w′]) ∈ Zh−1 such that [x, y]RX [v, w] (backward condition).

Given an FN -bisimulation, the truth of F -formulae of modal depth at most h − 1 is

invariant for pairs of intervals belonging to Zh, with N ≥ h ≥ 1 (see, e.g., [15]).

Thus, to prove that a modality 〈X〉 is not definable in F , it suffices to provide, for every

natural numberN , a pair of models M and M ′, and an FN -bisimulation between them

for which there exists a pair ([x, y], [x′, y′]) ∈ ZN such that M, [x, y] 
 〈X〉p and

M ′, [x′, y′] 
 ¬〈X〉p, for some p ∈ AP (in this case, we say that the FN -bisimulation

violates 〈X〉). To convince oneself that this is enough to ensure that 〈X〉 is not definable

by any F -formula of any modal depth, assume, towards a contradiction, that φ is an

F -formula of modal depth n such that 〈X〉p ≡ φ. Since, for each N , there is an FN -

bisimulation that violates 〈X〉, there exists, in particular, one such bisimulation for

N = n + 1. Let ([x, y], [x′, y′]) ∈ ZN be the pair of intervals that violates 〈X〉, that

is, M, [x, y] 
 〈X〉p and M ′, [x′, y′] 
 ¬〈X〉p. Then, the truth value of φ over [x, y]
(in M ) and [x′, y′] (in M ′) is the same, and this is in contradiction with the fact that
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M, [x, y] 
 〈X〉p and M ′, [x′, y′] 
 ¬〈X〉p. A result obtained following this argument

applies to all classes of linear orders that contain (as their elements) both structures

on which M and M ′ are based. Notice that, in some cases, it is convenient to define

FN -bisimulations between a model M and itself.

It is worth pointing out that the standard notion of F -bisimulation can be recovered

as a special case of FN -bisimulation. Formally, an F -bisimulation can be thought of as

an FN -bisimulation with N = 2 and Z1 = Z2. In the following, as is customary, we

will treat F -bisimulations as relations instead of sequences of two equal relations: if the

sequence Z2, Z1 is an F -bisimulation, with Z1 = Z2 = Z , then we will simply refer to

it as to the relationZ . It is important to notice that showing that two intervals are related

by an F -bisimulation (i.e., they are F -bisimilar) is stronger than showing that they are

related by a relation ZN , which belongs to a sequence ZN , . . . , Z1 corresponding to

an FN -bisimulation (i.e., the intervals are FN -bisimilar). Indeed, while in the latter

case we are only guaranteed invariance of F -formulae of modal depth at most N − 1,

in the former case the truth of F -formulae of any (possibly unbounded) modal depth

is preserved. This means that undefinability results obtained using F -bisimulations are

not restricted to the finitary logics we consider in this paper, but also apply to extensions

with infinite disjunctions and with fixed-point operators.

Since F -bisimulations are notationally easier to deal with than FN -bisimulations,

it is in principle more convenient to use the former, rather than the latter, when proving

an undefinability result. However, while in few cases (see Section 4) a proof based on

F -bisimulations is possible, this is not generally the case, because some modalities that

cannot be defined in fragments of HS can be expressed in their infinitary versions. In

those cases (see Section 5), we resort to a proof via FN -bisimulations.

For a given modality 〈X〉 and a given class C of linear orders, we shall identify

a set of definabilities for 〈X〉, and we shall prove its soundness, by shoving that each

definability equation is valid in C, and its completeness, by arguing that each definability

is optimal and that there are no other optimal definabilities for 〈X〉 in C. Completeness

is proved by computing all maximal fragments F that cannot define 〈X〉 (in the attempt

of defining 〈X〉 in F , we can obviously make use of the set of known definabilities). For

each modality, such fragments are listed in the last column of Fig. 2. Depending on the

number of known definabilities, such a task can be time-consuming and error-prone, so

an automated procedure has been devised and implemented in [1] to serve the purpose.

Then, for each such F and each N ∈ N, we provide an FN -bisimulation that violates

〈X〉. Notice that all the classes of linear orders we consider in this paper are (left/right)

symmetric, namely, if a class C contains a linear order D = 〈D,≺〉, then it also contains

(a linear order isomorphic to) its dual linear order Dd = 〈D,≻〉, where ≻ is the inverse

of ≺. This implies that the definabilities for 〈L〉, 〈A〉, 〈B〉, and 〈B〉 can be immediately

deduced (and shown to be sound and optimal) from those for 〈L〉, 〈A〉, 〈E〉, and 〈E〉,
respectively.

Fig. 2 depicts the complete sets of optimal definabilities holding in Dis and Fin for

the modalities 〈L〉, 〈A〉, 〈D〉, 〈D〉, 〈E〉, and 〈E〉 (recall that those for 〈L〉, 〈A〉, 〈B〉,
and 〈B〉 follow by symmetry). Section 4 and Section 5 are devoted to proving complete-

ness of such sets. For all the modalities, but 〈A〉 and 〈A〉, soundness is an immediate

consequence of the corresponding soundness in Lin, shown in [13]. For lack of space,
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Modalities Equations Definabilities Maximal fragments not defining it

〈L〉 〈L〉p ≡ 〈A〉〈A〉p 〈L〉✁ A
BDOALBEDO

BEDOALEDO

〈A〉
〈A〉p ≡ ϕ(p) ∨ 〈E〉ϕ(p)∗ 〈A〉✁ BE

LBDOALBEDO

LBEDOALEDO
∗ϕ(p) := [E]⊥ ∧ 〈B〉([E][E]⊥ ∧〈E〉(p ∨ 〈B〉p))

〈D〉 〈D〉p ≡ 〈B〉〈E〉p 〈D〉✁ BE
ALBOALBEDO

ALEOALBEDO

〈D〉 〈D〉p ≡ 〈B〉〈E〉p 〈D〉✁ BE
ALBEDOALBO

ALBEDOALEO

〈E〉 no definabilities ALBDOALBEDO

〈E〉 no definabilities ALBEDOALBDO

Fig. 2. Optimal definabilities in Dis and Fin. The last column contains the maximal fragments not

defining the modality under consideration.

we omit the proofs of the soundness of the definabilities for 〈A〉 and 〈A〉, which any-

way are quite straightforward. Finally, while it is known from [16] that 〈O〉✁BE (resp.,

〈O〉 ✁ BE), it is still an open problem whether this is the only optimal definability for

〈O〉 (resp., 〈O〉) in Dis and in Fin.

3.2 Expressing properties of a model in HS fragments

We give here a short account of meaningful temporal properties, such as counting and

(un)boundedness ones, which can be expressed in HS fragments, when they are in-

terpreted over discrete linear orders. The outcomes of such an analysis are summarized

in Fig. 3 (other properties can obviously be expressed as Boolean combinations of those

displayed). They demonstrate the expressiveness capabilities of HS modalities, which

are of interest by themselves. As an example, the ability of constraining the length of

intervals is a desirable feature of any formalism for representing and reasoning about

temporal knowledge over a discrete domain. As a matter of fact, most HS fragments

have many chances to succeed in practical applications, and thus it is definitely worth

carrying out a taxonomic study of their expressiveness. As we alreay pointed out, such

a study presents various intricacies. For instance, in some fragments, assuming the dis-

creteness of the linear order suffices to constrain the lenght of intervals (this is the case

with the fragment E); other fragments rely on additional assumptions (this is the case

with the fragment DO, which requires the linear order to be right-unbounded). This

gives evidence of how expressiveness results can be affected by the specific class of

linear orders under consideration.

Counting properties. When the linear order is assumed to be discrete, some HS frag-

ments are powerful enough to constrain (to some extent) the length of an interval, that

is, the number of its points minus one. Let ∼∈ {<,≤,=,≥, >}. For every k ∈ N, we

define ℓ∼k as a (pre-interpreted) atomic proposition which is true over all and only those

intervals whose length is ∼-related to k. Moreover, for a modality 〈X〉, we denote by
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Counting properties Right Unboundedness (∃r)

ℓ>k ≡ 〈E〉k⊤ 〈B〉⊤, 〈A〉⊤

ℓ=k ≡ 〈E〉k−1⊤∧ [E]k⊥ (‡) 〈O〉⊤, [B]〈L〉⊤

ℓ>2·k ≡ 〈D〉k⊤ (§) 〈D〉⊤, 〈E〉〈O〉⊤

ℓ≤2·k ≡ [D]k⊥ (‡,§) [O]〈L〉⊤

ℓ>1 ≡† 〈O〉⊤ (♭) [D]〈L〉⊤
ℓ>2·k+1 ≡† 〈D〉k〈O〉⊤

ℓ=2·(k+1) ≡
† 〈D〉k〈O〉⊤ ∧ [D]k+1⊥

†: only on right-unbounded domains; ‡: only on intervals longer than 1;
§: only on left-unbounded domains; ♭: only on intervals longer than 2.

Fig. 3. Expressiveness of HS modalities over discrete linear orders.

〈X〉kϕ the formula 〈X〉 . . . 〈X〉ϕ, with k occurrences of 〈X〉 before ϕ. Limiting our-

selves to a few examples, we highlight here the ability of some of the HS modalities to

express ℓ∼k, for any k. It is well known that the fragments E and B can express ℓ∼k,

for every k and ∼ (see, e.g., [16]). As an example, the formulae 〈E〉k⊤ and [E]k⊥
are equivalent to ℓ>k and ℓ≤k, respectively. The fragment D features limited counting

properties, as, for every k, 〈D〉k⊤ ∧ [D]k+1⊥ is true over intervals whose length is

either 2 · k + 1 or 2 · (k + 1) (notice that, as a particular instance, [D]⊥ is true over

intervals whose length is either 1 or 2). In a sense, it is not able to discriminate the

parity of an interval. The counting capabilities of the fragment O are limited as well:

it allows one to discriminate between unit intervals (intervals whose length is 1) and

non-unit intervals (which are longer than 1), provided that the underlying linear order

is right-unbounded, like Z or N (〈O〉 possesses the same capability, provided that the

underlying linear order is left-unbounded, like Z or Z−). However, quite interestingly,

by pairing 〈D〉 and 〈O〉, or, symmetrically, 〈D〉 and 〈O〉, it is possible to express ℓ∼k

for every k and ∼ over right-unbounded linear order (left-unbounded linear orders if

〈O〉 is replaced by 〈O〉): it suffices to first use 〈D〉 to narrow the length down to k or

k + 1, and then 〈O〉 (or 〈O〉) to discriminate the parity.

(Un)boundedness properties. Let us denote by ∃r (resp., ∃l) a (pre-interpreted) atomic

proposition that is true over all and only the intervals that have a point to their right

(resp., left). Various combinations of HS operators can express ∃r. Once again, while

in some cases we need to assume only the discreteness of the underlying linear order,

there are cases where the validity of the definability relies on additional assumptions.

For example, to impose that the current interval has a point to the right within the

fragment O, we can use 〈O〉⊤ only on non-unit intervals (otherwise, 〈O〉 has no effect).

Analogously, it is possible to express ∃l, possibly under analogous assumptions.

4 The Easy Cases

In this section, we prove the completeness of the set of definabilities for the modalities

〈L〉, 〈L〉, 〈A〉, and 〈A〉, thus strengthening a similar result presented in [12, Theorem 1].
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Theorem 1. The sets of optimal definabilities for 〈L〉 and 〈A〉 (listed in Fig. 2), as well

as (by symmetry) those for 〈L〉 and 〈A〉, are complete for the classes Dis and Fin.

Proof. The results for 〈L〉 (and, symmetrically, for 〈L〉) immediately follows from [13],

as the completeness proof for 〈L〉 presented there used a bisimulation between models

based on finite linear orders. Notice that 〈L〉 ✁ BE holds in Dis and Fin, as it does in

Lin. However, such a definability, which is optimal in Lin, is not optimal in Dis and Fin

(and thus it is not listed in Fig. 2), due to the fact that 〈A〉 ✁ BE (which is not a sound

definability in Lin) holds over Dis. As a pleasing consequence, we can extend Venema’s

result from [24] concerning the expressive completeness of the fragment BEBE in the

non-strict semantics to the strict one under the discreteness assumption.

According to Fig. 2, 〈A〉 is definable in terms ofBE, implying that the maximal frag-

ments not defining 〈A〉 are, as shown in the last column of Fig. 2, LBDOALBEDO and

LBEDOALEDO. Thus, proving that 〈A〉✁BE is the only optimal definability amounts

to providing two bisimulations, namely an LBDOALBEDO- and an LBEDOALEDO-

bisimulation that violate 〈A〉. As for the first one, we consider two models M and M ′,

both based on the finite linear order {0, 1, 2}. We set V (p) = {[1, 2]}, V ′(p) = ∅, and

Z = {([0, 1], [0, 1]), ([0, 2], [0, 2])}. It is easy to verify that Z is an LBDOALBEDO-

bisimulation that violates 〈A〉, as M, [0, 1] 
 〈A〉p and M ′, [0, 1] 
 ¬〈A〉p. As for

the second one, models and valuations are defined as before, but we take now Z =
{([0, 1], [0, 1])}. Once again, it is easy to see that Z is an LBEDOALEDO-bisimulation

that violates 〈A〉, as M, [0, 1] 
 〈A〉p and M ′, [0, 1] 
 ¬〈A〉p. Since the result is based

on a finite linear order, it holds for both Dis and Fin. ⊓⊔

5 The hard cases

In this section, we provide the completeness result for the modalities 〈D〉 and 〈D〉 (The-

orem 2), as well as for 〈E〉, 〈E〉, 〈B〉, and 〈B〉 (Theorem 3). Because of the technical

complexity of the proofs, we only provide proof sketches that explain the main ideas

behind them at a very intuitive level, and refer the interested reader to [3] for the details.

Theorem 2. The sets of optimal definabilities for 〈D〉 and 〈D〉 (listed in Fig. 2) are

complete for the classes Dis and Fin.

Proof (sketch). According to Fig. 2, 〈D〉 is definable in terms of BE; thus there are two

maximal fragments not defining it, namely,ALBOALBEDO and ALEOALBEDO. First,

we observe that it is possible to define 〈D〉 in infinitary extensions of AB or AE, using,

respectively, the following formulae of unbounded modal depths:

〈D〉p ≡

{∨

k∈N
(ℓ=k ∧

∨

i<k−1(〈B〉(ℓ=i ∧ 〈A〉(ℓ<k−i ∧ p)))),
∨

k∈N
(ℓ=k ∧

∨

i<k−1(〈E〉(ℓ=i ∧ 〈A〉(ℓ<k−i ∧ p)))),

where length constraints of the form ℓ=k and ℓ<k can be expressed using either 〈B〉
or 〈E〉 (see Section 3.2). It immediately follows that there exists no ALBOALBEDO-

bisimulation (resp., ALEOALBEDO-bisimulation) that violates 〈D〉, and thus we have

to resort to ALBOALBEDON -bisimulations (resp., ALEOALBEDON -bisimulations).

Besides, since the two fragments ALBOALBEDO and ALEOALBEDO are symmetric,
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Fig. 4. Grid-based interpretation of intervals (left) and a graphical account of the

ALBOALBEDON -bisimulation that violates 〈D〉 (right).

that is, they are indistinguishable over symmetric classes of linear orders, providing an

ALBOALBEDON -bisimulation that violates 〈D〉 suffices to prove the result.

For the purposes of the proof, it is convenient to introduce a new interpretation for

intervals over grid-like structures (the so-called compass structures [24]), by exploiting

the existence of a natural bijection between the intervals [x, y] of an interval model and

the points p = (x, y), with x < y, of an N × N grid. A graphical account is given in

Fig. 4 (left), where the N ×N grid has been rotated by a 45-degree angle clockwise, so

that the bisector of the I and III quadrant is the base of the picture.

First, we define the modelM , as depicted in Fig. 4 (right), where intervals satisfying

p are all and only the points belonging to the black areas. Thus, intervals satisfying p

are grouped into stripes. The dotted lines in the picture are perpendicular to the stripes,

more precisely, to (the ideal continuations of) their edges. Each dotted line intersects

exactly one such continuation at the base of the picture (dashed line, representing the

bisector of the I and III quadrant). Intersections of dotted lines with stripes give rise to

small squares. Black (resp., white) squares only contains intervals satisfying p (resp.,

¬p). Now, let us focus on the gray, zigzag solid line. If we ideally draw the straight

lines continuing the segments making up such a zigzag line, their intersections shape

bigger squares, each of them containing a (square) number of the above-mentioned

small squares.

In order to define an ALBOALBEDON -bisimulation, we focus on the generic hth

element of the sequence, namely, the relation Zh. The idea is to relate points that are

either “far enough” from the elements of discontinuity of the model (stripes’ edges, dot-

ted lines, dashed line, and gray line) or at the same distance from them. The key element

is the notion of “far enough”, which can be formalized by means of monotonically in-

creasing distance functions on h, representing the number of nested modalities that can

still be used to build a formula that discriminates between the related intervals, before

reaching the greatest allowed modal depth N . In other words, the notion of distance is

induced by h through suitable distance functions, and the distance decreases as h does:

in this way, if an interval i1 is far from a significant element e of the model, according to

the notion of distance induced by some h (i.e., i1 is h-far from e), it is always possible

to find another interval i2, that is closer to e, but still far from e according to the “new”

notion of distance induced by h− 1 (i.e., i2 is (h− 1)-far from e).
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Now, still at a very high level, by exploiting such a notion of “far enough”, we can

conclude that the two red circles in the two white stripes in the middle of the picture

are Zh-related, because, according to suitable distance functions, both of them are far

from all the elements of discontinuity of the model, that is, the edges of their own small

squares (both points are in the middle of a small square, with enough points in between

them and the edges), as well as the ones of the big square. Moreover, the relative posi-

tion of the two small squares in the big one is the same (up to a certain distance from the

edges of the big square), with the exception of the position relative to the bottom-right

edge of the big square: one of the circles is in the first small square, the other in the

third one. This is not a problem, because distances in the bottom-right directions can

be ignored as moving in that direction corresponds to using the modality 〈E〉, which

does not belong to ALBOALBEDO. Finally, from Fig. 4, it is clear that the lower circle

does not “see” any interval satisfying p (black stripes) in the triangle underneath, and

thus 〈D〉p is false on it. On the contrary, the higher circle “sees” intervals satisfying

p in the triangle underneath, which means that 〈D〉p is true over it. Thus, we have an

ALBOALBEDON -bisimulation that violates 〈D〉. A similar construction can be done to

deal with the modality 〈D〉, which somehow turns the picture upside-down, thus show-

ing that the result holds also for 〈D〉. ⊓⊔

Theorem 3. There are no definabilities for 〈E〉 and 〈E〉 (as shown in Fig. 2), as well

as for their transposes 〈B〉 and 〈B〉, in the classes Dis and Fin.

Proof (sketch). We only give the sketch of the proof for the operators 〈E〉 and 〈E〉. The

result for 〈B〉 and 〈B〉 follows from a symmetric argument. According to Fig. 2, there

are no definabilities for 〈E〉 when the underlying structure is discrete, and therefore

ALBDOALBEDO is the only maximal fragment not defining it. This is also true on

Lin and Den, but on Dis and Fin it is simply harder to prove. An indication of such a

difficulty comes from the analysis of the proofs presented in [13], where the density

of the models involved plays a major role. Similarly to the case of Theorem 2, 〈E〉 is

definable in an infinitary extension of the language AB:

〈E〉p ≡
∨

k∈N
(ℓ=k ∧

∨

i<k(〈B〉(ℓ=i ∧ 〈A〉(ℓ=k−i ∧ p))),

since, as stated in Section 3.2, 〈B〉 can express ℓ=k, for every k ∈ N. Thus, there

exists no ALBDOALBEDO-bisimulation that violates 〈E〉, and we need to find an

ALBDOALBEDON -bisimulation. Unlike the case of Theorem 2, the best way to sketch

the construction is by explicitly giving models and relative valuation functions.

Let D be a finite domain, e.g., an arbitrarily large prefix of N. We define a model

M based on it and an ALBDOALBEDON -bisimulation between M and itself that vi-

olates 〈E〉. Given N ∈ N, we make use of h ≤ N to refer to the hth component of

the N -bisimulation, also called in the following the hth step of the N -bisimulation.

Building the ALBDOALBEDON -bisimulation relies on a very technical construction

that allows us to “simulate density” over discrete models up to a certain threshold. To

this end, in analogy to what we did in the proof of Theorem 2, we will use monotoni-

cally increasing threshold functions, which are parametric in h and which characterize a

notion of “long interval”, relative to a generic step h of the N -bisimulation. Since such

functions are monotonic, intervals that are “long” at the step h of the N -bisimulation

always contain intervals that are still “long” at the step h − 1, despite being obviously
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Fig. 5. A graphical account of the ALBDOALBEDON -bisimulation that violates 〈E〉.

shorter of the the containing interval. We will also use suitably defined equivalences up

to a threshold (given by the aforementioned threshold functions) to recognize when two

intervals are “long enough” to be indistinguishable by modal formulae in the fragment

ALBDOALBEDO whose modal depth is less than h ≤ N .

Now, we define the function f(h) = h+1, which will be used as threshold function,

and the function fP(h) =
∑h

i=1 f(i). Notice that both functions are monotonically

increasing. Moreover, we let t = 2(fP(1) + N + 4), a+ = t2

2 − 1, and a− = − t2

2 .

Finally, we consider a partition of D as in Fig. 5.

Three subsets, from left to right, are clearly identified in Fig. 5:

P = {p1, . . . , pt}, R = {x ∈ D | pt < x < a−}, A = {x ∈ D | a− ≤ x ≤ a+},

where we let pt = a− − t and, for each i < t, pi = pi+1 − 1.

For each h, we define a further partition of the subsets P and A, as follows:

P =
⋃







P−
h = {x | p1 ≤ x ≤ pfP(h)}

P+
h = {x | pt−fP(h)+1 ≤ x ≤ pt}

Ph = {x | pfP(h) < x < pt−fP(h)+1},

Ai = {x ∈ D | a− + (i− 1) · t ≤ x < a− + i · t},

A =
⋃











A−
h =

⋃fP (h)
i=1 Ai

A+
h =

⋃t
i=t−fP (h)+1 A

i

Ah = A \ (A−
h ∪ A+

h ) =
⋃t−fP (h)

i=fP (h)+1 A
i.

Roughly speaking, we can say that stepping from h+1 to h, the sets P−
h+1, P+

h+1, A−
h+1,

and A+
h+1 shrink, while the sets Ph+1 and Ah+1 expand. Now, let M be a model based

on D described as above. We first define a function V : A → P , and then the valuation

function V of M , which uses V :

V(y) =

{

p1 + i if y = a− + i, for each 0 ≤ i < t

V(y − t) if a− + t ≤ y ≤ a+,

V (p) = {[x, y] | y ∈ A implies x ≤ V(y)}.

In order to define an ALBDOALBEDON -bisimulation, we first define a sequence ZN ,

. . . , Z1, which is common to both cases 〈E〉 and 〈E〉, and then we show how to adjust

it to obtain our results. To characterize the generic hth component Zh of the sequence

ZN , . . . , Z1 we make use of an equivalence relation ≡h, parameterized by h, which is

defined as follows. Let us denote by x (resp., w) the nth element of Ai (resp., the mth

element of Aj), that is, x = ain and w = ajm. Then, we have:
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x ≡h w iff















x = w or

x,w ∈ Ph or

x,w ∈ A and

{

i = j ∨ x,w ∈ Ah, and

m = n ∨ fP(h) < m,n < t− fP(h) + 1.

As already pointed out, to define the desired N -bisimulation, we also need an equiva-

lence up to a threshold. Such a relation, denoted ≃f
h, relates integers, which represent

interval lengths, as follows: a ≃f
h b if and only if either a = b or both a and b are

greater than the threshold f(h). We can now define Zh as follows: for each 1 ≤ h ≤ N ,

([x, y], [w, z]) ∈ Zh if and only if: (a) x ≡h w and y ≡h z, (b) y − x ≃f
h z − w, (c) if

x,w ∈ P and y, z ∈ A, then V(y)− x ≃f
h V(z)−w, and (d) if x ∈ Ai and y ∈ Aj for

some i, j ∈ {1, . . . , t}, then w ∈ Ak and z ∈ Aℓ for some k, ℓ ∈ {1, . . . , t} such that

j − i ≃f
h ℓ− k. As a last step, we define a new sequence of relations ZE

N , . . . , Z
E
1 such

that ZE
N ∪ ZN , . . . , Z

E
1 ∪ Z1 is an ALBDOALBEDON -bisimulation (the proof is tech-

nically involved, so details are omitted). Consider a point a = aim such that i = m = t
2 ,

that is, a is the t
2 th point of the t

2 th sub-group of A. It holds that V(a) = pm = p t
2

.

Now, for each 1 ≤ h ≤ N , let ZE
h = {([V(a) − (N − h + 1), a], [V(a) − (N −

h), a])}. It is easy to see that M, [V(a) − 1, a] 
 〈E〉p, M, [V(a), a] 
 ¬〈E〉p, and

([V(a)−1, a], [V(a), a]) ∈ ZE
N . Thus,ZE

N∪ZN , . . . , Z
E
1 ∪Z1 is anALBDOALBEDON -

bisimulation that violates 〈E〉.

To deal with the modality 〈E〉, a new sequenceZE
N , . . . , Z

E
1 can be defined, follow-

ing a technique similar to the above-described one, so that ZE
N ∪ ZN , . . . , Z

E
1 ∪ Z1 is

an ALBEDOALBDON -bisimulation that violates 〈E〉. Once again, since the proof only

uses a finite linear order, the result holds for both Dis and Fin. ⊓⊔

6 Conclusions

In this paper we studied the expressiveness of fragments of the interval temporal logic

HS interpreted over both discrete and finite linear orders. A complete classification

of all such fragments with respect to their relative expressive power has been recently

given for the classes of all linear orders and all dense linear orders. The cases of discrete

and finite linear orders turn out to be much more involved. We illustrated here various

non-trivial temporal properties that can be expressed when HS is interpreted over them,

and we provided a complete set of definabilities for the modalities corresponding to

the Allen’s relations meets, later, begins, finishes, and during, plus their transposes. We

leave open the problem of identifying the complete set of definabilities for the modali-

ties corresponding to the Allen relation overlaps and to its inverse overlapped by.
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