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1. Overview

A number of physically and mathematically significant nonlinear evolution equa-
tions are associated with a pair of linear problems, a linear eigenvalue problem and
an auxiliary problem, such that the given evolution equation results as the compat-
ibility condition between them. The Cauchy problem for the nonlinear system is
then solved via the so-called Inverse Scattering Transform (IST) technique.

The solution of the initial value problem of a nonlinear evolution equation by
IST proceeds in three steps, as follows:

1. the direct problem – the transformation of the initial data from the original
“physical” variables (q(x,0)) to the transformed “scattering” variables (S(k,0));

2. time dependence – the evolution of the transformed data often according to
simple, explicitly solvable evolution equations (i.e., finding S(k, t));

3. the inverse problem – the recovery of the evolved solution in the original vari-
ables (q(x, t)) from the evolved solution in the transformed variables (S(k, t)).

However, even though this approach has been widely and extensively applied to
a large number of nonlinear integrable equations (including the nonlinear Schrödin-
ger systems considered in the present work), for many equations a rigorous analysis
of both the scattering map q → S and the inverse map is still not totally developed.
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q(x, 0)
Forward Integral Equation

S(k, 0) = {ρ(k, 0), {kj , Cj (0)}Jj=1}
Simple ODE

q(x, t)
Riemann–Hilbert or GLM eqs

S(k, t) = {ρ(k, t), {kj , Cj (t)}Jj=1}
Figure 1. Scheme of the inverse scattering transform.

Therefore it is unclear under what conditions these integrable systems are really
“solvable”.

A satisfactory treatment of scattering and inverse scattering for a given spectral
problem should aim for the following:

(i) to formulate a notion of scattering data S which is meaningful for (essentially)
all reasonable potentials q in a given functional class, such as, for instance,
q ∈ L1(R);

(ii) to show that the map q → S is injective;
(iii) to show that for (essentially) each set of data satisfying appropriate constraints

there is a corresponding q (i.e., that the inverse map is well-defined).

In the setting of the classical Schrödinger operator these issues are discussed,
for instance, in (Faddeev, 1963 and 1967; Agranovic and Marchenko, 1963; Lev-
itan and Sargsjan, 1975; Chadan and Sabatier, 1977; Deift and Trubowitz, 1979;
Levitan, 1980; Marchenko, 1986; Melin, 1985).

In the present paper we face these issues for the scalar nonlinear Schrödinger
equation. The paper reviews most of the known results and techniques, as well as
incorporating some new ones, in a comprehensive, unified framework. In a forth-
coming publication we plan to address the same problems for the vector/matrix
nonlinear Schrödinger equations and also for integrable discretizations of both the
scalar and vector systems.

2. Introduction

The scalar nonlinear Schrödinger (NLS) equation

iqt = qxx ± 2|q|2q, (2.1)

where q = q(x, t), results from the coupled pair of nonlinear evolution equations

iqt = qxx − 2rq2, (2.2a)

−irt = rxx − 2qr2 (2.2b)

if we let r = ∓q∗, where ∗ denotes complex conjugate.
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The system (2.2a)–(2.2b) can be written as the compatibility condition between
the following two linear problems (Lax pair):

vx =
( −ik q

r ik

)
v, (2.3a)

sometimes referred to as AKNS (or ZS) spectral problem, and

vt =
(

2ik2 + iqr −2kq − iqx

−2kr + irx −2ik2 − iqr

)
v, (2.3b)

where v is a 2-component vector, v(x, t) = (v(1)(x, t), v(2)(x, t))T. In (2.3a)–(2.3b),
k ∈ C is a (spectral) parameter and under the isospectral hypothesis (i.e., assuming
k is time independent) the compatibility condition vxt = vtx yields the nonlinear
system of Equations (2.2a)–(2.2b).

It is convenient to write (2.3a) in the compact form

vx = (ikJ + Q̃)v, (2.4)

where

J =
( −1 0

0 1

)
, Q̃ =

(
0 q

r 0

)
. (2.5)

In the forthcoming sections we shall see how one can construct a theory for
both the direct and inverse problems of the operator (2.4). These issues have been
addressed in, for example, the important work of (Beals and Coifman, 1984, 1985),
who have considered general matrix one-dimensional problems. Their approach to
the inverse problem employs singular integral equations that follow from Riemann–
Hilbert problems. A somewhat inconvenient byproduct of this formulation is, how-
ever, that there is not quite an overlap between the conditions required for the
inverse problem and those used in the inverse side, unless the potentials are in
the Schwartz class. Here we study Gel’fand–Levitan–Marchenko equations of the
inverse problem which allows one to proceed somewhat further.

In this paper we shall show how to any integrable potential of the system (2.4)
corresponds data F(x) and an eigenfunction K(x, ·) which are in L1[x, ∞) for all
x ∈ R (direct problem). Reciprocally, given data F(x) in L1[x, ∞) for all x ∈ R,
there exists a solution K(x, ·) to the equations of the inverse problem which is also
in L1[x, ∞) for all x ∈ R (inverse problem); however, to guarantee that the poten-
tial recovered by this procedure is also in L1[x, ∞) for all x ∈ R somewhat more
stringent conditions on the data are required (see Section 4.4). See, again, Faddeev
(1963, 1967), Agranovich and Marchenko (1963), Levitan and Sargsjan (1975),
Deift and Trubowitz (1979), Levitan (1980) and Marchenko (1986) regarding this
controversial point for the classical Schrödinger operator.
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3. Direct Problem

In the sequel we shall address the study of the spectral properies of the operator
(2.4) under the assumption q, r ∈ L1(R). This is termed the direct problem.

3.1. SUMMARY OF THE RESULTS OF THE DIRECT PROBLEM

(a) If q, r ∈ L1(R), one can define eigenfunctions of (2.4) (cf. (3.2), (3.3))
(

ψ11(x, k)

ψ21(x, k)

)
,

(
N11(x, k)

N21(x, k)

)

which are analytic functions of the spectral parameter k = kR + ikI for kI < 0
(and continuous for kI � 0) and

(
ψ12(x, k)

ψ22(x, k)

)
,

(
N12(x, k)

N22(x, k)

)

which are analytic for kI > 0 (and continuous for kI � 0) (these results are
proved, with all details, for instance, in (Ablowitz et al., 2004)). Also, such
eigenfunctions are bounded by

|N11(x, k)|� I0
(
2
√

Q(x)R(x)
)
, |N21(x, k)|� Q(x)I0

(
2
√

Q(x)R(x)
)
,

|N12(x, k)|� R(x)I0
(
2
√

Q(x)R(x)
)
, |N22(x, k)|� I0

(
2
√

Q(x)R(x)
)
,

where

Q(x) =
∫ ∞

x

|q(y)| dy, R(x) =
∫ ∞

x

|r(y)| dy

and I0 is the 0th order modified Bessel function (cf., for instance, Ablowitz
and Segur, 1981).

(b) The eigenfunctions ψlj (x, k) admit triangular representations with correspond-
ing kernels Klj (x, z) (cf. (3.13)). If q, r ∈ L1(R) then Klj (x, z) ∈ L∞(Rx) ⊗
L1(Rz) (see (3.20) in Prop. 2) and if q, r ∈ L1(R) ∩ L∞(R) then Klj (x, z) ∈
L∞(Rx) ⊗ L1(Rz) and also Klj (x, z) ∈ L∞(R2), i.e., they are bounded with
respect to both variables (see (3.21), Prop. 2).

(c) One can introduce scattering data a(k), b(k), ρ(k) etc. (see (3.35), (3.36),
(3.37)) for all potentials in L1(R). Using the results of (b) (and a generalization
of Wiener’s theorem, cf. App. A), one can then show that if q, r ∈ L1(R),
then:

(c1) b(k), for k ∈ R, is the Fourier transform of an L1-function (cf. Prop. 3);
(c2) (a(k) − 1), for k ∈ R, is the Fourier transform of an L1-function

(cf. Prop. 4);
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(c3) if, in addition, |a(k)| > 0 (which always holds for the defocusing NLS,
Equation (2.1) with the − sign, i.e. the system (2.2a)–(2.2b) with r = q∗
(cf. (3.43))), then ρ(k), k ∈ R, is the Fourier transform of an L1-function
(cf. Theorem 1);

(c4) for the focusing NLS (Equation (2.1) with the + sign, corresponding to
r = −q∗), a small norm condition on the potentials is required in order
to get the same result as in (c3) (cf. Corollary 1).

3.2. EIGENFUNCTIONS

If the potentials q, r are decaying as |x| → ∞, eigenfunctions of the scattering
problem (2.4), i.e., solutions of the differential equations

(∂x − ikJl)ψlj − (Q̃ψ)lj = 0, l, j = 1, 2 (3.1)

with J1 = −1, J2 = 1, are defined through the integral equations

ψlj (x, k) = δlj eiJj kx −
∫ ∞

x

eiJlk(x−z)(Q̃ψ)lj (z, k) dz, (3.2)

Nlj (x, k) = δlj −
∫ ∞

x

ei(Jl−Jj )k(x−z)(Q̃N)lj (z, k) dz, (3.3)

where

ψlj (x, k) = Nlj (x, k)eiJj kx. (3.4)

Column-wise, the vectors

ψ̄(x, k) =
(

ψ11(x, k)

ψ21(x, k)

)
, ψ(x, k) =

(
ψ12(x, k)

ψ22(x, k)

)

are such that

ψ̄(x, k) ∼
(

1
0

)
e−ikx, ψ(x, k) ∼

(
0
1

)
eikx, x → +∞

and therefore they are a set of linearly independent solutions of the second-order
system (2.4). Note that one can also introduce “left” eigenfunctions

φ(x, k) ∼
(

1
0

)
e−ikx, φ̄(x, k) ∼

(
0
1

)
eikx, x → −∞

which constitute a second set of linearly independent solutions of the scattering
problem and

φ(x, k) =
(

φ11(x, k)

φ21(x, k)

)
, φ̄(x, k) =

(
φ12(x, k)

φ22(x, k)

)
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satisfy the integral equations

φlj (x, k) = δlj eiJj kx +
∫ x

−∞
eiJlk(x−z)(Q̃φ)lj (z, k) dz, (3.5)

Mlj (x, k) = δlj +
∫ x

−∞
ei(Jl−Jj )k(x−z)(Q̃M)lj (z, k) dz, (3.6)

where

φlj (x, k) = Mlj (x, k)eiJj kx. (3.7)

The study of the convergence of the Neumann series for the Volterra inte-
gral equations (3.3) (cf., for instance, Ablowitz et al., 2004 for detailed calcu-
lations) yields that if the potentials q, r ∈ L1(R), then N11(x, k), N21(x, k) (and
ψ11(x, k), ψ21(x, k)) are analytic functions of k on the lower half k-plane and
continuous up to the real axis, N12(x, k), N22(x, k) (and ψ12(x, k), ψ22(x, k)) are
analytic on the upper half k-plane and continuous up to the real axis.

Also, under the same assumption on the potentials, one can show by iteration
that the eigenfunctions satisfy the bounds

|N11(x, k)| � I0
(
2
√

Q(x)R(x)
)
,

|N21(x, k)| � R(x)I0
(
2
√

Q(x)R(x)
)
, kI � 0, (3.8)

where I0 is the 0th order modified Bessel function

I0(2
√

x) =
∞∑

n=0

xn

(n!)2

and

Q(x) =
∫ ∞

x

|q(y)| dy, R(x) =
∫ ∞

x

|r(y)| dy. (3.9)

Indeed, from (3.3) it follows that for any k with kI � 0

|N11(x, k)| � 1 +
∫ ∞

x

|q(z)||N21(z, k)| dz, (3.10)

|N21(x, k)| �
∫ ∞

x

|r(z)| |N11(z, k)| dz. (3.11)

Hence, iteration yields

|N11(x, k)| � 1 +
∫ ∞

x

dz |q(z)|
∫ ∞

z

dy |r(y)||N11(y, k)|

� 1 +
∫ ∞

x

dz |q(z)|
∫ ∞

z

dy |r(y)| +

+
∫ ∞

x

dz |q(z)|
∫ ∞

z

dy |r(y)|
∫ ∞

y

dz1 |q(z1)|
∫ ∞

z1

dy1 |r(y1)| + · · ·
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and, taking into account that each integral is a decreasing function of the lower
limit of integration, we have

|N11(x, k)| � 1 +
∫ ∞

x

dz |q(z)|
∫ ∞

x

dy |r(y)| +

+
[∫ ∞

x

dz |q(z)|
∫ ∞

z

dz1 |q(z1)|
]

×

×
[∫ ∞

x

dy |r(y)|
∫ ∞

z

dy1 |r(y1)|
]

+ · · · .

One can then show by induction that for any j ∈ N and for any f ∈ L1(R)

1

j !
∫ ∞

x

|f (ξ)|
[∫ ∞

ξ

|f (ξ ′)| dξ ′
]j

dξ

= − 1

(j + 1)!
∫ ∞

x

d

dξ

[∫ ∞

ξ

|f (ξ ′)| dξ ′
]j+1

dξ

= 1

(j + 1)!
[∫ ∞

x

|f (ξ)| dξ

]j+1

.

Hence it follows that

|N11(x, k)| � 1 + Q(x)R(x) + (Q(x)R(x))2

(2!)2
+ (Q(x)R(x))3

(2!)3
+ · · ·

with Q, R defined in (3.9), i.e., one obtains the first of (3.8). Substituting this bound
into (3.11) yields the second of (3.8).

One can obtain similar bounds for N12, N22, namely

|N22(x, k)| � I0
(
2
√

Q(x)R(x)
)
,

|N12(x, k)| � Q(x)I0
(
2
√

Q(x)R(x)
)
, kI � 0. (3.12)

To study the direct problem in a rigorous way we shall need a new set of func-
tions as follows. We introduce the 2 × 2 matrix K(x, z) = [Klj (x, z)]l,j=1,2 via the
“triangular” representation for the eigenfunctions ψlj

ψlj (x, k) = δlj eiJj kx +
∫ ∞

x

eiJj kzKlj (x, z) dz, z � x, (3.13)

where Klj (x, z) is identically zero for z < x and column-wise

K̄(x, z) =
(

K11(x, z)

K21(x, z)

)
, K(x, z) =

(
K12(x, z)

K22(x, z)

)
. (3.14)

The importance of these objects is that all dependence on the spectral parameter
has been encoded in terms of an exponential factor. This will be critical to establish
integrability of the scattering data.
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PROPOSITION 1. The kernels Klj of the triangular representations (3.13) satisfy
the following integral equations

Kll̄(x, z) = −1

2
Q̃ll̄

(
x + z

2

)
−

∫ x+z
2

x

Q̃ll̄(y)Kl̄l̄(y, x − y + z) dy, (3.15)

Kll(x, z) = −
∫ ∞

x

Q̃ll̄(y)Kl̄l(y, y − x + z) dy, (3.16)

where l = 1, 2, l̄ = l +1 mod 2 and Q̃ll̄ are the off-diagonal elements of the matrix
potential Q̃ introduced in (2.5), i.e., say,

K11(x, z) = −
∫ ∞

x

q(y)K21(y, y − x + z) dy, (3.17)

K21(x, z) = −1

2
r

(
x + z

2

)
−

∫ x+z
2

x

r(y)K11(y, x − y + z) dy. (3.18)

Proof. Comparing the integral equations (3.2) for the eigenfunctions and the
triangular representations (3.13)∫ ∞

x

eiJj kzKlj (x, z) dz = −
∫ ∞

x

eiJlk(x−z)Q̃ll̄(z)ψl̄j (z, k) dz

and direct substitution of (3.13) in the right-hand side shows that∫ ∞

x

eiJj kzKlj (x, z) dz

= −
∫ ∞

x

dz eiJlk(x−z)Q̃ll̄(z)

[
δl̄j eiJj kz +

∫ ∞

z

eiJj kyKl̄j (z, y) dy

]
. (3.19)

The right-hand side in (3.19) is the sum of two terms. As to the first term, taking
into account that Jl = −Jl̄ , by changing variables one gets

I = −
∫ ∞

x

dz eiJlk(x−z)+iJj kzQ̃ll̄(z)δl̄j = −1

2

∫ ∞

x

dz eiJj kzQ̃ll̄

(
x + z

2

)
δl̄j .

For the second term in the square bracket:

◦ if l �= j (hence Jl = −Jj and j = l̄) one has, by first changing variables to
z′ = z, y ′ = y − x + z and then exchanging the integrals

II = −
∫ ∞

x

dz

∫ ∞

z

dy eikJj (y−x+z)Q̃ll̄(z)Kl̄j (z, y)

= −
∫ ∞

x

dz′
∫ ∞

2z′−x

dy ′ eiJj ky′
Q̃ll̄(z

′)Kl̄j (z
′, y ′ + x − z′)

= −
∫ ∞

x

dy ′
∫ y′+x

2

x

dz′ eiJj ky′
Q̃ll̄(z

′)Kl̄j (z
′, y ′ + x − z′),
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◦ if l = j (hence Jl = Jj and also l̄ �= j ), setting z′ = z and y ′ = x − z + y

II = −
∫ ∞

x

dz

∫ ∞

z

dy eikJj (x−z+y)Q̃ll̄(z)Kl̄j (z, y)

= −
∫ ∞

x

dz′
∫ ∞

x

dy ′ eiJj ky′
Q̃ll̄(z

′)Kl̄j (z
′, y ′ − x + z′).

Therefore, from (3.19) it follows that for l �= j (⇒ j = l̄)
∫ ∞

x

dz eiJj kz

[
Kll̄(x, z) + 1

2
Q̃ll̄

(
x + z

2

)
+

∫ z+x
2

x

dyQ̃ll̄(y)Kl̄l̄(y, z + x − y)

]
= 0

and for l = j (⇒ j �= l̄)∫ ∞

x

dz eiJj kz

[
Kll(x, z) +

∫ ∞

x

dy Q̃ll̄(y)Kl̄l(y, z − x + y)

]
= 0. �

PROPOSITION 2. If the potentials q, r ∈ L1(R), then the integral equations
(3.15)–(3.16) have a solution Klj (x, z) which is identically zero for z < x and
Klj (x, z) ∈ L∞(Rx) ⊗ L1(Rz), i.e., such that

sup
x∈R

∫ ∞

−∞
|Klj (x, z)| dz ≡ sup

x∈R

∫ ∞

x

|Klj (x, z)| dz < ∞. (3.20)

If the potentials q, r ∈ L1(R) ∩ L∞(R), then the above integral equations have a
solution Klj (x, z) in both L∞(Rx) ⊗ L1(Rz) and L∞(R2), i.e., (3.20) holds, and
also

sup
x,z∈R

|Klj (x, z)| = sup
x∈R

sup
z�x

|Klj (x, z)| < ∞. (3.21)

Proof. We use Picard’s method. Define recursively K
(n)
ij (x, z) to be identically

zero for z < x and for z � x via

K
(1)

21 (x, z) = −1

2
r

(
x + z

2

)
, (3.22)

K
(1)
11 (x, z) = −

∫ ∞

x

q(y)K
(1)
21 (y, y − x + z) dy (3.23)

and

K
(n)

11 (x, z) = −
∫ ∞

x

q(y)K
(n)

21 (y, y − x + z) dy, (3.24)

K
(n+1)

21 (x, z) = −1

2
r

(
x + z

2

)
−

∫ x+z
2

x

r(y)K
(n)

11 (y, x − y + z) dy. (3.25)

Let us introduce

ϕ
(n)
lj (x) =

∫ ∞

−∞
|K(n)

lj (x, z)| dz ≡
∫ ∞

x

|K(n)
lj (x, z)| dz. (3.26)
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Note that here and in the following, when the limits of integration are omitted, it is
intended that the integral runs over the whole R, i.e. from −∞ to +∞. From the
integral equation (3.25) we have

ϕ
(n+1)

21 (x) =
∫

|K(n+1)

21 (x, z)| dz

�
∫

|r(x)| dx +
∫

dz

∫ x+z
2

x

dy |r(y)||K(n)

11 (y, x − y + z)|

=
∫

|r(x)| dx +
∫ ∞

x

dy

∫ ∞

2y−x

dz |r(y)||K(n)

11 (y, x − y + z)|

=
∫

|r(x)| dx +
∫ ∞

x

dy

∫ ∞

y

dz′‖r(y)||K(n)

11 (y, z′)|

�
∫

|r(x)| dx +
∫ ∞

x

|r(y)|ϕ(n)

11 (y) dy. (3.27)

Note that in order to get the equality in the second line we exchanged the order
of integration and took into account that for z < x the kernels Klj are identically
zero; then we performed the change of variables z′ = x − y + z.

Similarly, from (3.24) one obtains

ϕ
(n)

11 (x) =
∫

|K(n)

11 (x, z)| dz �
∫

dz

∫ ∞

x

|q(y)||K(n)

21 (y, y − x + z)| dy

=
∫ ∞

x

dy |q(y)|
∫

dz |K(n)

21 (y, y − x + z)|

=
∫ ∞

x

|q(y)|ϕ(n)

21 (y) dy. (3.28)

In their turn, (3.27) and (3.28) imply

ϕ
(n+1)
21 (x) � ‖r‖1 +

∫ ∞

x

dy |r(y)|
∫ ∞

y

dz |q(z)|ϕ(n)
21 (z)

so that iteration yields

ϕ
(∞)

21 (x) ≡ lim
n→∞ ϕ

(n)

21 (x) � ‖r‖1I0
(
2
√

Q(x)R(x)
)
. (3.29)

It follows that there exists a function K
(∞)

21 (x, z) such that the sequence K
(n)

21 (x, z)

is convergent towards K
(∞)

21 (x, z) with respect to the norm (3.20) of
L∞(Rx) ⊗ L1(Rz):

lim
n→∞ sup

x

∫
|K(n)

21 (x, z) − K
(∞)

21 (x, z)| dz = 0,

sup
x

∫
|K(∞)

21 (x, z)| dz � ‖r‖1I0
(
2
√‖r‖1‖q‖1

)
.
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Likewise, by substituting into (3.28) one obtains

ϕ
(∞)

11 (x) ≡ lim
n→∞ ϕ

(n)

11 (x) � ‖r‖1Q(x)I0
(
2
√

Q(x)R(x)
)
. (3.30)

One can prove similar results for the kernels K12, K22.
As to the second part of the proposition, we only need to prove that if, in

addition, q, r ∈ L∞(R), the kernels Klj (x, z) are bounded with respect to both
variables. Define

πlj (x) = sup
z∈R

|Klj (x, z)|. (3.31)

Then from (3.17) it follows

π
(n)

11 (x) � sup
z

∫ ∞

x

|q(y)|K(n)

21 (y, y − x + z)| dy

�
∫ ∞

x

|q(y)| sup
z

|K(n)

21 (y, y − x + z)| dy

�
∫ ∞

x

|q(y)|π(n)

21 (y) dy. (3.32)

Similarly, from (3.18) it follows

π
(n+1)

21 (x) � 1

2
‖r‖∞ + sup

z

∫ x+z
2

x

|r(y)||K(n)

11 (y, x − y + z)| dy

� 1

2
‖r‖∞ + sup

z

∫ ∞

x

|r(y)||K(n)

11 (y, x − y + z)| dy

� 1

2
‖r‖∞ +

∫ ∞

x

|r(y)| sup
z

|K(n)

11 (y, x − y + z)| dy

� 1

2
‖r‖∞ +

∫ ∞

x

|r(y)|π(n)

11 (y) dy.

Thus, taking into account (3.32) we have

π
(n+1)

21 (x) � 1

2
‖r‖∞ +

∫ ∞

x

dy |r(y)|
∫ ∞

y

|q(z)|π(n)

21 (z) dz

and iteration yields

π
(∞)

21 (x) � ‖r‖∞
2

I0
(
2
√

Q(x)R(x)
)

so that the sequence K
(n)

21 (x, z) is convergent towards K
(∞)

21 (x, z) ≡ K21(x, z) and
its norm satisfies

sup
x,z∈R

|K21(x, z)| � ‖r‖∞
2

I0
(
2
√‖r‖1‖q‖1

)
. �
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3.3. SCATTERING DATA

The eigenfunctions with fixed boundary conditions as x → ±∞ (ψij and φij , re-
spectively) are two sets of linearly independent solutions of the second-orderscattering
problem (see, for instance, Ablowitz et al., 2004), hence the two sets are linearly
dependent from each other. The coefficients of these linear combinations depend
on k

φlj (x, k) =
∑

m=1,2

smj (k)ψlm(x, k), l, j = 1, 2 (3.33)

or

(φ, φ̄) = (ψ̄, ψ)S

with S(k) = (sij (k))i,j=1,2 and

s11(k) ≡ a(k), s12(k) ≡ b̄(k),

s21(k) ≡ b(k), s22(k) ≡ ā(k).

The relations (3.33) hold for any k such that all four eigenfunctions exist. In partic-
ular, they hold on the real k-axis where the scattering matrix S is unimodular, i.e.,
the scattering coefficients satisfy the following unitarity relation

a(k)ā(k) − b(k)b̄(k) = 1. (3.34)

From the integral equations (3.2) for the eigenfunctions one also obtains integral
representations for the scattering coefficients (note that in Ablowitz et al., 2004
we wrote down integral representations in terms of the φ’s.) More precisely, one
has

a(k) = 1 −
∫ ∞

−∞
e−ikyr(y)ψ12(y, k) dy,

ā(k) = 1 −
∫ ∞

−∞
eikyq(y)ψ21(y, k) dy, (3.35)

b(k) =
∫ ∞

−∞
e−ikyr(y)ψ11(y, k) dy,

b̄(k) =
∫ ∞

−∞
eikyq(y)ψ22(y, k) dy. (3.36)

As part of the scattering data, one then introduces the reflection coefficients via the
relations

ρ(k) = b(k)

a(k)
, ρ̄(k) = b̄(k)

ā(k)
. (3.37)

The scattering problem may include proper eigenvalues. A proper eigenvalue,
kj = ξj + iηj , in the upper k-plane (i.e., ηj > 0) occurs precisely where a(kj ) = 0.
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Because the eigenvalues, kj , are the zeroes of a(k), they correspond to the poles
(in k) of µi(x, k) = Mi1(x, k)a−1(k) (in the region kI > 0). For each simple pole
we have

Res{µi; kj } = Cj e2ikj xNi2(x, kj ), (3.38)

where the last equality defines the “norming constant”, Cj , corresponding to the
eigenvalue kj . Similarly, the eigenvalues in the region kI < 0, denoted k̄j , are
the zeroes of ā(k) and one has the analogue definition for the associated norming
constants C̄j as residues of µ̄i(x, k) = Mi2(x, k)ā−1(k).

Finally, we observe that the symmetry in the potentials q, r

r(x) = ∓q∗(x) (3.39)

induces a symmetry in the eigenfunctions

ψ11(x, k) = ψ∗
22(x, k∗), ψ21(x, k) = ∓ψ∗

12(x, k∗),
φ11(x, k) = φ∗

22(x, k∗), φ21(x, k) = ∓φ∗
12(x, k∗)

which, in their turn, induce a symmetry in the scattering data, namely

ā(k) = a∗(k∗), b̄(k) = ∓b∗(k∗) (3.40)

and

ρ̄(k) = ∓ρ∗(k). (3.41)

As a consequence, the eigenvalues appear in complex-conjugate pairs kj and
k̄j = k∗

j and one can show that the norming constants satisfy the condition

C̄j = ∓C∗
j .

Finally, we remark that (3.34) on the real axis becomes

|a(k)|2 ± |b(k)|2 = 1.

Hence, in the focusing case (r = −q∗)

|a(k)|2 = 1 − |b(k)|2 � 1, k ∈ R (3.42)

while for the de-focusing NLS (r = q∗)

|a(k)|2 = 1 + |b(k)|2, k ∈ R. (3.43)

Besides, in this case the associated scattering problem is formally self-adjoint,
hence its spectrum lies on the real axis, it follows that no eigenvalues exist for
the de-focusing NLS when the potentials q, r ∈ L1(R).
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PROPOSITION 3. Suppose the potentials q, r ∈ L1(R). Then there exists a func-
tion b̂(x) ∈ L1(R) such that the following representation holds

b(k) =
∫ ∞

−∞
e−iky b̂(y) dy. (3.44)

Proof. Inserting (3.13) into the first of (3.36) yields

b(k) =
∫ ∞

−∞
e−2ikyr(y) dy +

∫ ∞

−∞
dy

∫ ∞

y

dz e−ik(y+z)r(y)K11(y, z)

= 1

2

∫ ∞

−∞
e−ikxr

(
x

2

)
dx +

∫ ∞

−∞
dy

∫ ∞

2y

dx e−ikxr(y)K11(y, x − y)

= 1

2

∫ ∞

−∞
e−ikxr

(
x

2

)
dx +

∫ ∞

−∞
dx

∫ x
2

−∞
dy e−ikxr(y)K11(y, x − y)

hence the representation (3.44) “formally” follows with

b̂(x) = 1

2
r

(
x

2

)
+

∫ x
2

−∞
r(y)K11(y, x − y) dy.

Note next that∫
|b̂(x)| dx �

∫
|r(x)| dx +

∫
dz

∫ z
2

−∞
|r(y)||K11(y, z − y)| dy

=
∫

|r(x)| dx +
∫

dy

∫ ∞

2y

dz |r(y)||K11(y, z − y)|

=
∫

|r(x)| dx +
∫

dy |r(y)|
∫ ∞

y

dz′ |K11(y, z′)|

�
∫

|r(x)| dx +
∫

dy |r(y)|
∫

dz |K11(y, z)|

=
∫

|r(x)| dx +
∫

|r(y)|ϕ11(y) dy

≡
∫

|r(x)|(1 + ϕ11(x))x,

where ϕ11(x) ≡ ϕ
(∞)

11 (x). Then, from (3.30) we get∫
|b̂(x)| dx �

(
1 + ‖r‖1‖q‖1I0

(
2
√‖r‖1‖q‖1

))‖r‖1

proving that b̂ ∈ L1(R). �
PROPOSITION 4. Suppose the potentials q, r ∈ L1(R). Then there exists a func-
tion â(x) ∈ L1(R) such that the following representation holds

a(k) − 1 = −
∫ ∞

0
eiky â(y) dy. (3.45)
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Proof. Inserting (3.13) into (3.35) yields

a(k) − 1 = −
∫ ∞

−∞
dy e−ikyr(y)

∫ ∞

y

dz eikzK12(y, z)

= −
∫ ∞

−∞
dy

∫ ∞

y

dz eik(z−y)r(y)K12(y, z)

= −
∫ ∞

−∞
dy

∫ ∞

0
dz′ eikz′

r(y)K12(y, z′ + y)

and then the representation (3.45) follows with

â(x) =
∫ ∞

−∞
r(y)K12(y, x + y) dy.

Note next that∫
|â(x)| dx �

∫ ∞

−∞
dx

∫ ∞

−∞
|r(y)||K12(y, x + y)| dy

�
∫ ∞

−∞
|r(y)|ϕ12(y) dy � ‖r‖1‖q‖1I0

(
2
√‖r‖1‖q‖1

)
,

where we used (3.26), ϕ12(x) ≡ ϕ
(∞)

12 (x) and the bound for ϕ12 analogous to (3.29).
This result shows that indeed â ∈ L1(R). �
THEOREM 1. Suppose the potentials q, r ∈ L1(R) and that

|a(k)| > 0, ∀k ∈ R. (3.46)

Then the reflection coefficient introduced in (3.37) is such that

ρ(k) =
∫ ∞

−∞
e−ikyR̂(y) dy, (3.47)

where R̂(x) ∈ L1(R). Further, if the potentials are bounded, so is R̂(x). A similar
result holds for ρ̄(k).

Proof. Set

ρ(k) = b(k)

a(k)
≡ b(k)

1 + ã(k)
, ã(k) = a(k) − 1.

ã(k) is the Fourier transform of an integrable function (cf. Prop. 4) and
(if |a(k)| > 0) then it maps R onto D = C − {−1}, where f (z) ≡ (1/1 + z) is
holomorphic. Hence, a modification of Wiener’s theorem (see App. A) shows
that there exists a function ĥ(x) ∈ L1(R) such that

1

1 + ã(k)
= f (ã(k)) =

∫ ∞

−∞
e−ikyĥ(y) dy. (3.48)
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It also follows that

R̂(x) ≡
∫

b̂(x − y)ĥ(y) dy ∈ L1(R) (3.49)

and hence (by Lemma 3 in the Appendix) that

R(k) ≡
∫

e−ikyR̂(y) dy = b(k)

1 + ã(k)
. (3.50)

Thus

ρ(k) = R(k) =
∫

e−ikyR̂(y) dy, (3.51)

where R̂(x) ∈ L1(R). Similarly, one can show that R̂(x) ∈ L1(R) ∩ L∞(R) if
q, r ∈ L1(R) ∩ L∞(R). �
COROLLARY 1. Defocusing case. Suppose the potentials q, r are in L1(R) and
that r = q∗ (defocusing case). Then

F(x) = 1

2π

∫ ∞

−∞
ρ(ξ)eiξx dξ − i

J∑
j=1

Cj eikj x (3.52)

is in L1(R) and

ρ(k) =
∫ ∞

−∞
e−ikyF (y) dy. (3.53)

Proof. Indeed, as pointed out, this symmetry implies that |a(k)|2 =
|b(k)|2 + 1 � 1 for any k ∈ R and hence (3.46) is satisfied. As commented earlier,
there are no eigenvalues in the defocusing case for decaying potentials. Thus, the
sum in (3.52) is void which implies

ρ(k) =
∫

e−ikyF (y) dy (3.54)

and hence R̂(y) = F(y). �
COROLLARY 2. Small norm case. Suppose the potentials q, r are in L1(R) with
small norm

‖r‖1‖q‖1I0
(
2
√‖r‖1‖q‖1

)
< 1.

Then F(x) (defined in (3.52)) is in L1(R) and (3.53) holds.
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Proof. Using Prop. 4 we have

|1 − |a(k)|| � |a(k) − 1| �
∫ ∞

0
|â(y)| dy � ‖r‖1‖q‖1I0

(
2
√‖r‖1‖q‖1

)
< 1

which implies that |a(k)| > 0 for any k ∈ C. This implies, first, that there are
no eigenvalues and hence that ρ̂(y) = F(y). It also follows that condition (3.46)
is satisfied and hence ρ̂(x) ≡ R(x) is in L1(R). �

Remark (General focusing case). When r = −q∗ and the potentials have small
norm in the sense of the last corollary, then (3.47) holds. Otherwise, there is no
guarantee that this is the case. In spite of this one has the following: a(k) is analytic
on the upper half plane and continuous on the real axis, and tends to 1 as k → ∞.
Hence, generically, zeros of a(k) are denumerable and cannot accumulate towards
the real axis.

4. Inverse Problem

When the potentials are integrable, and hence eigenfunctions exist, taking the
Fourier transforms of Equations (3.33) and using the triangular representations
(3.13) gives that the following relationship between K(x, y) and F(x) holds:

K̄(x, y) +
(

0
1

)
F(x + y) +

∫ ∞

x

K(x, s)F (s + y) ds = 0, y � x, (4.1)

K(x, y) +
(

1
0

)
F̄ (x + y) +

∫ ∞

x

K̄(x, s)F̄ (s + y) ds = 0, y � x, (4.2)

where K and K̄ are two-component vectors. Alternatively, given data F(x) these
equations can be thought of as linear integral equations from which the 2×2 matrix
in (3.14), and hence the eigenfunctions (3.13), are recovered. In this interpretation,
(4.1)–(4.2) constitute the Gel’fand–Levitan–Marchenko (GLM) equations of the
inverse problem whose aim is the reconstruction of eigenfunctions of the scattering
problem in terms of the (spectral) data given by (3.52), i.e.

F(x) = 1

2π

∫ ∞

−∞
ρ(ξ)eiξx dξ − i

J∑
j=1

Cj eikj x (4.3)

and

F̄ (x) = 1

2π

∫ ∞

−∞
ρ̄(ξ)e−iξx dξ + i

J̄∑
j=1

C̄j e−ik̄j x (4.4)

and, finally, of the potentials via

q(x) = −2K(1)(x, x), r(x) = −2K̄(2)(x, x), (4.5)
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where K(j) and K̄(j) for j = 1, 2 denote the j th component of the vectors K and
K̄ respectively.

In (4.3)–(4.4), kj , k̄j are the discrete eigenvalues (corresponding to the
zeros of a(k) and ā(k), respectively, cf. (3.35)), {kj = ξj + iηj , ηj > 0}Jj=1,

{k̄j = ξ̄j + iη̄j , η̄j < 0}J̄j=1, {Cj }Jj=1, {C̄j }J̄j=1 the associated norming constants,
and ρ, ρ̄ the reflection coefficients (cf. (3.37)).

In terms of the 2 × 2 matrix in (3.14)

K(x, y) ≡ [Kij (x, y)]i,j=1,2 ≡ (K̄(x, y), K(x, y))

≡
(

K̄(1)(x, y) K(1)(x, y)

K̄(2)(x, y) K(2)(x, y)

)

the integral equations (4.1)–(4.2) of the inverse problem can be written as

Kij (x, y) + δij+1Fj(x + y) +
∫ ∞

x

Kij+1(x, s)Fj (y + s) ds = 0, (4.6)

where i, j = 1, 2 and j + 1 is intended mod 2,

F1(x) ≡ F(x), F2(x) ≡ F̄ (x). (4.7)

Note that the symmetries in the scattering data

(i) ρ̄(k) = ∓ρ∗(k) for k ∈ R (cf. (3.41)),
(ii) J = J̄ and k̄j = k∗

j , C̄j = ∓C∗
j for j = 1, . . . , J ,

(iii) F̄ (x) = ∓F ∗(x), or

F2(x) = ∓F ∗
1 (x) (4.8)

correspond, from the direct side, to the reduction r = ∓q∗ in the potentials.

Moreover, the following characterization relation holds

1 ± |ρ(k)|2 = |a(k)|−2, k ∈ R (4.9)

ρ(k) is the reflection coefficient, 1/a(k) is also called the transmission coefficient
of the associated scattering problem.

4.1. SUMMARY OF THE RESULTS OF THE INVERSE PROBLEM

In this section we study the solvability of the GLM equations (4.1)–(4.2) given the
data

−→
F = (

F1
F2

)
.

For a given x ∈ R and p � 1 we will consider the spaces Lp[x, ∞)

Lp[x, ∞) =
{−→


(z) =
(

φ1(z)

φ2(z)

)
: ‖−→
 ‖p < ∞

}
,
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where we define the norm ‖−→
 ‖p as

‖−→
 ‖p
p ≡

∑
j=1,2

∫ ∞

x

∣∣φj(s)
∣∣p ds. (4.10)

Suppose that for all x ∈ R,
−→
F = (

F1
F2

)
is in L1[x, ∞) and, also, that F2(x) =

∓F ∗
1 (x) (which corresponds to potentials satisfying q(x) = ∓r∗(x)). Then we

shall prove the following results.

(i) The integral operator �x (cf. (4.11)) defining the GLM equations (4.6) is a
compact operator from L1[x, ∞), L2[x, ∞) and L∞[x, ∞) onto themselves
(cf. Theorems 2, 3); more generally, for any p � 1, �x is a compact operator
on Lp[x, ∞).

(ii) The homogeneous GLM equations admit no nontrivial solutions in either
L1[x, ∞) or L2[x, ∞) for all x ∈ R (cf. Theorem 4).

(iii) The solution Klj (x, ·) to the GLM equations (4.6) exists and is unique in
L1[x, ∞) for all x ∈ R (note that this is a direct consequence of the Fredholm
alternative, cf. Theorem 5 and (i) and (ii)).

(iv) If, in addition,
−→
F ∈ L2[x, ∞) for all x ∈ R, then for all x ∈ R the solution

Klj (x, ·) to the GLM equations exists and is unique in L1[x, ∞) ∪ L2[x, ∞)

and, hence, it belongs to L1[x, ∞) ∩ L2[x, ∞) (cf. Theorem 5).

4.2. COMPACTNESS

For a given x ∈ R consider the following operator �x , which associates to−→

 = (

φ1
φ2

)
the 2-component vector �x

−→



�x
−→

(z)≡

(
(�x

−→

(z))1

(�x
−→

(z))2

)
=

( ∫ ∞
x

F1 (z + y) φ2(y) dy∫ ∞
x

F2 (z + y) φ1(y) dy

)
, z � x, (4.11)

�x
−→

(z) = 0, z < x.

THEOREM 2. Assume
−→
F = (

F1
F2

)
is in L1[x, ∞) ∀x ∈ R. Then �x maps L2[x, ∞)

onto itself and is a compact operator on this space.
Proof. Let R � x. Consider

∑
j=1,2

∫ ∞

R

∣∣(�x
−→

(z))j

∣∣2
dz

≡
∑
j=1,2

∫ ∞

R

∣∣∣∣
∫ ∞

x

Fj+1(z + y)φj (y) dy

∣∣∣∣
2

dz, (4.12)

where, as before, j + 1 is intended mod 2. For each of the two terms in the sum in
the right-hand side we have∫ ∞

R

dz

∣∣∣∣
∫ ∞

x

Fj+1(z + y)φj (y) dy

∣∣∣∣
2
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�
∫ ∞

R

dz

∫ ∞

x

dy |Fj+1(z + y)φj (y)|

=
∫ ∞

R

dz

∫ ∞

x

dy
√|Fj+1(z + y)|[√|Fj+1(z + y)||φj (y)|]

and using Schwartz inequality we get∫ ∞

R

dz

∣∣∣∣
∫ ∞

x

Fj+1(z + y)φj (y) dy

∣∣∣∣
2

�
∫ ∞

R

dz

{∫ ∞

x

|Fj+1(z + y)| dy

∫ ∞

x

|Fj+1(z + s)‖φj(s)|2 ds

}

�
∫ ∞

R

dz

(
sup
z�R

∫ ∞

x+z

|Fj+1(y)| dy

)(∫ ∞

x

|Fj+1(z + s)‖φj (s)|2 ds

)
.

Since the integral is a monotonically decreasing function of the lower limit of
integration∫ ∞

R

dz

∣∣∣∣
∫ ∞

x

Fj+1(z + y)φj (y) dy

∣∣∣∣
2

�
∫ ∞

R+x

|Fj+1(y)| dy

∫ ∞

R

dz

∫ ∞

x

|Fj+1(z + s)‖φj(s)|2 ds

=
∫ ∞

R+x

|Fj+1(y)| dy

∫ ∞

x

ds |φj (s)|2
(∫ ∞

R

|Fj+1(z + s)| dz

)

�
∫ ∞

R+x

|Fj+1(y)| dy

∫ ∞

x

ds |φj (s)|2
∫ ∞

R+s

|Fj+1(z)| dz

�
∫ ∞

R+x

|Fj+1(y)| dy

∫ ∞

x

ds |φj (s)|2
(

sup
s�x

∫ ∞

R+s

|Fj+1(z)| dz

)

=
(∫ ∞

R+x

|Fj+1(y)| dy

)2 ∫ ∞

x

|φj (s)|2 ds. (4.13)

Hence, from (4.12) and (4.13) it follows
∑
j=1,2

∫ ∞

R

∣∣(�x
−→

(z))j

∣∣2
dz

�
∑
j=1,2

(∫ ∞

R+x

|Fj+1(y)| dy

)2[∫ ∞

x

|φj (s)|2 ds

]

�
∑
j=1,2

[(∫ ∞

R+x

|Fj+1(y)| dy

)2]
‖−→
 ‖2

2. (4.14)

First, let us take R = x. Then

‖�x
−→

 ‖2

2 � ‖−→
 ‖2
2

∑
j=1,2

(∫ ∞

2x

|Fj(y)| dy

)2

< ∞ (4.15)
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if
−→

 ∈ L2[x, ∞) under the assumption that

−→
F ∈ L1[x, ∞) for all x ∈ R. This

means that �x maps L2[x, ∞) onto itself.
Let now Bx be the “unit ball” in L2[x, ∞), i.e.,

Bx = {−→

 ∈ L2[x, ∞) : ‖−→
 ‖2 � 1

}
.

Then using the bound (4.14)

lim
R→∞

sup−→

 ∈Bx

∑
j=1,2

∫ ∞

R

|(�x
−→

(z))j |2 dz

� lim
R→∞

(
sup−→


 ∈Bx

‖−→
 ‖2
2

∑
j=1,2

∫ ∞

R+x

|Fj(y)| dy

)2

�
∑
j=1,2

lim
R→∞

(∫ ∞

R+x

|Fj(y)| dy

)2

= 0, (4.16)

where in the last line we used Lemma 1 proved in the Appendix. This proves (A.2).
Let us consider next

(
�x

−→

(z + h)

)
j
− (

�x
−→

(z)

)
j

=
∫ ∞

x

(�h(z + y))j+1φj(y) dy, (4.17)

where

(�h(x + y))j = Fj(x + y + h) − Fj(x + y).

Then ∑
j=1,2

∫ ∞

x

∣∣(�x
−→

(z + h) − �x

−→

(z))j

∣∣2
dz

=
∑
j=1,2

∫ ∞

x

∣∣∣∣
∫ ∞

x

(�h(z + y)
−→

(y))j dy

∣∣∣∣
2

dz

� ‖−→
 ‖2
2

∑
j=1,2

(∫ ∞

2x

|(�h)j (y)| dy

)2

= ‖−→
 ‖2
2

∑
j=1,2

(∫ ∞

2x

|Fj+1(z + h) − Fj+1(z)| dz

)2

and consequently

lim
h→0

(
sup−→


 ∈Bx

‖�x
−→

(z + h) − �x

−→

(z)‖2

2

)

� lim
h→0

(
sup−→


 ∈Bx

‖−→
 ‖2
2

) ∑
j=1,2

(∫ ∞

2x

|Fj(z + h) − Fj(z)| dz

)2

�
∑
j=1,2

lim
h→0

(∫ ∞

2x

|Fj(z + h) − Fj(z)| dz

)2

= 0, (4.18)
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where in the last line we used the result in Lemma 2 stated in the Appendix,
i.e., (A.1).

We note that the natural definition f (∞) = 0 allows one to extend any square
integrable function defined on [x, ∞) to [x, ∞]. Hence, all the previous results
apply to the latter case f ∈ L2[x, ∞]. We have proven that if

−→
F ∈ L1[x, ∞) for

all x ∈ R, �x maps L2[x, ∞] onto itself

�x : L2[x, ∞] → L2[x, ∞]
and, if Bx is the unit ball in L2[x, ∞], �x maps Bx into Ex ≡ {f ∈ L2[x, ∞]:
f is L2-continuous} in a uniform way, i.e., the set Hx = {�x
, 
 ∈ Bx} is
uniformly L2-equicontinuous (cf. Def. 1 in the Appendix and (4.18), (4.16)).

By a result in functional analysis (which follows from Kolmogorov’s theorem
by using the fact that [x, ∞] is compact on R̄), the set Hx is a compact set of
functions in L2[x, ∞]. By the Ascoli–Arzela’s theorem it then follows that the
operator �x is a compact operator on L2[x, ∞] for any x ∈ R. �
THEOREM 3. Assume

−→
F = (

F1
F2

)
is in L1[x, ∞) ∀x ∈ R. Then �x also maps

L1[x, ∞) onto itself and is a compact operator on this space.
Proof. Let R � x. Consider

∫ ∞

R

∣∣(�x
−→

(z))j

∣∣ dz

≡
∫ ∞

R

∣∣∣∣
∫ ∞

x

Fj (z + y)φj+1(y) dy

∣∣∣∣ dz

�
∫ ∞

x

dy |φj+1(y)|
∫ ∞

R

|Fj(z + y)| dz

�
∫ ∞

x

dy |φj+1(y)| sup
y�x

∫ ∞

R+y

|Fj(z)| dz

=
(∫ ∞

x

|φj+1(y)| dy

)(∫ ∞

R+x

|Fj(z)| dz

)
.

Taking R = x it follows that

∥∥�x
−→



∥∥
1 =

∑
j=1,2

∫ ∞

x

∣∣(�x
−→

(z))j

∣∣ dz � ‖−→
 ‖1

∑
j=1,2

∫ ∞

2x

|Fj(z)| dz, (4.19)

hence �x : L1[x, ∞) → L1[x, ∞).
Also, using Lemmas 1 and 2 proved in the Appendix, one can show that given

any family Bx of bounded functions of L1[x, ∞)

lim
R→∞ sup−→


 ∈Bx

∫ ∞

R

|�x
−→

(z)|j dz = 0 (4.20)
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(cf. (A.1)) and also that

lim
h→0

(
sup−→


 ∈Bx

‖(�x
−→

(z + h) − �x

−→

(z))j‖1

)
= 0 (4.21)

(i.e., (A.2)) which completes the proof. �

4.3. FREDHOLM ALTERNATIVE

The question of existence and uniqueness of solutions of linear integral equations
is usually examined by the use of the Fredholm alternative. Consider the homo-
geneous equations corresponding to any one of the components of (4.1) and (4.2)
(y > x)

h1(y) +
∫ ∞

x

h2(s)F1(s + y) ds = 0, (4.22)

h2(y) +
∫ +∞

x

h1(s)F2(s + y) ds = 0. (4.23)

We first consider these equations on L2[x, ∞). Suppose there exists an L2-solution
h(y) = (h1(y), h2(y)) of (4.22)–(4.23) which vanishes identically for y < x.
Multiply (4.22) by h∗

1(y), (4.23) by h∗
2(y), integrate with respect to y and use

∫ ∞

x

|hj (y)|2 dy =
∫ ∞

−∞
|hj (y)|2 dy

to obtain∫ ∞

−∞

{
|h1(y)|2 + |h2(y)|2 +

+
∫ ∞

−∞
[h2(s)h

∗
1(y)F1(s + y) + h1(s)h

∗
2(y)F2(s + y)] ds

}
dy = 0. (4.24)

If r = −q∗, then the symmetry condition (4.8), i.e., F2(x) = −F ∗
1 (x), allows the

latter equation to be written as
∫ ∞

−∞

{
|h1(y)|2 + |h2(y)|2 + 2i Im

∫ ∞

−∞
h2(s)h

∗
1(y)F1(s + y) ds

}
dy = 0.

The real and imaginary parts must both vanish, whereupon it follows that h(y) ≡ 0.
Consider next the defocusing case, corresponding to the reduction r(x) = q∗(x);

then F2(x) = F ∗
1 (x) and Equation (4.24) becomes

∫ ∞

−∞

{
|h1(y)|2 + |h2(y)|2 + 2 Re

∫ ∞

−∞
h2(s)h

∗
1(y)F1(s + y) ds

}
dy = 0. (4.25)
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Moreover, in this case the scattering problem is formally self-adjoint and there are
no discrete eigenvalues, therefore from (4.3)–(4.4) and (4.7) we have

F ∗
2 (x) = F1(x) = 1

2π

∫ ∞

∞
ρ(ξ)eiξx dξ (4.26)

with |ρ(k)|2 = 1 − |a(k)|−2 < 1 (cf. (4.9)). We next use Parseval’s identity
∫ ∞

−∞
|hj (y)|2 dy = 1

2π

∫ ∞

−∞
|ĥj (ξ)|2 dξ (4.27)

for square integrable functions, where

ĥj (ξ) =
∫ ∞

−∞
hj (y)e−iξy dy (4.28)

is the Fourier transform of hj (y). Substituting these results into (4.25) and revers-
ing the order of integration yields

∫ ∞

−∞

{|ĥ1(−ξ)|2 + |ĥ2(ξ)|2 + 2 Re
[
ρ(ξ)ĥ1(−ξ)ĥ∗

2(ξ)
]}

dξ = 0. (4.29)

From the characterization equation (4.9) in the defocusing case, i.e., when r = q∗,
it follows that |ρ(ξ)| < 1, hence we have

∣∣2Re
[
ρ(ξ)ĥ1(−ξ)ĥ∗

2(ξ)
]∣∣ < 2|ĥ1(−ξ)‖ĥ2(ξ)| � |ĥ1(−ξ)|2 + |ĥ2(ξ)|2

hence

h(y) ≡ 0,

i.e., the homogeneous integral equation admits no nontrivial L2 solutions.
We next take up the L1 case. Suppose that there exists a homogeneous solution

hj (x, y) ∈ L1 and vanishing for y < x. Then its Fourier transform (4.28) is in L∞
and, operating with

∫ ∞
x

dy eiξy on Equations (4.22)–(4.23) and using (4.26) shows
that it satisfies

ĥj (ξ) + F̂j (ξ)ĥj+1(−ξ) = 0,

where j = 1, 2 and j + 1 is intended mod 2. This corresponds to the following
homogeneous system of equations of 4 equations in the 4 unknowns ĥj (ξ), ĥj (−ξ)

for j = 1, 2:



1 0 0 F̂2(ξ)

0 1 F̂1(ξ) 0
0 F̂2(−ξ) 1 0

F̂1(−ξ) 0 0 1







ĥ1(ξ)

ĥ2(ξ)

ĥ1(−ξ)

ĥ2(−ξ)


 ≡ �




ĥ1(ξ)

ĥ2(ξ)

ĥ1(−ξ)

ĥ2(−ξ)


 =




0
0
0
0


 .



SOLVABILITY OF THE DIRECT AND INVERSE PROBLEMS 269

Existence of nontrivial solutions requires det � = 0, i.e.,[
1 − F̂1(ξ)F̂2(−ξ)

][
1 − F̂1(−ξ)F̂2(ξ)

] = 0. (4.30)

This, however, cannot happen in the “physical case” r = ∓q∗. Indeed, recall that
one has F2(x) = ∓F ∗

1 (x) and F̂2(ξ) = ∓F̂ ∗
1 (−ξ) ≡ F̂ ∗(−ξ) so that the previous

equation yields

det � = [
1 ± |F̂1(ξ)|2][1 ± |F̂1(−ξ)|2] > 0.

For the upper sign it is trivial, for the lower sign (defocusing case, r = q∗) one has
to take into account that |F̂ (ξ)| = |ρ(ξ)| < 1 for any real p.

Thus, we conclude that ĥ1(ξ) = ĥ2(ξ) = 0. Next, hj (y) can be recovered
uniquely from Fourier’s inversion theorem for L1-functions:

hj (y) = 1

2π
lim

n→∞

∫ ∞

−∞
ĥj (ξ)e−iξy−|ξ |/n dξ = 0.

In conclusion, we have shown the following results.

THEOREM 4. If F2(x) = ∓F ∗
1 (x), and

−→
F ∈ L1[x, ∞) for all x ∈ R, the

integral equations (4.1), (4.2) admit no homogenous solutions in either L1[x, ∞)

or L2[x, ∞) but the trivial one.

In addition, we have

THEOREM 5. Suppose F2(x) = ∓F ∗
1 (x), and

−→
F ∈ L1[x, ∞) for all x ∈ R.

Then

(i) The solution Klj (x, ·) to the GLM equations (4.6) exists and is unique in
L1[x, ∞) for all x ∈ R.

(ii) If, in addition,
−→
F ∈ L2[x, ∞) for all x ∈ R, then the solution Klj (x, ·) to

the GLM equations exists and is unique in L1[x, ∞) ∪ L2[x, ∞) and, hence,
Klj (x, ·) belongs to L1[x, ∞) ∩ L2[x, ∞) for all x ∈ R.

Proof. (i) follows from Theorems 2 to 4 and the classical Fredholm alternative
theorem.

(ii) If
−→
F ∈ L1[x, ∞) ∩ L2[x, ∞), one first proves existence and uniqueness

of solution for the GLM equations in L1[x, ∞), then, using again the Fredholm
alternative, in L2[x, ∞). It follows that (a) there is a unique solution in the whole
L1[x, ∞) ∪ L2[x, ∞) and (b) the solutions coincide in L1[x, ∞) ∩ L2[x, ∞);
consequently, the common solution lives in L1[x, ∞) ∩ L2[x, ∞). �

4.4. PROPERTIES OF POTENTIALS

We have seen in the previous section that the conditions
−→
F ∈ L1[x, ∞) for all

x ∈ R and F2(x) = ∓F ∗
1 (x) guarantees existence and uniqueness of a solution
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Klj (x, ·) to the GLM equations (4.1)–(4.2) in L1[x, ∞). A natural question arises
as to whether, under these conditions, the potentials q, r also belong to L1[x, ∞)

for all x ∈ R (i.e.,
∫ ∞
x

|q(s)| ds < ∞,
∫ ∞
x

|r(s)| ds < ∞). As it turns out, there
is no guarantee that this is the case unless somewhat more stringent conditions are
required.

In the first part of this section, we shall follow the ideas of Marchenko (1963) –
relative to the classical Schrödinger operator – and show that if the data satisfy for
all a ∈ R∫ ∞

a

(1 + |x|)|F ′
j (x)| dx < ∞ (4.31)

then the potentials are integrable on (x, ∞) for all x ∈ R. The given condition is,
however, quite severe and hence this setting might not be general enough. Consider,
for example, the data

F(x) = χ[0,1](x) ≡
{

1 if 0 � x � 1,
0 otherwise,

F(x) = e−|x|, F (x) = sin(1/x)

1 + x2

or

F(x) = sin(x)

1 + x2

which are natural integrable and bounded data, but fail to satisfy the condition
(4.31) and hence are beyond the scope of the theory considered here.

In the next section we shall show how to get around this difficulty and prove the
integrability of the potential under less stringent conditions on the data.

4.4.1. Integrability of Potentials. I

Let us consider the GLM equations (4.6) for i = 1 and j = 1, 2 (j + 1, as usual,
is intended mod 2). Introduce, for convenience,


1(x, y) = K11(x, y), 
2(x, y) = K12(x, y) (4.32)

so that the equations can be written in vector form

−→

(x, y) +

(
0

F2(x + y)

)
+

+
∫ ∞

x

(

2(x, s)F1(y + s)


1(x, s)F2(y + s)

)
ds = 0, y � x (4.33)

or

−→

(x, x + y) +

(
0

F2(2x + y)

)
+

+
∫ ∞

0

(

2(x, x + s)F1(y + s + 2x)


1(x, x + s)F2(y + s + 2x)

)
ds = 0, y � 0 (4.34)
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and

q(x) = −2K12(x, x) ≡ −2
2(x, x). (4.35)

The results of Sections 4.2 and 4.3 show that if Fj ∈ L1[x, ∞) for all x ∈ R, then
the operator

�x :
−→

(x, x + y) → −

∫ ∞

0

(

2(x, x + s)F1(y + s + 2x)


1(x, x + s)F2(y + s + 2x)

)
ds (4.36)

is compact both as an operator from L1[0, ∞) to itself and L2[0, ∞) to itself
and Equation (4.34) has a unique solution in L1[0, ∞) (and L2[0, ∞) hence in
L1[0, ∞) ∪ L2[0, ∞)).

In other words, since we know that for any x ∈ R, there is a unique solution to
(4.33) with∫ ∞

x

|
j(x, y)| dy < ∞,

∫ ∞

x

|
j(x, y)|2 dy < ∞, j = 1, 2

then there is a unique solution to (4.34) such that∫ ∞

0
|
j(x, x + y)| dy < ∞,

∫ ∞

0
|
j(x, x + y)|2 dy < ∞, j = 1, 2.

Equation (4.34) can be written in a compact form as

(I + �x)
−→

(x, x + y) = −→

h (x, y),
−→
h (x, y) = −

(
0

F2(2x + y)

)
(4.37)

existence and uniqueness of solution to (4.37) in, say, L2[0, ∞), for all x ∈ R,
implies that (I + �x)

−1 exists for all x ∈ R.
From Equations (4.17) and (4.21) it follows that

‖�x
−→

 ‖2

‖−→
 ‖2

�
( ∑

j=1,2

(∫ ∞

2x

|Fj(s)| ds

)2
)1/2

,
‖�x

−→

 ‖1

‖−→
 ‖1

�
∑
j=1,2

∫ ∞

2x

|Fj(s)| ds

one also has by the triangular inequality

‖(I + �x)
−→

 ‖2

‖−→
 ‖2

� 1 +
( ∑

j=1,2

(∫ ∞

2x

|Fj(s)| ds

)2)1/2

,

‖(I + �x)
−→

 ‖1

‖−→
 ‖1

� 1 +
∑
j=1,2

∫ ∞

2x

|Fj(s)| ds

hence

lim
x→∞ ‖I + �x‖1,2 � 1.
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From the other side,

‖(I + �x)
−1‖1,2 � 1

1 − ‖�x‖1,2
if ‖�x‖1,2 < 1

and since ‖�x‖j � ‖−→F ‖j,[2x,∞) for both j = 1, 2, for the L1-norm one has in
particular that

lim
x→∞ ‖(I + �x)

−1‖1 � lim
x→∞

1

1 − ‖−→F ‖1,[2x,∞)

= 1.

Since the L1-norm of the operator (I + �x)
−1 is finite for all finite x and bounded

as x → ∞, for every a ∈ R, one has

sup
x�a

‖(I + �x)
−1‖1 = C(a) < ∞. (4.38)

Now, from the Equation (4.37)

‖−→
(x, x + y)‖1

=
∑
j=1,2

∫ ∞

0
|
j(x, x + y)| dy � ‖(I + �x)

−1‖
∫ ∞

0
|F2(y + 2x)| dy.

In particular, for both j = 1, 2
∫ ∞

0
|
j(x, x + y)| dy � ‖(I + �x)

−1‖1

∫ ∞

0
|F2(y + 2x)| dy. (4.39)

Let us introduce

τj (x) =
∫ ∞

x

|F ′
j (s)| ds, τ̃j (x) =

∫ ∞

x

τj (s) ds. (4.40)

Note that if F ′
j ∈ L1,1[x, ∞) for all x ∈ R, the previous functions are well defined

and they are both decreasing functions of their argument. Indeed, an integration by
parts yields

τ̃j (x) = sτj (s)|s=∞
s=x −

∫ ∞

x

sτ ′
j (s) ds

= lim
x→∞ xτj (x) − xτj (x) +

∫ ∞

x

s|F ′
j (s)| ds

and all terms are finite for F ′
j ∈ L1,1[x, ∞).

Also, one has the following

|Fj(x)| =
∣∣∣∣
∫ ∞

x

F ′
j (s) ds

∣∣∣∣ �
∫ ∞

x

|F ′
j (s)| ds ≡ τj (x) (4.41)
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and consequently∫ ∞

x

|Fj(s)| ds �
∫ ∞

x

τj (s) ds ≡ τ̃j (x). (4.42)

Substituting the GLM equation for the second component into the first one, we get


2(x, x + y) + F2(2x + y) −
−

∫ ∞

0
ds ′ 
2(x, x + s ′)

∫ ∞

0
ds F2(s + y + 2x)F1(s

′ + s + 2x) = 0

hence

|
2(x, x + y)|
� |F2(2x + y)| +

+
∫ ∞

0
ds ′ |
2(x, x + s ′)|

∫ ∞

0
ds |F2(s + y + 2x)‖F1(s

′ + s + 2x)|

� |F2(2x + y)| +
∫ ∞

0
ds ′ |
2(x, x + s ′)|

∫ ∞

0
ds τ2(y + 2x)τ1(s + 2x),

where we used (4.41) and the fact that s, s ′ are positive and τj is decreasing.
Consequently,

|
2(x, x + y)| � τ2(2x + y)

[
1 + τ̃1(2x)

∫ ∞

0
ds ′ |
2(x, x + s ′)|

]

� τ2(2x + y)[1 + τ̃1(2x)C(x)τ̃2(2x)], (4.43)

where we used (4.39) to get∫ ∞

0
|
2(x, x + s ′)| ds ′ � C(x)τ̃2(2x)

being C(x) ≡ ‖(I + �x)
−1‖1. Then we have∫ ∞

a

|
2(x, x)| dx �
∫ ∞

a

τ2(2x)[1 + C(x)τ̃1(2x)τ̃2(2x)] dx

�
[
1 +

(
sup
x�a

C(x)
)
τ̃1(2a)τ̃2(2a)

] ∫ ∞

a

τ2(2x) dx

= 1

2

[
1 +

(
sup
x�a

C(x)
)
τ̃1(2a)τ̃2(2a)

]
τ̃2(2a)

which, taking into account (4.38), then proves that q(x) ∈ L1[a, ∞) for any a ∈ R.
Note that if we use “right” data, we get a potential in L1(−∞, a] for all a ∈ R,

and then we can use the fact that “right” and “left” data are uniquely determined
one in terms of the others to show that the potentials indeed coincide and to get a
solution which is L1(R).
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4.4.2. Integrability of Potentials. II

As we shall now show, integrability of the potential follows under much weaker
conditions on the data. To this end, given f : R → R, we define the function f̆ as

f̆ (y) = sup
x�0

|f (x + y)|. (4.44)

PROPOSITION 5. The operation ˘ has the following properties

(i) |f | � f̆ , ‖f ‖p � ‖f̆ ‖p, 1 � p � ∞. Further ‖f ‖∞ = ‖f̆ ‖∞. It follows, in
particular, that

f ∈ L̆1(R) ⇒ ‖f ‖∞, ‖f ‖1 < ∞; lim
x→∞ f (x) = 0,

(ii) f̆ � 0,

(iii) if f is decreasing then f̆ = |f |,
(iv) f̆ is decreasing,

(v) (
˘̆

f ) = f̆ ,

(vi) f̆ � ‖f ‖∞,

(vii) |f | � |g| ⇒ f̆ � ğ.

Proof. (i)–(iii) are straightforward.
(iv) One can write f̆ (y) ≡ supx�0 |f (x + y)| = supx∈Ay

|f (x)| where Ay ≡
[y, ∞). As y increases the sequence of intervals Ay decreases: y < z ⇒ Az ⊂ Ay

and hence supx∈Az
|f (x)| � supx∈Ay

|f (x)|.
(v) Indeed one can write (

˘̆
f ) = ψ̆ where ψ(y) ≡ f̆ (y) is decreasing. Thus

by (iii) the result follows.
(vi) and (vii) are also straightforward. �
Consider now Equations (4.6) with the notation (4.32). To adapt the ideas to this

vector case we use, as above, |−→
(x, s)| := |
1(x, s)| + |
2(x, s)| and the same

for
−→
F (x). Besides |−→̆F (x)| ≡ supx�0 |−→F (x + y)|. The following result holds.

THEOREM 6. Suppose the data satisfies: F̆j ∈ L1,[a,∞), ∀a ∈ R and j = 1, 2.
Then q, q̆ ∈ L1,[a,∞), ∀a ∈ R, and the following estimates hold:

‖q‖1,[a,∞) � ‖q̆‖1,[a,∞) � (1 + Sa)

∫ ∞

2a

|−→̆F (y)| dy < ∞, (4.45)

where

Sa = sup
x�a

∫ ∞

x

|−→
(x, s)| ds < ∞.



SOLVABILITY OF THE DIRECT AND INVERSE PROBLEMS 275

Proof. We first prove the weaker claim q ∈ L1,[a,∞), ∀a ∈ R. Note

|q(x)| � 2|−→F (2x)| + 2
∫ ∞

x

|−→
(x, s)||−→F (x + s)| ds

and ∫ ∞

x

|−→
(x, s)||−→F (x + s)| ds

�
∫ ∞

x

|−→
(x, s)| sup
s�0

|−→F (2x + s)| ds =
∫ ∞

x

|−→
 (x, s)||−→̆F (2x)| ds

≡ C(x)|−→̆F (2x)|,
where

C(x) ≡ ‖−→
 ‖1,[x,∞) =
∫ ∞

x

|−→
(x, s)| ds.

Therefore

|q(x)| � 2|−→F (2x)| + 2C(x)|−→̆F (2x)|.
C(x) is finite for all finite x since

−→

(x, y) = −(I + �x)

−1−→h (x + y) with−→
h (x) = (0, F2(x))T is the only solution of GLM in L1,[x,∞) and

‖−→
 ‖1,[x,∞) � ‖(I + �x)
−1‖1M(x), (4.46)

where

M(x) ≡
∫

2x

|−→F (y)| dy. (4.47)

Still,

Sa = sup
x�a

C(x) ≡ sup
x�a

∫ ∞

x

|−→
(x, s) ds

could, in principle, blow up as x → ∞. To show this is not the case, note

‖(I + �x)
−1‖1 � 1

1 − ‖�x‖1
if ‖�x‖1 < 1. (4.48)

By the estimate (4.21) we have, also

‖�x‖1 � M(x) (4.49)

and since limx→∞ M(x) = 0, the condition ‖�x‖1 < 1 is satisfied simply taking x

long enough. Therefore, taking into account (4.46)–(4.49)

lim
x→∞ ‖−→
 ‖1,[x,∞) � lim

x→∞
M(x)

1 − M(x)
= 0.
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Thus Sa < ∞. Next,∫ ∞

a

|q(x)| dx

�
∫ ∞

2a

|−→F (x)| dx + 2
∫ ∞

a

dx |−→̆F (2x)|
∫ ∞

x

|−→
(x, s)| ds

�
∫ ∞

2a

|−→̆F (x)| dx + 2
∫ ∞

a

dx |−→̆F (2x)|
∫ ∞

x

|−→
(x, s)| ds

� (1 + Sa)

∫ ∞

2a

|−→̆F (x)| dx.

Thus q ∈ L1,(a,∞), ∀a ∈ R. We next prove the stronger claim q̆ ∈ L1[a, ∞). Note

|q(x)| � 2|−→F (2x)| + 2|−→̆F (2x)|C(x) � 2(1 + Sa)|
−→̆
F (2x)|

hence

|q̆(x)| � 2(1 + Sa)|
˘̆−→
F (2x)| = 2(1 + Sa)|−̆→F (2x)|,

where we used (v) of Prop. 5. Consequently, for any a ∈ R,∫ ∞

a

q̆(x) dx � (1 + Sa)

∫ ∞

a

|−→̆F (2x)| dx < ∞. �
We shall consider the following class of functions L̆1,(a,∞) ≡ {f : R → R |

f̆ ∈ L1,(a,∞)}. We can reformulate the former result as follows.

THEOREM 7 (Integrability of NLS potentials). Suppose the data satisfies:
|−→F | ∈ L̆1,(a,∞), ∀a ∈ R. Then q ∈ L̆1(a, ∞), ∀a ∈ R and the bound (4.45)

applies.

We proved in Section 4.4.1 that the condition Fj ∈ L′
1,1[a, ∞), ∀a ∈ R, where

L′
1,1[a, ∞) ≡ {f : ∫ ∞

a
(1 + |x|)|f ′(x)| dx < ∞}, guarantees integrability of po-

tentials. This condition is, however, quite “severe”. As we shall see now, condition
Fj ∈ L̆1[a, ∞) considerably “broadens” the class of admissible data.

PROPOSITION 6. Suppose f ∈ L′
1,1[a, ∞) for some a ∈ R. Then it is

also f ∈ L̆1[a, ∞), viz. L′
1,1[a, ∞) ⊂ L̆1[a, ∞) where L′

1,1[a, ∞) ≡
{f : ∫ ∞

a
(1 + |x|)|f ′(x)| dx < ∞}.

Proof.

|f (x)| �
∫ ∞

x

|f ′(z)| dz

� sup
x�0

|f (x + y)| � sup
x�0

∫ ∞

x+y

|f ′(z)| dz =
∫ ∞

y

|f ′(z)| dz,

∫ ∞

a

f̆ (y) dy �
∫ ∞

a

dy

∫ ∞

y

|f ′(z)| dz =
∫ ∞

a

(z − a)||f ′(z)| dz < ∞. �
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PROPOSITION 7. Suppose that f satisfies

(i) f ∈ L1[a, ∞) ∩ L∞[a, ∞),
(ii) there exists M ∈ [a, ∞) such that |f | decreases for x � M .

Then f ∈ L̆1[a, ∞).
Proof. Note that |f (y + x)| is decreasing whenever y � M for all x � 0. Then

we have

f̆ (y) = |f (y)|, y � M

and therefore, using (vi) of Prop. 5
∫ ∞

a

f̆ (y) dy =
∫ M

a

f̆ (y) dy +
∫ ∞

M

f̆ (y) dy

�
∫ M

a

‖f ‖1,[a,∞) dy +
∫ ∞

M

|f (y)| dy

� (M − a)‖f ‖∞,[a,∞) + ‖f ‖1,[a,∞) < ∞. �
PROPOSITION 8. Suppose there exists a function g � 0 such that f satisfies

(i) g ∈ L1[a, ∞) ∩ L∞[a, ∞),
(ii) there exists M ∈ [a, ∞) such that g decreases for x � M ,

(iii) |f | � g.

Then f ∈ L̆1[a, ∞).
Proof. As in the proof of the previous proposition,

f̆ � ‖f ‖∞,[a,∞) � ‖g‖∞,[a,∞), y � M,

f̆ (y) � ğ(y) ≡ g(y), y � M

since g(y) is decreasing whenever y � M . Hence
∫ ∞

a

f̆ (y) dy =
∫ M

a

f̆ (y) dy +
∫ ∞

M

f̆ (y) dy

� (M − a)‖g‖∞,[a,∞) + ‖g‖1,[a,∞) < ∞. �
Remark. With g(x) = 1

1+x2 , we obtain that the function f (x) = sin x

1+x2

is in L̆1[a, ∞) and hence is a bona fide data in the GLM equations. Note that
f /∈ L′

1,1[a, ∞).

A convenient workable statement of our results is the following.

COROLLARY 3 (Characterization of data). Suppose the data Fj(x) for j = 1, 2
satisfies

(i) either (4.31),
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(ii) or, there exists a function g such that

(iia) g ∈ L1[a, ∞) ∩ L∞[a, ∞) ∀a ∈ R;
(iib) g decreases for sufficiently large x;
(iic) |Fj | � g.

Then Fj ∈ L̆1[a, ∞) ∀a ∈ R and then it is also q, r, r̆, q̆ ∈ L1,[a,∞), ∀a ∈ R.

Appendix A

THEOREM 8 (Wiener). Let l(x) ∈ L1 (R), l̂(k) the corresponding Fourier trans-
form. Let f : C → R a given function, holomorphic in a set H ⊂ C. Suppose
that

Im l̂(k) ⊂ H,

where Im l̂(k) is the set of values, or range, that this function may take. Then there
exists a function h ∈ L1(R) such that for all k ∈ R

f (l̂(k)) = ĥ(k).

For a proof of this result, see (Chandrasekharan, 1989).

LEMMA 1. For any F ∈ L1[x, ∞)

lim
R→∞

∫ ∞

R+x

|F(y)| dy = 0.

Proof. Let gR(y) = F(y)θ(y − R − x). Then limR→∞ gR(y) exists and
supR�x |gR(y)| � |F(y)| with F ∈ L1[x, ∞). By Lebesgue’s theorem it follows

lim
R→∞

∫ ∞

R+x

|F(y)| dy =
∫

lim
R→∞

|gR(y)| dy = 0. �
LEMMA 2. Any F ∈ L1[x, ∞) is L1-continuous, i.e.,

lim
h→0

∫ ∞

x

|F(x + h) − F(x)| dx = 0.

Consider now the closed compact interval [x, ∞] and let

B ≡ {f : [x, ∞] → C | f (y) = 0 for y < x and ‖f ‖2 < ∞}
with

B ⊂ L2[x, ∞] ≡ {f : [x, ∞] → C | ‖f ‖2 < ∞}.
Let us recall a relevant definition.
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DEFINITION 1. For a given x ∈ R and p � 1, a function � defined on Lp[x, ∞]
is Lp-continuous if

(i) lim
h→0

‖�(x + h) − �(x)‖p = 0, (A.1)

(ii) lim
R→∞

∫ ∞

R

|�(y)|p dy = 0. (A.2)

LEMMA 3. Assume both h, F ∈ L1(R). Then∫
dx eiξx

{∫
h(y)F (x + y) dy

}
= F̂ (ξ)ĥ(−ξ),

where ĥ, F̂ are the Fourier transforms of h, F and both ĥ, F̂ ∈ L∞(R).
Proof.∫

dy

{∫
dx

∣∣eiξxh(y)F (x + y)
∣∣}

�
∫

dy |h(y)|
∫

dx |F(x + y)|

≡
∫

dy |h(y)|
∫

dz |F(z)| ≡ ‖h‖1‖F‖1 < ∞.

Thus Fubini’s theorem yields∫
dy

{∫
dx eiξxh(y)F (x + y)

}

≡
∫

dy h(y)e−iξy

∫
dx eiξ(x+y)F (x + y)

=
∫

dy h(y)eiξy

∫
dz e−iξzF (z) = F̂ (ξ)

∫
h(y) eiξy dy

= F̂ (ξ)ĥ(−ξ). �
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