Quattor: Tools and Techniques for the Configuration,
Installation and Management of Large-Scale Grid Computing
Fabrics

R. Garcia Leiva
Department of Theoretical Physics, Universidad Auténoma de Madrid, Ctra.
Colmenar Km. 15, 28049 Madrid, Spain

M. Barroso Lépez, G. Cancio Melid, B. Chardi Marco, L. Cons and P.

Poznanski
CERN, CH1211 Geneva-23, Switzerland

A. Washbrook
Department of Physics, The University of Liverpool, Liverpool L69 7ZE, UK

E. Ferro
INFN-LNL, Viale dell Universita 2, I-85020 Legnaro (Padova), Italy

A. Holt
University of Edinburgh, Old College, South Bridge, Edinburgh EH8 9YL, UK

September 14, 1994

Abstract. This paper describes the quattor tool suite, a new system for the installa-
tion, configuration, and management of operating systems and application software
for computing fabrics. At present Unix derivatives such as Linux and Solaris are
supported. Quattor is a powerful, portable and modular open source solution that
has been shown to scale to thousands of computing nodes and offers a significant
reduction in management costs for large computing fabrics. The quattor tool suite
includes innovations compared to existing solutions which make it very useful for
computing fabrics integrated into grid environments. Evaluations of the tool suite
in current large scale computing environments are presented.

Keywords: quattor, fabric management, installation and configuration, clusters,
Unix system management

1. Introduction

Quattor! is a new tool suite for the installation, configuration and man-
agement of operating systems and application software for computing
fabrics. Quattor is a powerful, portable and modular open source solu-
tion that scales to thousands of nodes, offering a significant reduction in
management costs for large computing fabrics. Work on quattor started
within the scope of the EU DataGrid project (Jan. 2001 - Dec. 2003),
but development and maintenance are now coordinated by CERN (IT
department), in collaboration with other partner institutes. For more

';:‘ © 2004 Kluwer Academic Publishers. Printed in the Netherlands.

quattor.tex; 17/11/2004; 16:29; p.1

2 R. Garcia Leiva et al.

information about quattor, and to download the latest software release,
please refer to the quattor web page at http://quattor.org.

DataGrid was a three-year EU funded project with the objective
to develop the next generation computing infrastructure for data in-
tensive grid applications. The project was organized into Work Pack-
ages: middleware development, grid testbed infrastructure, scientific
applications, dissemination and management.

The goal of Work Package number 4 (WP4) was to provide all the
necessary tools to manage a computing fabric providing grid services
on clusters of thousands of nodes [1]. The tasks of the Work Package
were divided into two areas: user job management (grid and local
users), and automated management of large grid computing fabrics.
The quattor tool suite project is one of the key results from these WP4
developments.

This paper describes the architecture of the quattor tool suite, and
the actual experience of using it for the automated management of
large computing fabrics. The rest of this section briefly reviews the
challenges related to fabric management and the technology state of the
art. Section 2 describes the architecture and concepts behind quattor.
Section 3 shows the results achieved so far with quattor. And finally,
section 4 sums up the experience and current status, and describes the
planed future enhancements to the quattor tool suite.

1.1. MANAGEMENT OF GRID COMPUTING FABRICS

A typical fabric for grid computing consists of clusters of computing
nodes, where user jobs are run, and a number of grid and network
infrastructure components:

— master nodes which co-ordinate the computing node clusters for
batch and interactive services,

— storage servers such as disk servers (e.g. NFS, RFIO, GridFTP),
and tape infrastructure (tape servers and robotics),

— installation and software repository servers,
— information servers (e.g. database and monitoring servers),
— network infrastructure (switches, DNS servers), and

— miscellaneous servers (time servers, authentication and authoriza-
tion servers).

Managing a computer fabric with these components not only involves
the management of services individually but also the management of

quattor.tex; 17/11/2004; 16:29; p.2

Quattor: Large-Scale Grid Computing Fabric Management 3

the dependencies between services and the consequent ordering between
operations that have to be performed. This latter complication is very
important: for example, upgrading the kernel version of a computing
node involves the installation of the software package with the new ker-
nel, and the modification in the configuration of the kernel loader (for
example grub loader). This quite trivial example already exposes the
importance of the order in which the operations have to be performed:
in this case the configuration of the kernel loader has to be changed
after the installation of the new kernel.

A further complication is that some operations can take a significant
amount of time. In the example above, if there are user jobs running
on the computing node, then the configuration change has to wait until
all the jobs have finished. This operation may take days on some nodes
whereas it may be immediate on others (those without running jobs).
Such long time spans increase the risk of queuing up several operations
on some nodes, for instance, and OS upgrade might be requested for
the following day on some of the node clients in the example above [2].

Currently these types of operations are mostly performed manually,
which can be error-prone, as well as being difficult and expensive to
manage in large cluster environments. There is a demand for a tool suite
that allows for a significantly increased automation of those operations
while still leaving the overall control and supervision of the operations
in the hands of the expert system administrator. It is also important
that the automation takes into account the integrity of user jobs. Specif-
ically, fabric management operations should not be allowed to abort a
user job nor its run-time environment unless essential intervention is
required (for example, an emergency due to a security incident).

The experience in DataGrid during these 3 years has also shown
that there is a real need to be able to install, configure and manage
the small, medium and large sites providing grid services. The proper
integration of these sites into production grids of ever increasing size
and complexity necessarily requires well managed and stable computing
fabrics. Wrong or faulty grid services configuration not only affects
the functioning of the site, but the performance of the whole grid (for
example, a missconfigured batch system can attract all the grid resource
requests and collapse the grid job submission).

The size of a site is an important complexity dimension in cluster
environments, but the fact that a cluster is grid enabled adds another
complexity dimension that is independent of the size, it affects equally
to small, medium and large sites. This additional level of complexity is
caused by the grid middleware configuration, the grid policies, and so
on. This complexity factor is also solved by automated fabric manage-

quattor.tex; 17/11/2004; 16:29; p.3

4 R. Garcia Leiva et al.

ment tools, and its solution is critical for the manageability, stability
and security of grid enabled computing fabrics.

1.2. TOOLS FOR SYSTEM ADMINISTRATION

There are many tools for the installation, configuration and manage-
ment of a network of computers already available. Please refer to [3] for
an evaluation of the tools available at the beginning of the DataGrid
project, and refer to [4] for a more detailed analysis of those tools that
have been specifically designed for the installation and management of
Linux clusters. The most complete open source solutions available up
to date are Cfengine [5], OSCAR [6], Rocks [7] and LCFGng [8].

Cfengine (Configuration Engine) is a widely used tool for system
maintenance. It is based on the author’s philosophy that computer sys-
tems should be self-healing [9], having the ability to diagnose problems
within themselves and take the appropriate remedial action, rather
than simply reporting an error and expecting a human administra-
tor to solve the problem. Cfengine provides automation of a range of
configuration tasks including network interface configuration, symbolic
link management, file permission checking and removal of garbage files.
Configuration files can be automatically edited using a set of operators
which can make changes to the files, adding, deleting or commenting
out lines, functionality which was traditionally achieved using a set of
scripts. A class system is used to determine to which hosts operations
are to be applied. Inclusion in a class can depend on, for example,
host name, operating system type or a user defined group. Individual
machines are aware of their own attributes, and can determine whether
they belong to a class for which a statement is to be executed. These
operations can be conditional on, for example, the existence of a given
line in the file. An entire site is configured from one Cfengine file con-
taining the definitions of the classes and the actions to be taken for
machines within each class. This is stored on a server and distributed
to the nodes.

OSCAR (Open Source Cluster Application Resources) is a collection
of open source software projects designed to work together to automate
the installation and configuration of networked workstations. OSCAR
has been developed by the Open Cluster Group, an informal group of
people with the objective to make cluster-computing practical for high
performance computing. The OSCAR software projects fit around a
modular design framework designed to be cross-platform, operating
system independent, and scalable from a single workstation to a thou-
sand node collection of workstations. OSCAR is based on the System
Installation Suite [10] for the installation and configuration of nodes,

quattor.tex; 17/11/2004; 16:29; p.4

Quattor: Large-Scale Grid Computing Fabric Management 5

and the Cluster Command and Control tool suite [11], a set of user
interfaces for assisting in the system management of PC clusters.

Rocks is a full Linux distribution, based on Red Hat Linux, that has
been specifically designed and created with the goal to make clusters
easy to deploy, manage, upgrade and scale. Rocks makes complete
operating system installation of a node the basic management tool.
Rocks is based on the assumption that it becomes faster to reinstall all
nodes to a known configuration than it is to determine if nodes were
out of synchronization in the first place. Rocks is based on Red Hat
KickStart utility for the installation of cluster nodes, and a MySQL
database to store the definitions of the global configurations and then
generates database reports to create service-specific configuration files
(e.g., DHCP configuration file, /etc/hosts, and PBS nodes file).

LCFG (Local Configurator) is a system for the installation and con-
figuration of nodes, originally developed at the University of Edinburgh.
LCFG has been designed to automatically install and manage a net-
work of computers with very different configurations, which may evolve
rapidly over time. LCFG is based on the use of a central repository
where all the node configuration parameters are stored in an abstract
way, and organized into categories. A simple mechanism for file inclu-
sion provides inheritance, and a modified form of inheritance called
mutation. This central repository for configuration, and the abstract
representation of the configuration parameters, are the key elements
of LCFG. Moreover, there exists a set of scripts in the client nodes
that read the abstract configuration parameters, and they generate the
traditional configuration files, so as to directly manage the services of
the node.

At the beginning of the DataGrid project, none of the available tools
fulfilled all the requirements needed for managing a grid computing
fabric [3]. The tool more suited to the DataGrid project requirements
was LCFG. LCFG was chosen by WP4 as an interim solution for the
installation and configuration of DataGrid software, and a prototype
for testing the architectural design principles of quattor.

2. Architecture and Design

Quattor is a fabric management tool suite created with the goal to
provide a solution for the automated installation, configuration and
management of clusters and grids. Quattor provides a complete fabric
management solution, filling in the gaps and solving those common
problems of other system management tools. Among the advantages of
quattor we can mention the following:

quattor.tex; 17/11/2004; 16:29; p.5

6 R. Garcia Leiva et al.

— non-intrusive system: quattor does not replace any of the native
installation and configuration tools that already exist for Linux,
instead quattor adds extra functionality on top of them,

— highly modular: quattor provides independent modules that can
work together as a complete solution, but that can also be taken
independently and cleanly interfaced to other fabric management
tools,

— wuse of well known standards: the HI'TP protocol is used to trans-
fer configuration information and software packages, XML to de-
scribe configuration information, SOAP for remote management
of quattor services,

— wuse of third party tools: quattor reuses many installation and con-
figuration tools (KickStart, PXElinux, DHCP, etc.), in this way
the system is easier to maintain,

— distributed approach: configuration information is cached locally on
clients, and operations are performed locally whenever possible, in
this way the scalability of the system is guaranteed, and

— provides a set of base libraries: these libraries let users access the
modules via control functions.

The quattor information model is based on the distinction between
the desired configuration state and the actual configuration state of the
fabric nodes. The configuration management modules are responsible
for describing the desired configuration of all the nodes, and the instal-
lation management modules are responsible for changing the actual
configuration of nodes to the desired state. How quattor manages the
installation and configuration of client nodes is described in the next
sections.

2.1. CONFIGURATION MANAGEMENT

This section describes the modules provided by quattor for the manage-
ment of the desired configuration state of client nodes. The relationship
among these modules can be seen in Figure 1.

2.1.1. Configuration Database

The desired state of client nodes is registered in a central fabric-wide
database called the Configuration Database (CDB). This database stores
configuration information using two different formats. One format is a

quattor.tex; 17/11/2004; 16:29; p.6

Quattor: Large-Scale Grid Computing Fabric Management 7

GUI

CLT

Scripts

N
Ny
N
o] |3
Cache —
E [
com R+ client
L Node

Figure 1. Configuration Management

high level description of configuration parameters intended for user-
level processing. This high level format is expressed in a new, specially
designed, configuration language called Pan (see below for more in-
formation about Pan). The other format is a low level description
expressed in XML, called the mode profile, and intended for machine
processing. The low level XML files are derived from the high level Pan
descriptions using the Pan language compiler.

System administrators edit the high level description files, called
configuration templates, either through a command line based inter-
face, or using a graphical user interface. These templates describe the
configuration parameters of all the elements that belong to the fabric.
Then, for each client node, one XML file is generated that contains all
the information needed to install and configure the node.

The CDB works in a transactional way. It performs validation of the
configuration information. Once the validation and compilation process
is accomplished successfully, the changes introduced by the user are
stored in the CDB and are visible to its clients. The CDB is also able
to manage concurrent access by different system administrators. Addi-
tionally, CDB provides mechanisms for versioning (based on CVS) and
maintains the history of all changes to the configuration information. In
case of the deployment of a wrong configuration, the system manager
can easily rollback to any previous working configuration.

The database itself includes a scalable distribution mechanism for
the XML files based on HT'TP, and the possibility of adding any number
of back-ends or Server Modules to support various query patterns over
the information stored in the CDB (currently SQL queries).

quattor.tex; 17/11/2004; 16:29; p.7

8 R. Garcia Leiva et al.

2.1.2. Pan language

The configuration information is structured in a tree format, and ex-
pressed with a High Level Description Language called Pan [12]. Pan
mainly consists of statements to set some value to a configuration pa-
rameter identified by its path in a configuration information tree. Pan
features include other statements like include (very similar to C++
#include directive) or delete that removes a part of the configuration
information tree. The grouping of statements into templates allows
the sharing of common information, and provides a simple inheritance
mechanism.

Pan contains a very flexible typing mechanism. It has several built-in
types (such as boolean, string, long and double) and allows com-
pound types to be built on top of these. Once the type of a configuration
element is known, the compiler makes sure that only values of the right
type are assigned to it. To have even greater control over the configu-
ration information generated by the compiler, it is possible to attach
validation code to a type or to a configuration path. The validation code
is represented in a simple but powerful data manipulation language
which is a subset of Pan and syntactically similar to C and Perl.

In addition to the Pan compiler, quattor provides a Pan User Con-
ventions guide which describes the generic structures to store the con-
figuration information of a computer system.

2.1.3. Configuration Cache Manager

The Configuration Cache Manager (CCM) runs on every node and
caches the XML machine configuration to support disconnected oper-
ations. Access to the configuration information is provided through a
Node View Access API that hides details such as the XML scheme
used. CCM may poll CDB for the configuration information, or it can
receive UDP notifications sent by CDB if the machine’s configuration is
changed. Once validated, configurations are propagated to CCM agents
running on the nodes and cached locally. The CCM is also able to store
multiple profiles and provides locking mechanism to forbid concurrent
access.

2.2. INSTALLATION MANAGEMENT

This section describes how quattor deploys the desired configuration
state on the fabric’s nodes. The relationship among the installation
modules can be seen on Figure 2.

quattor.tex; 17/11/2004; 16:29; p.8

Quattor: Large-Scale Grid Computing Fabric Management 9

Software Servers

Managed nodes
SW package 3 [
"% Manager (SPMA) @ RPM, PKG I:I[I

1
' Installed software
| kernel, system, applications.

SWRep

sabeyoed

___________________ Install server

System services
AFS,LSF.SSH,accounting..

Node Configuration J*——) <\ base 0S I:I[I
""" Manager (NCM) W

Vendor

System installer
RH73, RHES,
Fedora, ...

dnu/spu

doyp

Install Manager

axd

CDB

Figure 2. Configuration Deployment

2.2.1. Node Configuration Manager

The Node Configuration Manager (NCM) module provides a frame-
work for adapting the actual configuration of a node to its desired
configuration, as it is described in the node’s profile inside CDB.

Plug-in software modules called configuration components are re-
sponsible for the configuration of local services (e.g. network, users and
groups, NFS). These components read configuration information stored
in the CDB via the CCM, and create, update or delete local service
configuration files in order to match the CDB configuration description.
Components register which configuration entries or subtrees they are
interested in, and are notified if a change occurs.

Each component contains the knowledge for the translation of the
CDB configuration information into each local service’s specific con-
figuration file syntax. A component may also need to notify a service
about a configuration change (e.g. by running a restart or reload
method in a SysV init script).

The NCM module is composed of the following elements:

— A Configuration Dispatch Daemon that monitors the node con-
figuration profile by polling the CCM. In case of changes in the

quattor.tex; 17/11/2004; 16:29; p.9

10

R. Garcia Leiva et al.

configuration profile, the dispatch daemon will invoke the affected
configuration components.

A Node Configuration Deployer that is the framework and frontend
for executing the configuration components. The configuration de-
ployer can be executed manually, at regular intervals of time via
cron utility, or when there are changes in the configuration via
the dispatch daemon. It takes care of configuration locking and
inter-componet dependency ordering prior to executing compo-
nents sequentially.

A set of Component Support Libraries. Libraries for recurring sys-
tem management tasks (system information, interfaces to system
services, file editing), and a Common Application Framework with
utilities for log file handling, command line processing, and so on.

2.2.2. Software Package Management

The Software Package Management and Distribution (SPM) module

is responsible for managing and storing software packages, and for
distributing and installing these packages on client nodes.

The SPM module is composed of:

— A Software Repository (SWRep) that allows site administrators

and package maintainers to store and manage software packages
(for example Linux RPM or Solaris PKG packages) subject to
authentication and authorization using access control lists. The
packages themselves are accessible to clients via standard protocols
including HTTP, FTP, or via a shared file system. It is possible
to have multiple (replicated or independent) Software Repository
instances for a given fabric, allowing private per-department repos-
itories. The replication of repositories can be done with standard
tools like rsync.

A Software Package Manager Agent (SPMA) that runs on the
target nodes. It reads a local configuration file containing the list
of desired packages, compares this list with the currently installed
packages, computes the necessary installation, deinstallation or
upgrade operations, and invokes the system packager (e.g rpm?
on Linux or pkgadd/pkgrm on Solaris) with the correct transaction
set. The software packages can be cached locally if necessary before
calling the node’s system packager.

An NCM configuration component: the information on which pack-
ages are to be deployed on the nodes (desired or target configura-
tion), and which packages are available on every repository can

quattor.tex; 17/11/2004; 16:29; p.10

Quattor: Large-Scale Grid Computing Fabric Management 11

be kept in the CDB. The SPM component fits into the NCM
framework described above. It retrieves the list of packages to be
installed for the current node from the CDB via the CCM, creates
with this information a local configuration file for the SPMA, and
launches the SPMA.

Typically, the SPMA is used for managing all packages on a node. This
is useful for nodes which are under full control of the fabric manage-
ment system. However, for add-on installations or desktop systems, the
SPMA can be run in a “light” mode, taking care of a subset of packages
only, according to configurable policies.

For performance and scalability issues, the SPMA can use a lo-
cal cache where packages can be stored in advance of install/upgrade
operations. This way, peak loads on software repository servers can
be avoided during upgrades of large farms, while keeping consistency
across the upgraded nodes. The default transport protocol is set to
HTTP for its scalability and low overhead.

2.2.3. Automated Installation Infrastructure

The Automated Installation Infrastructure (All) module provides tools
for the initial installation of the operating system and the quattor
software on client nodes. AIl uses standard vendor installation tools
and network bootstrap protocols, providing a common front end for
configuring and managing these tools. AIl manages the configuration
of network related information, like the DHCP tables and the network
bootstrap protocols (e.g PXE for Linux and OpenBoot for Solaris), and
the node specific installation setup rules (Kickstart for Red Hat Linux
and JumpStart for Solaris). AIIl obtains the configuration information
about the nodes to bootstrap from the CDB (via CCM), but it can be
used with other site specific network databases as well. The software
packages used to install the clients can be downloaded from the SWRep
repository.

3. Results

At the time of writing this paper, most of quattor’s modules are in a
production state and being used to manage a large computing fabric at
CERN. CERN is progressively replacing its legacy management tools
(SUE [13]) and ASIS [14]) by quattor. The non-production quality
quattor modules, essentially AITl and NCM’s dispatch daemon, are still
undergoing heavy testing in a fabric testbed at the UAM University of
Madrid.

quattor.tex; 17/11/2004; 16:29; p.11

12 R. Garcia Leiva et al.

3.1. USAGE STATISTICS

At the CERN computing centre, quattor is responsible for the instal-
lation and management of more than 2000 client nodes. These nodes
belong to 15 different clusters, being used for different purposes (in-
teractive clusters, batch processing, etc.) The client nodes managed by
quattor have many different functionalities, such as computing nodes,
disk and tape servers, database and web servers, and others. Moreover,
the managed nodes have heterogeneous hardware, for example, different
memory sizes and hard disk sizes. Quattor is used to manage three
different versions of Linux: Red Hat 7.3, Red Hat Enterprise Server 2.1
and Red Hat Enterprise Server 3.0.

Quattor is also responsible for the management of more than 400
grid computing nodes. These nodes are installed under LHC? Com-
puting Grid software (LCG). Among these nodes, 250 are being used
for the LHC CMS detector data processing challenge. The remaining
nodes are used for LCG (version 2) grid production.

The Software Repository used at CERN contains more than 8000
software packages, divided into 4 platforms, with 7 areas in each one.
This repository is managed by 9 different system administrators.

The CERN Central Configuration Database stores 260 general pur-
pose configuration templates. These templates describe the roles of all
the types of node used in the 15 clusters (an example of role could
be an LCG’s Worker Node). Beside the general purpose templates,
for each client node there are 2 additional templates describing its
specific configuration parameters, such as the node’s IP address. In
total, CERN’s CDB manages more than 3800 configuration templates.

3.2. SOFTWARE PACKAGE MANAGEMENT

Quattor SWRep and NCM/SPMA modules are used at CERN for the
complete automated management of all software packages, operating
system packages, grid middleware and application software. Quattor is
used to install software packages updates that fix security loopholes.
On average, SPMA is run every two days to keep the fabric updated
to the latest software releases and bug fixes.

Quattor can be used to manage the installation, upgrading or down-
grading of a large number of software packages in just one single trans-
action. For example, an upgrade of the KDE desktop environment
equates to approximately 400MB of software packages per node, and
these packages must be upgraded in more than 70 nodes of the interac-
tive cluster, or the OpenSSH software that must be upgraded on more
than 2100 nodes.

quattor.tex; 17/11/2004; 16:29; p.12

Quattor: Large-Scale Grid Computing Fabric Management 13

A critical software element managed by quattor is the upgrading of
Linux kernels. SPMA is capable of installing and managing multiple
versions of the same package. In this case, it can install multiple kernel
versions on the same machine. With quattor we can distinguish between
the time of kernel installation, and the time of kernel activation. With
NCM an the kernel loader configuration component, we can configure
which kernel version we want to use each time the machine reboots
in an easy way: modify a single configuration template, and all the
machines will be automatically updated.

One remarkable example of the utility of quattor was the LSF batch
system software upgrade. The challenge was to upgrade from LSF 4.2
to LSF 5.1 on more than 1000 cluster nodes in the shortest possi-
ble time, and without interrupting production service. Using quattor,
this task was performed in less than 15 minutes, and without service
interruption. The previous major version upgrading (from LSF 3 to
LSF 4), performed on 600 nodes took two full time system managers
during three weeks to complete. A key element of this success was
quattor’s package pre-load caching facility, and the central storage of
configuration information in the CDB.

The quattor software management tool SPMA has the advantages
over other tools like apt-get that it not only can install and upgrade
software packages, SPMA can be used to downgrade to any older ver-
sion of the software. This facility, combined with CDB CVS versioning,
is very useful in case of misconfigurations to rollback to a previous
well-known working configuration state.

3.3. PROXY SERVERS

One issue in the early use of quattor has been how to provide a reliable,
redundant and load balanced access to quattor services (such as AII,
SWRep and CDB profiles). The previous deployment architecture used
at CERN can be seen in Figure 3. This architecture has the following
problems:

— scalability: it is limited due to bottlenecks in network and switches,

— efficiency: between servers, the entire disc content must be repli-
cated (with implications for disk size and access speed), while
between server and clients, much bandwidth is wasted, owing to
the multiplication of identical transfers, and

— reliability: given a low ratio of servers to clients (e.g. a handful of
servers coping with 1000s of client nodes), the load balancing must
react very quickly and intelligently in case of server unavailability.

quattor.tex; 17/11/2004; 16:29; p.13

14 R. Garcia Leiva et al.

LXSERV
backend linux install (AII)
=
frontend
DNS load balanced NFS (HTTP)

gaual

Quattor modules are by design reverse proxy compatible, for ex-
ample, SPMA has support for proxy handing. The new architecture
deployed at CERN is based on a two-level proxy server hierarchy, using
Apache’s mod proxy module. This new architecture can be seen on
Figure 4.

The early experience with Apache shows that it is a reliable web
server, with a clear and flexible configuration, and with no functionality
duplication (it can be used as proxy and non-proxy web server). All the
described problems related to scalability, efficiency and reliability has
been solved.

Caunl

Figure 3. Old Deployment Architecture

4. Conclusion

Fabric management components are not grid components themselves,
but they are essential to have a working grid. Our experience gathering
requirements, developing and deploying the quattor tool suite in the
DataGrid testbed and the CERN Computing Centre shows that there
is a real need to be able to install, configure and manage grid computing
clusters correctly (to avoid configuration errors that may affect not only

quattor.tex; 17/11/2004; 16:29; p.14

Quattor: Large-Scale Grid Computing Fabric Management 15

LXSERV
backend linux install (AII)
—
frontend
DNS load balanced HTTP

DNS-1load balanced HTTP

lmnt gl i

Figure 4. Proxy based Deployment

the site but the whole grid response), automatically (to reduce the work
load of system administrators and to keep the running cost withing a
reasonable range), and supporting adaptability (properly managing site
and resources reconfigurations).

The experience gathered shows that it results very expensive to
change the current fabric management tools used at grid sites. The
fabric management tools are a critical element in the management of
grid components, and changing the current tool by a new one implies,
not only to learn the new tool, but to learn new procedures, new
methods, and so on. In case of DataGrid, sites were testbeds where
tools and procedures could be imposed, but this is not the case for real
production grid fabrics.

While the autonomy model for sites participating both in testbeds
and production grid computing fabrics is the preferred solution, the
proper integration of these sites into grid of ever increasing size and
complexity necessarily requires fully automated fabric management so-
lutions and precisely defined policies which must be binding for all
participating sites.

During the time life-span of the DataGrid project, a prototype so-
lution for fabric management (LCFG) has been used on site test beds.

quattor.tex; 17/11/2004; 16:29; p.15

16 R. Garcia Leiva et al.

The experience and early feedback from users and site administrators
with this prototype, was a very valuable input to quattor’s developers
team, who finally produced a solution that better fits the requirements
of grid fabric environments.

Necessarily, there must be a time where the new tool have to coexist
with the legacy tools, services and procedures. Quattor has a modu-
lar design and with very clean interfaces so it can be incrementally
replaced. CERN is replacing its legacy management tools by quattor.

The scalability of the quattor tool suite has been tested at CERN/IT
computing centre by managing 15 clusters, with more than 2000 ma-
chines. The machines managed by quattor have different roles (CPU
worker nodes, tape and disk servers, infrastructure servers), and many
different hardware. The experience of using proxy servers together with
quattor at CERN/IT proves the scalability of the proposed solution to
large grid fabric environments.

4.1. CURRENT STATE AND FUTURE WORK

All the quattor subsystems are already available. The primary platform
is Red Hat Linux, but platform independence is a design principle
(ports and plug-ins for Solaris are progressing). The next steps for
quattor tool suite are the following:

— Development of a full set of grid configuration components: actu-
ally quattor can be used to install the Worker Nodes of DataGrid
and LCG2 (globus tool suite, replica manager, etc). A full set of
configuration components for a grid, and the associated metadata
information, is underway. These grid configuration components are
being written using the experience gathered with LCFG objects.

— Move all modules to production quality: test the Automated In-
stallation Infrastructure and the Configuration Dispatch Daemon
in a real, large, production fabric environment.

— Test further the scalability: CERN plans to use quattor to manage
more than 6000 nodes in 2006, for the LHC project.

— LCG deployment: quattor is being evaluated by LCG Tier_1 cen-
tres for the future deployment of LCG grid software.

quattor.tex; 17/11/2004; 16:29; p.16

Quattor: Large-Scale Grid Computing Fabric Management 17

Acknowledgements

The authors wish to acknowledge the EU and many national fund-
ing agencies and institutes for their support to the DataGrid Fabric
Management activities. The authors would like to give thanks to John
Hawkins from the University of Edinburgh for providing very useful
information about Cfengine.

Notes

! quattor stands for QUattor is an Administration ToolkiT for Optimizing Re-
sources.

2 Since rpm on Linux does not accept multiple simultaneous operation types, we
developed a new front end called rpmt (for transactional rpm) capable to handle
multiple operations on multiple packages in a single transaction.

3 CERN’s new Large Hadron Collider

References

1. Baring, Olof et al., “Towards automation of computing fabrics using tools
from the fabric management workpackage of the EU DataGrid project”, CHEP
Conference Proceedings, 2003.

2. Cancio Melid Germda (Ed.), “WP4 Architectural Design and Evaluation Cri-
teria”, DataGrid Technical Report DataGrid-04-D4.2-0119-2-1, Nov. 2001.
https://edms.cern.ch/document /332393 /1

3. Barroso, Maite, “WP4 Report on Current Technology”, Data-
Grid Technical Report DataGrid-04-TED-0101-3-0, Apr. 2001.
https://edms.cern.ch/document/332371/1

4. Garcia Leiva, Rafael and Peso, José del, “Open Source Solu-
tions for Installation and Management of PC Clusters under
Linux for ATLAS”, ATLAS Notes ATL-SOFT-2003-001, Oct. 2002.
http://doc.cern.ch/archive/electronic/cern/others/atlnot /Note/soft /soft-
2003-001 .pdf

5. Burgess, Mark, “A site Configuration Engine”, Usenixz Computing Systems,
Vol. 8, No. 3, 1995.

6. Mugler, John et al. “OSCAR Clusters”, Linuz Symposium Conference Proceed-
ings, 2003.

7. Papadopoulos, Philip M., Katz, Mason J. and Bruno, Greg, “NPACI Rocks:
Tools and Techniques for Easily Deploying Manageable Linux Clusters”,
Concurrency and Computation: Practice and Experience, 2002.

8. Anderson, Paul and Scobie, Alastair, “LCFG: The Next Generation”, Proceed-
ings of UKUUG Winter Conference, 2002.

9. Burgess, Mark, “Computer Immunology”, LISA Conference Proceedings. 1998.

10. Dague, Sean, ”System Installation Suite”, Ottawa Linux Symposium, June
2002.

11. Brim, Michael et al. ” Cluster Command and Control (C3) Tool Suite”, Parallel
and Distributed Computing Practices, Mar. 2001.

quattor.tex; 17/11/2004; 16:29; p.17

18

12.

13.

14.

R. Garcia Leiva et al.

Cons, Lionel and Poznanski, Piotr, “Pan: A High-Level Configuration Lan-
guage”, LISA Conference Proceedings, 2002.

Tobbicke, R. (Ed.), “SUE Definition Document”, CERN Technical Report, May
1995. http://wwwpdp.web.cern.ch/wwwpdp/ose/sue/doc/sue.html

Defer, Ph. et al. “ASIS, manage and distribute application software in the HEP
community”, CHEP Conference Proceedings, 1997.

quattor.tex; 17/11/2004; 16:29; p.18

