Measurements of reaction cross sections for neutron-rich exotic nuclei by a new direct method \dot{x}

A.C.C. Villari ${ }^{1}$
Departamento de Fisica Nuclear, Instituto de Fisica da USP, C.P. 20516, 01498 São Paulo, SP, Brazil

W. Mittig, E. Plagnol, Y. Schutz, M. Lewitowicz

GANIL, B.P. 5027, F-14021 Caen Cedex, France
L. Bianchi, B. Fernandez, J. Gastebois, A. Gillibert

CENS, DPhN/BE, F-91191 Gif-sur-Yvette, France
C. Stephan, L. Tassan-Got

IPN, B.P. 1, F-91406, Orsay Cedex, France
G. Audi

CSNSM, bâtiment 108, F-91405 Orsay Campus, France
Wenlong Zhan
IMP, Lanzhou, China
A. Cunsolo, A. Foti

Dipartimento di Fisica and INFN, Corso Italia 57, I-95129 Catania, Italy

A. Belezyorov, S. Lukyanov and Y. Penionzhkevich
LNP, INR, P.O. Box 79, Moscow, USSR

Received 24 April 1991

Abstract

A new, simple, direct method for the measurement of reaction cross sections (σ_{R}) is presented. The σ_{R} for neutron-rich exotic nuclei were measured and the reduced strong absorption radii r_{0}^{2} were deduced. A strong isospin dependence of r_{0}^{2} was observed for measured isobars with masses from $A=10$ up to $A=18$. For heavier nuclei, this dependence is strongly reduced.

The evaluation of nuclear radii is of fundamental interest in nuclear physics. The observation of an unexpectedly large interaction radius for ${ }^{11} \mathrm{Li}$ has suggested the image of a neutron halo [1,2] in this nucleus. This very exotic matter distribution could be interpreted as a precursor of neutron matter, as sug-

[^0]gested by Myers [3]. Therefore, the correct evaluation and interpretation of experimental measurements of interaction cross sections (σ_{1}), and the related interaction radii (r_{I}) are essential.

At high energies ($\approx 800 \mathrm{~A} \mathrm{MeV}$), σ_{1} was measured for several light ($2<Z<5$) isotopes using a transmission technique [1,4]. At intermediate energies ($\approx 60 \mathrm{~A} \mathrm{MeV}$), σ_{1} measurements were carried out for a wider atomic number range ($3<Z<15$), using the
associated- γ method [5,6]. Although for stable nuclei the results using the associated $-\gamma$ technique agree with σ_{I} obtained by the transmission method or with the reaction cross section deduced from elastic scattering, they may disagree for very exotic neutron-rich nuclei which decay through neutron emission, leaving the final nucleus in the ground state or at low excitation energy. We recall that measurements of associated $-\gamma$ cross section at intermediate energies [6] showed no evidence of an enhancement of the reduced radius (r_{0}^{2}) of ${ }^{11} \mathrm{Li}$, as in high energy data [1]. Therefore, it is important to develop a new technique in order to test the present results and conclusions obtained by these two methods.
The aim of this letter is to present new intermediate energy measurements of the reaction cross section σ_{R} (instead of σ_{1}) for radioactive nuclei produced at GANIL, using a new, simple, direct technique and compare them with all previous results obtained for σ_{1}.
Secondary radioactive beams [7] were produced through the projectile fragmentation of a $55 A \mathrm{MeV}$ ${ }^{48} \mathrm{Ca}$ primary beam on a $350 \mathrm{mg} / \mathrm{cm}^{2} \mathrm{Ta}$ target. Part of the secondary beam produced was transported to the spectrograph SPEG [8]. At the focal plane, all particles were detected with a telescope consisting of three solid state silicon detectors, which were a $50 \mu \mathrm{~m}$ ΔE, a $300 \mu \mathrm{~m} x-y$ position sensitive ΔE and a 6000 $\mu \mathrm{m} E$. The telescope was cooled to about $-10^{\circ} \mathrm{C}$ and surrounded by a 4π array of $14 \mathrm{NaI}(\mathrm{Tl}) 13.1 \mathrm{~cm}$ diameter and 23.5 cm long γ-detectors. The identification of incident particles was unambiguously given by the time of flight between two micro-channel plate detectors, located respectively just after the production target and just before the telescope, and by the energy loss in the first ΔE detector. The identification matrix $Z \times m / q$ is shown in fig. 1
The direct method for obtaining σ_{R} is the following. All incident particles are stopped in the telescope which has the double function of detector and target. Events that correspond to reactions in the detector/ target are easily identified, their energy being different from the no-reaction events (see fig. 2). The reaction probability $\left(P_{\mathrm{r}}\right)$ is given by dividing the number of reaction events (outside of the sharp elastic peak) by the total number of counts in this spectrum. This method is not sensitive to reactions with $Q=0$, or with Q smaller than the energy resolution of the

Fig. 1. Identification matrix Z versus m / q obtained by the combination of ΔE, magnetic rigidity and time of flight measurements.
detector system, except for the reactions that produce light particles or γ-rays, which are not stopped or detected in the telescope. To avoid the reduced energy resolution, due to the 1% energy acceptance of the beam line, the relevant parameter considered in the spectrum of the telescope was $E T^{2}$, where E is the energy deposited in the telescope and T is the time of flight of the incident particles. This gives a better resolution, being proportional to m. The resolution obtained for the quantity $E T^{2}$ is 0.23%, leading, for example, to an effective Q-resolution of 1.7 MeV for ${ }^{18} \mathrm{Ne}$. Fig. 2 shows the free spectra $E T^{2}$ for a ${ }^{18} \mathrm{~N}$ incident beam and the same $E T^{2}$ spectra in anti-coincidence and in coincidence with the $4 \pi \gamma$-detector array. In order to include quasi-elastic events, we added to the reaction events the number of γ-coincidences inside the elastic peak, after subtraction of random coincidences. This correction represents only 2% of the total number of reaction events, with a γ-detection efficiency of 73% for single photons of ${ }^{60} \mathrm{Co}$.
The quantity measured with this method is an en-ergy-integrated reaction cross section. One could measure σ_{R} for nearby energies and unfold the integrated reaction cross section, but due to the very low intensity of the exotic beams, it would increase significantly the errors of the final cross sections. Thus, we used a semi-empirical relationship for unfolding

Fig. 2. Upper: scheme of the direct method. The reaction probability is the number of inelastic events divided by the total number of events. Lower: $E T^{2}$ spectrum. (a) Unconditioned detector/target spectrum; (b) anticoincidence spectrum with $4 \pi \gamma$-array; (c) coincidence spectrum with $4 \pi \gamma$-array. The two vertical lines delimit the region considered as reaction events.
the energy dependence of σ_{R}, as will be discussed in the following.
The mean energy-integrated reaction cross section is defined by the following equation:

$$
\begin{align*}
\bar{\sigma}_{\mathrm{R}} & =\frac{\int_{\max } \sigma_{\mathrm{R}}(E)(\mathrm{d} R / \mathrm{d} E) \mathrm{d} E}{\int_{0}^{R_{\max }} \mathrm{d} R} \\
& =-\frac{m \log \left(1-P_{\mathrm{r}}\right)}{N_{\mathrm{A}} R_{\max }}, \tag{1}
\end{align*}
$$

where $m=28$ is the mol-weight of $\mathrm{Si}, N_{\mathrm{A}}$ the Avogadro number and $R_{\text {max }}$ the range of incident particles, calculated using the tables of Hubert et al. [9]. The uncertainty in the value of $R_{\max }$ can introduce a maximum error of 2% in the σ_{R} value.

The parameter that we will extract from the experimental data is the strong absorption radius r_{0}, defined as follows:
$\sigma_{\mathrm{R}}(E)=\pi r_{0}^{2} f(E)$.
It has been shown [10] that $r_{0}=1.1 \mathrm{fm}^{2}$ for all stable nuclear systems and that it is independent of the target for systems involving exotic nuclei [11]. We used
the parametrization of Kox et al. [10] for the function $f(E)$ as has been done in our preceding paper. The parameters used in our calculation were obtained by Fernandez [12] by carefully fitting experimental data measured over a large energy range ($30 A-200 A \mathrm{MeV}$) and involving many colliding systems with A_{p} ranging from 1 to 40 and A_{t} from 9 to 209 and including the σ_{R} values obtained from elastic scattering analysis [11]. The reaction cross section is written as

$$
\begin{align*}
& \sigma_{\mathrm{R}}(E)=\pi r_{0}^{2} \\
& \quad \times\left(A_{\mathrm{p}}^{1 / 3}+A_{\mathrm{t}}^{1 / 3}+a \frac{A_{\mathrm{p}}^{1 / 3} A_{\mathrm{i}}^{1 / 3}}{A_{\mathrm{p}}^{1 / 3}+A_{\mathrm{t}}^{1 / 3}}-C(E)\right)^{2} \\
& \quad \times\left(1-\frac{V_{\mathrm{cb}}}{E_{\mathrm{CM}}}\right) \tag{3}\\
& \tag{4}\\
& C(E)=0.31+0.014 E / A_{\mathrm{p}},
\end{align*}
$$

where A_{p} and A_{t} are the projectile and target mass numbers, $a=1.85$ is an asymmetry parameter, $C(E)$ is an energy dependent transparency and V_{cb} is the Coulomb barrier. As an example of the meaning of
this parametrization, we present in fig. 3 the σ_{R} calculated using relation (3) for the system ${ }^{16} \mathrm{O}+{ }^{28} \mathrm{Si}$ at incident energy $41 A \mathrm{MeV}$ as a function of the particle path in the Si target. The energy dependence of the parametrization (3) is contained in the transparency $C(E)$ and in the Coulomb correction, which are only 0.7% and 2.7% respectively (see fig. 3), when compared with the geometrical cross section. This feature ensures the reliability of extracting accurate information on the geometrical nuclear properties from the energy integrated cross section.
We show in table $1 \sigma_{\mathrm{R}}$ measured in this experiment and the mean value of r_{0}^{2} obtained for each isotope. In fig. 4, we compare our new r_{0}^{2} results with our previous results using the associated- γ technique [5,11], with results of associated- γ by Saint-Laurent et al. [6] and with results of the transmission technique at 800 A from Tanihata et al. [$1,13,14$] using for all measured data of σ_{R} and σ_{I} the same parametrization described above. For the data of Tanihata et al., the value of the energy dependent transparency was $C(E)=1.9$ (see ref. [8]). The r_{0}^{2} results are plotted as a function of the isospin T_{z}.
The first conclusion to be inferred from fig. 4 is the agreement of values of r_{0}^{2} deduced from different ex-

Fig. 3. σ_{R} as a function of the particle path in the Si target, calculated using eq. (3). The marked zones correspond to the effect of transparency (0.7%) and Coulomb correction (2.7%) with respect to the geometrical cross section.
perimental techniques and different energies. However we do observe somewhat larger values of r_{0}^{2} obtained from the new direct method (this work) when compared with results from associated- γ technique for the very neutron-rich nuclei ($\operatorname{see}{ }^{9} \mathrm{Li},{ }^{11} \mathrm{Li},{ }^{12} \mathrm{Be}$). For these nuclei, the break-up reaction leading to a nucleus in the ground state or at low excitation energy plus one or several neutrons is expected to increase significantly [6,11]. This is a severe limitation on the associated γ-ray technique, which, in this case, will underestimate the reaction cross section and r_{0}^{2}. On the other hand, the r_{0}^{2} for ${ }^{11} \mathrm{Li}$, deduced from the direct method is larger than the result of Tanihata at high energies.
Relations (3), (4), which were established in the stable nuclei region, allow us to relate the measured cross sections with a reduced radius r_{0} supposing a fixed matter distribution. If the matter distribution is different in the region of very exotic nuclei, the deduced r_{0} will be strongly dependent on the energy. At intermediate energies, the cross section will reflect the size of the nucleus at the tail of the mass distribution, i.e., around $\frac{1}{10}$ of the central mass density. For high energies, the σ_{1} will reflect the size of the nucleus around $\frac{1}{4}$ of the central density, i.e., deeper inside the mass distribution. Thus, a larger diffuseness at the very exotic region can explain the discrepancy between the results at high and intermediate energies.
Some discrepancies should already be clarified for determining the importance of an increase of r_{0}^{2} off stability. The value for ${ }^{11} \mathrm{~B}$ of ref. [6] disagrees with the other values. Some systematic differences can be seen between ref. [5] and ref. [6] concerning nuclei near stability, as for example $A=12,14, T_{z}=0$ and $A=11,15, T_{z}=-\frac{1}{2}$.
For all the measured isobars, a strong influence of isospin is revealed. The isospin dependence of nuclear radii has been already observed by Tanihata [13] for $A=8$ and 12. We see an increase of r_{0}^{2} when we go to the neutron-rich side of any of the measured isobars, mainly for masses from $A=10$ up to $A=18$. This observation agrees with our previous work [5,11], and does not agree with the conclusion of Saint-Laurent et al. [6]. Results from ref. [5] for nuclei heavier than $A=18$ present a systematic deviation from the actual measurements, despite the large error bars. This may be due to a change in the multiplicities of γ 's and particles in this domain of A, which

Table 1
The mean energy-integrated reaction cross section and associated r_{0}^{2}, measured for each nuclei for the two magnetic rigidities ($B \rho$). The quoted errors correspond to the statistical errors.

A	Z	E / A (MeV)	$\begin{aligned} & \overline{\sigma_{\mathrm{R}}} \\ & (\mathrm{mb}) \end{aligned}$	$\begin{aligned} & \delta \sigma_{\mathrm{R}} \\ & (\mathrm{mb}) \end{aligned}$	E / A (MeV)	$\begin{aligned} & \overline{\sigma_{\mathrm{R}}} \\ & (\mathrm{mb}) \end{aligned}$	$\begin{aligned} & \delta \sigma_{\mathrm{R}} \\ & (\mathrm{mb}) \end{aligned}$	$\begin{aligned} & r_{0}^{2} \\ & \left(\mathrm{fm}^{2}\right) \end{aligned}$	$\begin{aligned} & \delta r_{0}^{2} \\ & \left(\mathrm{fm}^{2}\right) \end{aligned}$
8.0	2.0				21.526	2341	365	1.768	0.276
9.0	3.0	31.584	1839	32				1.365	0.024
11.0	3.0				25.507	2947	386	2.017	0.264
12.0	4.0	31.477	2097	92				1.418	0.062
13.0	5.0	41.740	1809	19				1.210	0.013
14.0	5.0	36.016	2236	91	43.386	2061	46	1.361	0.027
15.0	5.0	31.371	2621	241				1.649	0.152
14.0	6.0	51.598	1722	14				1.144	0.009
15.0	6.0	45.014	2081	26				1.335	0.016
16.0	6.0	39.590	2049	37	47.687	1925	23	1.225	0.012
17.0	6.0	35.070	2193	126	42.289	1979	61	1.227	0.033
15.0	7.0	60.909	1659	55				1.098	0.036
16.0	7.0	53.642	1830	33				1.167	0.021
17.0	7.0	47.577	1888	21	57.247	1833	34	1.161	0.011
18.0	7.0	42.463	2002	34	51.148	1975	31	1.200	0.014
19.0	7.0	38.113	2053	57	45.956	2086	36	1.223	0.018
20.0	7.0	34.382	1853	179	41.499	2180	97	1.212	0.049
17.0	8.0	61.823	2053	264				1.304	0.168
18.0	8.0	55.239	1890	50				1.162	0.031
19.0	8.0	49.630	1988	33	59.724	1790	106	1.179	0.019
20.0	8.0	44.815	1997	31	53.984	1957	45	1.161	0.015
21.0	8.0	40.650	1999	60	49.016	1940	51	1.124	0.022
22.0	8.0	37.024	2303	144	44.688	2139	83	1.221	0.040
21.0	9.0	51.306	1956	43				1.135	0.025
22.0	9.0	46.768	2014	39	56.344	1902	116	1.137	0.021
23.0	9.0	42.790	2048	45	51.600	2109	66	1.151	0.021
24.0	9.0	39.284	2122	113	47.418	2146	94	1.168	0.039
25.0	9.0				43.711	2342	193	1.257	0.103
23.0	10.0	52.696	1927	108				1.087	0.061
24.0	10.0	48.412	2038	55				1.126	0.030
25.0	10.0	44.615	2174	70	53.808	2341	220	1.188	0.036
26.0	10.0	41.234	2298	97	49.776	2152	130	1.199	0.041
26.0	11.0	49.812	1989	111				1.073	0.060
27.0	11.0	46.187	2241	75				1.189	0.040
28.0	11.0	42.930	2399	104				1.253	0.054
29.0	11.0	39.994	2305	134	48.329	2494	193	1.218	0.057
30.0	11.0				45.160	2651	269	1.344	0.136
29.0	12.0	47.551	2427	173				1.260	0.090
30.0	12.0	44.416	2337	111				1.196	0.056
31.0	12.0	41.570	2304	154				1.163	0.078
32.0	12.0	38.978	2931	221				1.462	0.110
32.0	13.0	45.725	2199	170				1.104	0.085
33.0	13.0	42.968	2752	134				1.364	0.066
34.0	13.0	40.443	2427	196				1.189	0.096
35.0	13.0	38.124	2890	262				1.402	0.127
35.0	14.0	44.216	3052	269				1.487	0.131
36.0	14.0	41.758	2468	170				1.190	0.082
37.0	14.0	39.490	2274	253				1.085	0.121
38.0	15.0	42.944	2426	186				1.152	0.088
39.0	15.0	40.728	2485	162				1.168	0.076
40.0	15.0	38.671	3011	325				1.403	0.151

Fig. 4. Variation of r_{0}^{2} as a function of isospin: square $=$ associated $-\gamma$ method (ref. [5]), open circle $=$ associated $-\gamma$ method (ref. [6]), closed circle $=$ ref. [6], open triangle $=$ Tanihata data (ref. [3]), closed triangle $=$ this work (direct method) .
may not have been corrected due to low statistics of these points.
In conclusion, we developed a new simple direct method for the measurement of the reaction cross section (σ_{R}). We measured σ_{R} with this method for several exotic nuclei and we deduced the reduced absorption radii r_{0}^{2}. The values of r_{0}^{2} obtained in this work agree well with those obtained by other techniques, except when compared with results from as-sociated- γ method for the weakly bound nuclei ${ }^{9} \mathrm{Li}$, ${ }^{11} \mathrm{Li}$ and ${ }^{12} \mathrm{Be}$. This may be explained by break-up reactions leading to a nucleus in the ground state or at low excitation energy plus one or several neutrons. The r_{0}^{2} for ${ }^{1 " L i}$ obtained from the direct method is larger than that obtained from the attenuation technique at higher energy. This is most likely due to the large diffuseness of this nucleus. A more systematic measurement of the energy dependence of σ_{R} should clarify this point.
We observed a strong isospin dependence of the nuclear radii. The radii increase significantly when we go to the neutron-rich side of any measured isobar
with masses from $A=10$ up to $A=18$. For heavier nuclei, the effect is strongly reduced, at least in the isospin range measured.

References

[1] I. Tanihata et al., Phys. Rev. Lett. 55 (1985) 2676.
[2] T. Kobayashi et al., Phys. Rev. Lett. 60 (1988) 2599.
[3] W.D. Myers, Proc. First Intern. Conf. on Radioactive nuclear beams (Berkeley, CA), eds. W.D. Myers, J.M. Nitschke and E.B. Norman (1989) p. 269.
[4] C. Perrin et al., Phys. Rev. Lett. 26 (1982) 1905.
[5] W. Mittig et al., Phys. Rev. Lett. 59 (1987) 1889.
[6] M.G. Saint-Laurent et al., Z. Phys. A 332 (1989) 457; E. Liatard et al., Europhys. Lett. 13 (1990) 401.
[7] A. Gillibert et al., Phys. Lett. B 176 (1986) 317.
[8] L. Bianchi et al., Nucl. Instrum. Methods A 276 (1989) 509.
[9] F. Hubert et al., Ann. Phys. (Paris) 5 (1980) 1; At. Data Tables 46 (1990) 1.
[10] S. Kox et al., Phys. Rev. C 35 (1987) 1678.
[11] A.C.C. Villari et al., Proc. XXVII Intern. Winter Meeting on Nuclear physics (Bormio, Italy, January 1989) p. 74.
[12] B. Fernandez, private communication.
[13] I. Tanihata et al., Phys. Lett. B 206 (1988) 592.

[^0]: * Experiment performed at GANIL.

 1 Partially supported by CNPq.

