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Abstract--Basic properties of the exponential-integral function of real order, E~(x), and relevant 
expressions for evaluating this special function are presented. The mathematical results have been 
essentially obtained by generalizing known formulae valid for the usual exponential-integral, En(x ). 

1. I N T R O D U C T I O N  

The generalized exponential-integral function, Ev(x), expressed as follows [1, 2]: 

f l  0 f ! Ev(x) = e-'Xt-v dt = e-X/it'- 2 dt ( x>O,  v e R ) ,  (1) 
0 

is a generalization to the real order, v, of the usual exponential integral defined by Schloemilch 
as 

En(x) = e-,Xt-n dt (x > 0, n ~ N). (2) 

Function (1), whose behaviour is shown in Fig. 1, is a positive function (whenever v ~ R), which 
is frequently used in astrophysics, neutron physics, quantum chemistry and other applied sciences. 
As far as its numerical evaluation is concerned, recently a constructive method has been developed 
for this special function, mainly based on suitable expansions and some basic properties of  Ev(x) 
[3, 4]. Some mathematical relations have been previously deduced in Ref. [1] within the framework 
of  an analytical treatment concerning more general transcendental functions.t 

Due to the practical importance of  Ev(x) function, it deserves some interest to obtain further 
properties and relations for this transcendental function and its evaluation, in addition to the 
significant results recently obtained, which are here collected in a unified context. 

The results are essentially derived by generalizing known relations valid for the usual exponential 
integral, En(x) [2, 5, 6]. 

The paper is organized as follows: in Section 2 we present some basic properties and in Section 
3 the Taylor series expansion, while Section 4 is concerned with some special functions related to 
E,(x). 

Moreover, in Section 5 we derive a few series representations valid for the region (0 < x < 1), 
in Section 6 we present a polynomial expansion and then we obtain a formal representation valid 
in the region (x > 0,1 < v < 2). Finally, Section 7 is concerned with a continued fraction, while 
Section 8 presents asymptotic expansions. 

tit is worth recalling that the notation, E, (x), used in the present paper for the generalized exponential integral corresponds 
to  Milgram's function E°(x) [l]. 
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Fig.  1. General ized  exponential- integral  function,  E , (x ) ,  vs order, v, and argument,  x;  v = - 2 . 5 ,  - 2 . 0 ,  
- 1 . 5 ,  - 1 . 0 ,  - 0 . 5 ,  0.0,  0.5,  1.0, 1.5, 2.0,  2.5. 

2. BASIC R E L A T I O N S  A N D  I N E Q U A L I T I E S  

As for the properties of  E,(x) ,  the following differential formula holds from equation (1) 

d 
E,(x)  = -E~_~ (x) (3) 

and, more generally, 

d m 

dx" E~(x) = ( -  1)=E~_~(x). (4) 

The recurrence relation, deduced from equation (1) by means of  a suitable integration by parts, 

vE~+,(x) = e -x - xE~(x) = e -x + x ~x E,+ l(X), (5) 

generalizes the well-known result when v is integer. 
From formula (5), it easily follows that 

e - .V  
Eo(x) = (6) 

x 

Equation (6) can be used as starting point for recursive evaluation of  Ev(x), (v = 0, - 1, - 2 . . . .  ). 
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Other special values of particular interest are the following: 

= 7 = - /  ( v > l ) ,  E~(O) (7) 
oo, ( - o o  < v  ~< 1). 

As for inequalities, from definition (1) it immediately results that 

Ev(x)>E~+l(x)  ( x > 0 ,  v~R) .  (8) 

Considering the recurrence (5) twice and the previous inequality (8), it follows that 

( ~ - - ~ ) E v ( x )  <Ev+t (x)  (x >0 ,  v ~R+).  (9) 

Again, making use of the Cauchy-Bunyakovsky inequalities for the quantities 
~t(t) = exp [ -  tx/2]t  - (~- i)/2 and #(t)  = exp [ -  tx/2]t - (~ ÷ ija, one gets 

Ev+ t (x)Ev_ i(x) > E2(x) (x > 0, v e R +). (10) 

Moreover, by differentiating the ratio [Ev(x)/E,._l(x)] and assuming formulae (3) and (10), 
another relation holds: 

d [. E !x) l ÷). 
~ kE,_,(x)_j > 0 (x>O, v e R  (ll) 

The following inequality 

1 
eXEv(x) ~> - ( x > O ,  v e R + ) ,  (12) 

v + x  

derives from recurrence (5), whose use combined with formula (8) implies moreover: 

r 
eXE,.(x) ~< (x > 0, v/> 1). (13) 

v + x - I  

Formulae (8)-(13) generalize known results valid for v integer [5]. 

3. TAYLOR EXPANSION 

By considering the following Taylor series: 

, ~ ( _ y ) k  d k E "x" 
E " ( x - Y ) = 2 - ,  -i7 .,--S., ~t ) ( x > O , v ~ R ) ,  (14) 

k = o K. (1X 

and making use of equation (4), one obtains 

yk 
E,.(x -- y)=k~=o~.t E~_k(X ) (x > O, v e R) ,  (15) 

which can be successfully used [3, 4] in the evaluation of Ev (x), taking into account that the E,._ k (X) 
values are obtainable, for both positive and negative values of the index, from recurrence (5). 
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4. C O N N E C T I O N  WITH OTHER SPECIAL FUNCTIONS 

From definition (1) of the generalized exponential integral, it follows that Ev(x) can also be 
expressed in terms of the incomplete gamma function, F(a, x) as follows [1]: 

Ev(x) = x v- IF(1 - v, x), (16) 

and in terms of the incomplete gamma function, ~,(a, x), as 

Ev(x)=xV-t[r(1 - v ) - ~ ( 1  - v , x ) ]  (v # 1,2,3 . . . .  ), (17) 

where F(a) is the usual Euler gamma function. 
Further relations with other special functions can be easily derived from equations (16) and (l 7). 

More precisely, taking into account that the incomplete gamma function, F(a, x), can be expressed 
as follows [7, pp. 337 and 267] 

F(a, x) = e-XxaTt(l, 1 + a; x) = e-XTt(1 - a, l - a; x), (18) 

where ~ (b, c; x) is a confluent hypergeometric function of the second kind, from equation (16) one 
gets [1] 

E,(x) = e-Xx v- t~(v, v; x) = e-X~(1, 2 - v; x). (19) 

Analogously, since the incomplete gamma function, 7(a, x), is a special case of the Kummer 
function, ~(b, c; x), [8, p. 160] 

v(a, x) = :ca e_X~(1 ' a + l; x), (20) 
a 

by introducing the Tricomi version [8], ~*(a, c; x) = ~(a, c; x)/F(c), of the Kummer function, 
which is entire for every value of  each argument, one obtains [4]: 

Ev(x)=F(1  - v ) [ x  '-~ - e - X ~ * ( 1 , 2 - v ; x ) ]  (v # 1,2,3 . . . .  ). (21) 

Formula (21) is of  interest for computational purposes, because the function ~*(b, c; x) can be 
expanded in a fast converging series [8, p. 41] 

ff~*(b, c; x) = e x/2 ~ a,,(x/2)mT,+,,_ i(kx) (k = c/2 - b), (22) 
m = 0  

and therefore it results [4] that 

E~(x )=F( I -v ) [  xv-~-e-x/2,.=o ~ am(x/2)mT"+'-"(-vx/2)] ( v ~ 1 , 2 , 3  . . . .  ). (23) 

Here. the coefficients, a,., are defined by recursion as follows [8, 3]: 

(n+l)an+t=(n-v+l)a ._ l+van_2 ( n = 2 , 3  . . . .  ), ao=l, al=O, a2=l -v /2 ,  (24) 

and T.(t) are the Tricomi functions [8, 3], which are entire for every value of r and are related to 
the Bessel functions of the first kind, Jr(t), [8]: 

T~(t) =-- t-'/2Jr(2x~t). (25) 

By inserting in equation (23), the known expansion [8, 4] for the Tricomi functions 

= X~ (-- 1)k tk 
Tr(t) l)k/' (26) 
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one gets 

E v ( x )  = x ~ -  l r ( l  - v )  - e -x/: 
V k 

~ a m ( x / 2 )  m+k (v ~ 1, 2, 3 . . . .  ), (27) 
,,,,k-O k!(1 -- v),,,+ l +k 

where (z)h is the usual Pochhammer symbol. 
In the next section we discuss the relevant formulation for Ev(x), to be used for practical 

evaluation of the generalized exponential integral in the range (0 < x < 1). 

5. SERIES EXPANSIONS FOR THE REGION ( 0 < x  < 1) 

In the case (0 < x < 1), the involved formulation for Ev(x) (v ~ R) is essentially derived [3, 4] 
from the use of equation (5) combined with proper series expansions for a suitable starting value, 
Evo (v0), with 0 < v0 ~< 1. 

More precisely, apart from the case E~(x), (v = 0 , - 1  . . . .  ) considered above, the starting 
element, Ev0(v0), (v0 = 1 - H(v) + v - [v] for v # [v] and v0 = 1, otherwise)t can be expressed by 
different series expansions according as 0 < v0 ~< d (d = 0.9) or otherwise. 

In particular, when 0 < v0 ~< d, Evo(V0) can be defined by means of expression (27), since in the 
considered region the relevant series is positive and converges faster than outside. 

In the remaining domain (d < v0 ~< 1) the following formulation can be used for E,o(V0), based 
on Gautschi's recipes [9], valid in the considered region: 

Ev(x)= - x V - ' [  - gl(1 - v) 1 ~ .  (--1)mxm (28) 
l + ( l - v ) g l ( 1 - v )  F g 2 ( x , l - v )  - , , , = l ( 1 - v  +m)m!" 

H e r e ,  

E' l g l ( # ) = ~  pF-(/t) 1 (# < 1), (29) 

and 

~" e ulnx - -  1 
x ~ - 1 J - p  ~n x- In x, for [p In x t t> 1, 

g2(x,/z) = /~ = ")[-1 & (# lnx)"-I .  (30) 
LL + (m + l)!J'nx' otherwise. 

In practical evaluation, g~(/a) can be suitably calculated by making use of the power series 
expansion for 1/F(/a), whose coefficients are tabulated in Ref. [10]. 

At this point, once one has expressed E,0(v0), in the case v ~ v0, the relevant formulation for 
Ev(x) can be obtained making use of recurrence (5). 

In particular, one obtains different formulations according as v e No, v e (R ÷ - N), or v e R - .  
In the former case, the use of recursion (5) yields the following relation [6]: 

n - 2  
( n -  1 ) ! E . ( x ) = ( - x ) " - ' E i ( x ) + e  -x ~ ( n - 2 - s ) ! ( - x ) L  

s=0 
(31) 

According to this formula, one can get the series representation for E,(x), (n e No), from a series 
expansion valid for E I (x). In particular, equation (28) can be successfully used, as done in Refs 
[3, 4]. 

?Here, H(w) denotes Heaviside's step function and [w] the truncated part of w. 
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Analogously, in the case of positive non-integer values of v, v = n + ~, n e N, 0 < ~ < 1, by 
repeated application of equation (5), one obtains the following expression: 

n - - I  

r(n + ~ ) E . + , ( x )  = Y~ ( - x ) " - ' - ' r ( ~  + i) + (-x)"r(~)E,(x), (32) 
i = 0  

where Er(X) = eXEr(x). 
Equation (32) can also be written as 

E . + , ( x ) = ( - x ) " ~  " " e -x ~ ( - x  (33) 
(~). e . tx~ + /=1 (e + j _  ) . _ j _ .  

By means of this expression, we can find the series expansion of E,(x), (v > 0) from that given 
for E~(x) in equations (27) or (28), according as 0 < e ~< d or d < e < 1. 

Finally, in the case of negative values of the order, v = - n - e, n ~ N, 0 < • ~< 1, the repeated 
application of recurrence (5) backwards yields the expression 

E . . . .  (x )=l[~=o(n+~--k+l) ,x-k+(ot) .+,x-"E,_~,(x)  1. (34) 

Apart from the trivial case ~ = 1, from this relation one can get the series representation for E~(x) 
(v = - n  -0e, n ~ N) from that obtained for E~ _.(x) in equations (27) or (28), respectively, when 
0 <  1 - ~  ~ < d o r  d <  1 - ~  < 1. 

In practice, following Gautschi's results [11], recursive evaluation of E~(x), (v ~ R), starting from 
a suitable initial value, can be performed also in the range (x I> 1), as described in Sections 7 and 
8. 

6. P O L Y N O M I A L  E X P A N S I O N  A N D  R E P R E S E N T A T I O N  F O R  T H E  R E G I O N  
(x > 0 , ½ < v  <2)  

As for polynomial expansions, we mention the important relation [12] 

oc L~I- V)(X ) 
Ev(x) = e -x ~ (1/2 < v < 2, x > 0), 

,=0 (n + 1) 
(35) 

in terms of the generalized Laguerre polynomials, L~.a)(x) [13, p. 1038]. 
Expression (35) can be used as in Ref. [12] to obtain a significant series representation for Ev(x). 
In fact, since the L~.a)(x) are particular cases of the Kummer function, O(b, c; x), [8, p. 35] 

L ~ ' ( x ) = ( n + a )  ~ ( - n ' a + n  1 ; x ) = ( a + n ! l ) " ~ ( - n ' a + l ; x )  ( a > - l , x > 0 ) ,  (36) 

considering that the corresponding ~ * ( - n ,  a + 1; x) can be expanded [8] in terms of  the Tricomi 
expansion, equation (22), and taking into account equation (26), from equations (35) and (36) it 
results [12]: 

Ev(x)=e-X/2F(2-v) ~ (2-v)"  °~ (2)"  r,,+,_v((n+l--,,/2)x) 

( 2 - v ) ,  & [x 'V"+*(v-2-2n)* (1/2<v<2,  x>O), 
= e-X/2 ,=0 ~ (n + ~.t,,,2"~= 0 a~" ~2 ) .  ~ - -  V)m +'--'--k 

(37) 

where the coefficients, a.j.,  are defined by the recurrence 

(i + 1)a.j+ 1 = (i + 1 - v)a.,i_ I - (2n + 2 - v)a.,i_2 

a,,,o = 1, a~,l = O, a,,,2 = 1 - v /2. 

(i = 2 , 3  . . . .  ), 

(38) 
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7. C O N T I N U E D  F R A C T I O N  

We consider the important fraction 

27 

( 1 v 1 v+l  2 v+2 3 ) . . .  (39) 
Ev(x)=e-X x l + x +  l +  x +  1+ x +  ' 

which can be derived considering the Legendre continued fraction expansion of  F(a, x), (see Ref. 
[14, p. 136]) and taking into account equation (16). 

From equation (39), even and odd contractions can be obtained as in Refs [2, 15], where equation 
(39) has been successfully applied to the evaluation of  E,(x) for v positive integer. 

Likewise to the result found in ReL [2, p. 157] for the case of  v integer, the expansion (39), which 
is convergent (see Ref. [2, p. 102]) for all v ¢ R and x > 0, converges better with increasing x. 

Thus, in the region of  sufficiently large x values, one can use equation (39) for evaluating the 
generalized exponential integral. In particular, one can make use of  the recursive procedure of  Ref. 
[4] (see Fig. 2) to evaluate a required E,(x), whenever v ~ R. 

V=O 

E tx) 

E"q'llx l 

E ,(x) ~)- ~- 

V=X 

v=O 

v : X  

Fig. 2. Scheme of computational procedure for E,(x) in the 
region of large x values and v E R; the starting value, E,.(v*), 
is calculated by means of equation (44), the following values 
from equations (5) [O] and (15) [O], respectively, as far as the 
required E,(x) is attained; v* = [x] + D + l - H(v) + v - [v], 
with [w] truncated part of w, H(v) Heaviside step function 
and D = I  when ( l - l t ( v ) + v - [ v ] ) < ( x - [ x l )  or D = 0  

otherwise. 

Fig. 3. Scheme of computational proce- 
dure for Ev(x) when 1 < x < Xo, whenever 
v e R, v < x; &, starting asymptotic value, 
equation (44) [O], computed by backward 
recursion, eq. (5) [O], computed by Taylor 
expansions, equation (15); f = v * + k ,  
with v* defined as in Fig. 2 and 

k = [ x o l  - [v*]. 
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8. A S Y M P T O T I C  R E P R E S E N T A T I O N S  

As for asymptotic expansions, it is to be outlined that one can obtain from a well-known (see, 
e.g. Ref. [7, p. 341]) expansion for F(a, x), (valid for large values of  x)  and from equation (16), 
the following expression: 

e-X[ v v(v + l) v(v + l)(v + 2) 1 
E~(x) "-,--x 1 - - x  "~ x 2 x 3 + " "  

e -x (-- 1) m F(v + m) i) ~> v 
= T  m':o xm F(v) I" O(x-N- (x l and >0).  (40) 

In this expansion v is fixed, i.e. it is not supposed that v grows with x. 
Equation (40) can also be obtained directly from formula (1) after introducing the variable 

u = t - 1 and by repeated integration by parts of  eXEv(x). 
A similar result has been obtained in Ref. [1], in a more general context. In particular, equation 

(40) implies that 

e-X 
E ~ ( x ) - ~ - -  as x ~ .  (41) 

x 

Finally, just as outlined in Ref. [2] in the case of  v integer, the remainder term can be expressed 
in terms of  the exponential integral Ev+N+I(X ). 

Furthermore, in the region of  large positive integer v and arbitrary positive x values, the 
following expansion is valid [5, 16]: 

e-X [ v v ( v - 2 x )  V(6X2--8VX-t-V2).I_~(X,V) ] (42) 
E~ (x) = ~ 1 + (x + v)----------~ f (x + v)4 + (x "1- V)6 

where [5] 
/ 

--0.36v -4 ~ ~(X, V) ~ ~1 
I 

while, more generally [16], for v real: 

with [3] 

1) 
d- V -4, x + v - 1 (43) 

e X 1 = v-"(1 + x/v)-2~h,(x/v) + Rk(X, V) , E,,(x) ~ L" =0 
(44) 

( l )  
~kV-k <~ Rk(x, v) <~ flk 1 + V-k, X + V -- 1 (45) 

where the hn(t) are polynomials defined as follows [3] 

hn(t)= ~ cj.nt j (n =0 ,  1,2 . . . .  ), (46) 
j=0 

with c0.0 = 1 and cj.n generated columnwise in an upper triangular matrix by the formulae 

c0.n=l, cn. ,=0 ( n = l , 2  . . . .  ), 

c,,.,+ ~ = ( m  + l)c,,.~ + (m --2n -- 1)c,,_ ~,~ (m = 1,2 . . . . .  n). (47) 

In equation (45) the coefficients {cq,flk} are, respectively, the lower and upper bounds of  
[hk(t)/(l + t) ~] in the interval t >1 0. 

Choosing v = x in equation (44), this expansion results particularly suitable for calculations of  
Ev(x) (see Refs [3, 4]) in the asymptotic region x 1> xa (xa ~ 20). 

More precisely, starting from a suitable E~. (v*), calculated via equation (44) and proceeding as 
illustrated in Fig. 2, with a combined use of  Taylor expansions, equation (15), and recurrences, 
equation (5), one can evaluate any Ev(x), v ~ R, in the region x >/x~. 
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Moreover, the above formulation, equation (44), can be used also when the required Ev(x) lies 
in the "non-asymptotic" region (1 ~< x < xo). 

In fact, according to the procedure described in Refs [3, 4] (see Fig. 3), starting from a suitable 
asymptotic value, E~(~), calculated via equation (44), by a repeated use of recurrences, equation 
(5), and Taylor expansions, equation (15), (to shift, respectively, the order and the argument), one 
can reach any required Ev(x), (v ¢ R) in (1 ~< x < xo). 

We have thus discussed basic properties and some procedures for evaluating the generalized 
exponential integrals, Ev(x), over the whole domain (x > 0, v ~ R). 
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