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Abstract

APE is a family of supercomputers architecturally optimized for the numerical simulation of quantum field theories. Current
generation APE systems (APEmille) have been commissioned at several European sites. When all planned systems are installed,
later this year, a total peak processing power of about 2 TFlops will be available. A new generation system, apeNEXT, is
under development. It adds several new features to the established APE architecture. Performance will be boosted towards the
10 Tflops range. 2002 Published by Elsevier Science B.V.
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1. Introduction

APE is one of several projects (for a review see [1])
in the theoretical physics community that have devel-
oped massively parallel high-performance computers
essentially from scratch. The driving force why physi-
cists develop and build computers by themselves is
the success of numerical simulations in understand-
ing the interactions of elementary particles, in par-
ticular their strong interactions described by quantum
chromodynamics (QCD).

In the absence of closed-form analytical solutions
for theories, like QCD, one of the most interesting ap-
proximation schemes is a re-formulation of the theory
on a discrete lattice (see [2] for a short introduction,
or [3]). The original theory is recovered as the lattice
spacinga goes to zero. This approach, pioneered by
K. Wilson more than 25 years ago [4], is the starting
point for Lattice Gauge Theory (LGT). This discrete
and computer-friendly formulation of quantum field
theory has triggered an immense activity. (See [5] for
an overview.)

The phenomenona investigated with such simula-
tions range from the permanent confinement of quarks
inside hadrons to the cosmological phase transition
that occurred in the early phases of the universe or in
matter under extreme conditions as produced in heavy-
ion collision experiments. Within the framework of
LGT, fundamental parameters of QCD, like the masses
of quarks or the strength of the running strong cou-
pling αs (see Fig. 1), have been computed from first
principles. Also, theoretical concepts such as sponta-
neous chiral symmetry breaking and even the mathe-
matical structure of the theory itself can be tested with
modern simulation techniques.

One of the big challenges is the determination of
weak matrix elements of hadronic states to understand
the interplay between weak and strong interactions.
Problems like the�I = 1/2 rule or the violation of CP
symmetry are still open. The study of the heavy quark
semileptonic decays is crucial for the determination of
the Cabibbo–Kobayashi–Maskawa angles which are
basic parameters of the Standard Model. A further
example is the non-leptonic decayK → ππ , relevant
to understand CP violation [7]. Experiments show
evidence of direct CP violation in kaon decays through
the measurement of a non-vanishing value of theε′/ε

Fig. 1. The strength of the coupling as a function of the energy at
which the system is probed. From Ref. [6]

ratio. Whether this result can be accounted for in the
Standard Model is not yet clear.

Many of the current LGT projects focus on the sim-
ulation of QCD with dynamical fermions. Because of
the limits in available computing power one is forced
in many cases to apply the so-called quenched approx-
imation, where the effects of vacuum fermion loops
are neglected. Although the currently available com-
puting resources allow to relieve this approximation, it
will be extremely hard to lower the masses of the dy-
namical quarks towards their physical values. It will
be even more difficult to reduce the lattice spacing
and to do simulations closer to the continuum limit.
A tremendous amount of computer power is required
to overcome these limitations. A panel of the European
Committee for Future Accelerator (ECFA), which pro-
posed an ambitious research program for the coming
years, estimates that European research groups would
need about 10 Tflops of compute power [8].

In order to make these computing resources avail-
able at a reasonable price, various research groups
have engaged in the development of supercomputers
which are specifically optimized for their applications.

In this paper we describe the Array Processor Ex-
periment (APE) project, which was started in the mid
eighties by the Istituto Nazionale di Fisica Nucleare
(INFN) and is now carried out within the framework
of a European collaboration with DESY and the Uni-
versity of Paris Sud.
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APE100, the second generation of APE supercom-
puters, has been the leading workhorse of the Euro-
pean lattice community since the middle of the 1990s.
Commissioning of several large European installa-
tions of the following generation of APE comput-
ers, APEmille, is almost completed, making another
2 Tflops of computing power available to the LGT
community.

In order to keep up with future and growing
requirements, the development of a new generation
of a multi-TFlops computer for LGT, apeNEXT, has
started.

In the remainder of this paper, we first describe
in general terms the key features of a computer
architecture optimized for simulations in LGT, and
then highlight the APEmille implementation. We then
briefly cover our experience in operating APEmille.
A further section describes apeNEXT, followed by a
discussion of some software issues. The final section
contains our concluding remarks.

2. LGT computer architectures

The bulk of the numerical work to simulate LGT
goes into the solution of a set of linear equations

Mχ = φ (1)

for a number of right-hand sidesφ. The complex
valued matrixM (usually referred to as the Dirac
operator) is very large (12L4 × 12L4, whereL is the
number of lattice points used to discretize the physical
space), but very sparse. Nowadays simulations use
16� L � 64. A convenient way to label an entry of
M is M

(x,y,z,t),i

(x ′,y ′,z′,t ′),i′ , wherei (i ′) are internal indices,
while the set(x, y, z, t) labels a physical point in the
four-dimensional lattice. Typically, the only non-zero
elements ofM are those corresponding to nearest-
neighbor points in the four-dimensional lattice. The
solution to (1) can be found using a variety of
iterative algorithms (Krylov space solvers), such as
minimal residue or conjugate gradient. The sparseness
of the matrix makes parallelization of these algorithms
straightforward.

The algorithmic structure outlined above can be
used as a guideline to shape an optimal architecture
for an LGT number-cruncher:

– Fine-grained parallelism can be extended to an ex-
tremely high number of nodes. Regular meshes of
processors of dimensionality up to 4 allow an im-
mediate geometric mapping of the physical vari-
ables. The only heavily used pattern of data com-
munication between processing nodes is among
nearest-neighbor processors in the mesh.

– Most of the time all nodes in the mesh execute
the same sequence of operations. Simple control
strategies like SPMD (Single Program Multiple
Data) or even SIMD (Single Instruction Multiple
Data) are therefore appropriate. Note that, once
the physical variables are allocated evenly on the
processing nodes, load balancing (on average) is
automatically achieved on the system.

– Each node in the mesh must be heavily biased to-
wards floating-point performance. Fat arithmetic
operators (performing more than one arithmetic
operation per clock cycle) are an effective trick
since almost all arithmetics involve complex num-
bers.

– Kernel programs sweep across huge data sets at
each iteration, so data caches do usually not have a
very high hit rate. However, critical computations
apply several arithmetic operators repeatedly to a
relatively small set of data words (for instance,
the innermost loop in the calculation of the Dirac
operator processes 360 real data words with a
total of about 2400 floating-point operations). The
data access pattern is orderly and predictable, so
memory prefetch mechanisms can be efficiently
used.

– Simple styles of algorithm coding foresee rather
frequent access to small blocks of remote data,
so low latency in the data exchange between
neighboring nodes is an important feature.

In brief, a good LGT compute engine can be
implemented as a massively parallel system and its
processing elements require only a subset of the
functionalities encountered in standard off-the-shelf
processors. For these reasons, the development of
scalable LGT systems based on custom processors,
that can be easily assembled by hundreds or thousands,
has clearly been a winning choice in the last decade.

In the next section, we describe the details of
APEmille, the present generation LGT machine of the
APE project.
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3. Features of the APEmille architecture

APEmille is a massively parallel computer which
is primarily optimized for simulating QCD. The archi-
tecture is SIMD and all nodes run strictly synchro-

Fig. 2. APEmille board with 8 processing nodes, 2 communication
modules, 1 control processor and a PCI interface.

Fig. 3. Three APEmille racks each with 256 nodes and 130 Gflops
peak performance.

nously at a moderate clock frequency of 66 MHz.
The communication network has a three-dimensional
topology and offers a bandwidth of 66 MBytes/s/node.
The smallest APEmille unit is a processing board with
2 × 2 × 2 nodes (see Fig. 2). The largest stand-alone
systems built until now consist of 4× 8× 8 nodes (see
Fig. 3). Three different integrated circuits (ASICs)
have been custom-developed for APEmille. Program
execution is controlled by a control processor, which
also performs the subset of integer arithmetics com-
mon to the whole SIMD partition. Computations us-
ing local integers and all floating-point operations are
done in parallel by all computing nodes. At each clock
cycle, the arithmetic processors are able to complete
the operationa × b + c, wherea, b, c are single pre-
cision (32 bit) complex operands. This gives a peak
performance of 528 Mflops per node. Each node has
32 MBytes of local memory and a very large register
file, holding up to 512 data values. Remote communi-
cations between the nodes are implemented as direct
memory access which is controlled and routed by the
communication processors.

The processors are controlled by very long instruc-
tion words (VLIW). This allows efficient scheduling
of the micro-code at compile time. Much effort has
therefore been put into the development of software
tools for generating efficient code (see later for more
details). Loading of the executables and all other op-
erating system services are handled via PCs running
Linux. One host PC per four boards is directly attached
to the APEmille backplane. It uses a PCI bus to com-
municate with the processing boards. The system ser-
vices are controlled by one master PC per machine.

4. APEmille installations

APEmille systems have been installed at several
sites as detailed in Table 1. Additional machines will
be commissioned in fall 2001. The total available
processing power will be of the order of 2 Tflops.

Most APEmille machines consist of stand-alone
machines with 256 (4× 8 × 8) nodes and 8 host
PCs. The operating system also allows them to be
partitioned into independent subsystems with 128 (2
× 8 × 8), or 8 (2× 2 × 2) nodes. In most cases,
simulation results are stored on file servers accessed
by local area networks. A typical file server has
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Table 1
APEmille installations. For each site, we list the total installed peak
processing power available now and planned for end 2001. Sites in
bold do not belong to the APE collaboration

Site Gflops Gflops
installed planned end 2001

Rome I 455 650
DESY Zeuthen 455 550
Pisa 130 260
Rome II 130 260
Milano 65 130
Bari 65 65
Univ. Paris Sud 16 16
Bielefeld 80 140
Swansea 65 65

Grand total 1461 2136

1–2 Tbytes of data disks on line. Power consumption
is very low (less than 30 W/Gflops) and the footprint
of a 130 Gflops machine is about 0.7 m2. For these
reasons, APEmille machines are simply air cooled and
do not need complex infrastructure.

Normally up-times of 1–2 months or more can be
achieved. Hardware maintenance is typically limited
to simple replacement of ageing modules and is
therefore cheap, both in terms of hardware costs and
manpower.

5. apeNEXT

The next-generation APE system, apeNEXT, is
currently in the development phase. The basic ar-
chitectural features are essentially unchanged, while
technology improvements boost performance substan-
tially: each node will have a peak performance of
1.6 Gflops in 64-bit double precision, while the com-
munication bandwidth between neighboring nodes is
200 Mbyte/s. We envisage large apeNEXT systems
with 2000 processing nodes, delivering a peak perfor-
mance of 3.2 Tflops.

The apeNEXT architecture is similar to APEmille,
except for two key features.

First, apeNEXT is a SPMD (as opposed to SIMD)
system. Each processing node is a fully independent
processor, with a full-fledged flow-control unit (and of
course a number-crunching unit). The node has access
to its own memory bank, where both program and data

are stored. It executes its own copy of the program
at its own pace. Nodes are synchronized only when
a data-exchange operation is performed. This archi-
tecture may be labeled as a distributed-memory par-
allel processor, in which nodes exchange data through
some sort of “message-passing” scheme. Global pro-
gram consistency dictates that each program section
sending data to a remote node is matched by corre-
sponding instructions on the destination node, that ex-
plicitly receives the data packet. However, the latency
associated to a “message” is extremely short, of the or-
der of 2 to 3 times the latency associated to an access
to local memory. For this reason, the actual data rate
between nodes is bandwidth-limited (as opposed to
latency-limited) even for short packets, so sequences
of short accesses can be freely programmed without
significant performance losses.

The second main improvement in the architecture
is the possibility of routing all read memory accesses
(to local or remote nodes) through a receiving queue,
which can be later accessed by the processor with zero
latency. This feature is mainly used to perform data
prefetch in critical kernel loops. The basic idea here is
that all data items needed to perform iteration(i + 1)

of the loop are prefetched during iterationi and stored
into the queue. When iteration(i + 1) is performed
data will be immediately available to the processor,
effectively hiding any latency effect.

Note that some of the memory accesses will be
local, and some will be remote. They are started in
sequence, but they may complete in a different order
(a remote access may take longer than a local one).
However, the queue mechanism automatically ensures
that data are delivered to the processor in the same
order in which they were requested from (remote or
local) memory.

The overall structure of an apeNEXT system is
similar to APEmille. We have a three-dimensional ar-
ray of processors, with data links connecting nearest-
neighbor nodes in all directions. Periodic boundary
conditions are applied.

The complete processing element is built in just
one custom-designed integrated circuit, called J&T,
connected to a memory bank based on 256 Mbit
Double Data Rate (DDR) Dynamic Ram chips. The
planned size of the memory bank belonging to each
node is 512 Mbytes.
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Fig. 4. Block diagram of J&T, the single-chip processor used in
apeNEXT.

The block diagram of the J&T chip is shown in
Fig. 4. The main elements of the node are:

– A large register file (256 registers containing pairs
of 64 bit words). All operands for the arithmetic
unit arrive from the register file and all results are
written back here.

– An arithmetic box, that computes the “normal”
floating-point operationa × b + c. The operands
are either complex values, or pairs of real values.
In the former case, the normal operation is equiv-
alent to 8 standard floating-point operations. In all
cases floating-point data follow the IEEE standard
for double-precision (64 bit) values.

– A program cache, where code belonging to critical
kernels can be kept in the processor to save
precious memory bandwidth for data access.

– A network interface, that handles 7 data links.
Each link is bi-directional and the bandwidth is
200 Mbyte/s per each direction. Six links are used
to connect the processing node to its neighbor,
while the seventh link is used for input-output to
the host system.

– The prefetch queues, described earlier in the text.
– A slow serial interface, based on the I2C standard,

used for system initialization, debugging and ex-
ception handling.

A set of 16 processing nodes, assembled in a
4 × 2 × 2 geometry, makes up the basic hardware
building block for the system, known as the processing
board (PB). Each PB has an access point to a data

link (the seventh link mentioned above). These data
links can be connected to standard PCs, using a PCI
interface. A real system may have one or more such
connections, depending on the I/O bandwidth required
by the specific application. All PBs also have an I2C
interface for system boot, debugging and exception
handling. This interface is also connected to a PC in
the hosting cluster.

Blocks of 16 PBs are housed inside a “system crate”.
Such a system is globally a 256 node, 400 Gflops
apeNEXT machine. Finally, several crates can be con-
nected together to form larger systems.

apeNEXT development is well advanced. All hard-
ware components have been completely designed.
Prototypes of the J&T processor are expected in spring
next year, and a large system prototype is forecast for
late 2002.

6. Software

All APE machines, since the mid-eighties, have
been traditionally programmed in the high-level TAO
language. This language has a basic syntax very
similar to the C language and provides all features
needed to write efficient LGT simulation programs,
as well as some useful extensions. Most useful is
the ability to enlarge the language syntax in an
object-oriented style, which allows the definition of
complex data types and mathematical operators (say,
the product of a matrix and a vector).

Parallelism (in SIMD/SPMD form) is automati-
cally enforced in the language by the convention that
each variable declared by the code is instantiated in
the memory space of each node. All processors exe-
cute the same flow of instructions, operating on their
private data.

TAO has been heavily used by the LGT community
and a large set of simulation and analysis programs
are available. For this reason, TAO will also be made
available for apeNEXT.

We also plan to develop a more traditional C com-
piler. The key advantage is of course easier portability
of new programs to the APE systems. We also want
to make program migration between APE and tradi-
tional computer systems simple and easy (see later for
further comments on this point). A C compiler was
not developed on previous generation APE machines,
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Fig. 5. Block diagram of a complete apeNEXT system, including
the fast I/O and slow control channels to the host system, based on
a cluster of PCs.

Fig. 6. The main elements of the compilation chain for apeNEXT.
The APE-specific TAO language will be supported, as well as a
subset of C.

since architectural details made the effort almost hope-
less.

We are planning a common compilation chain, for
both TAO programs and C programs, as shown in
Fig. 6. For TAO, we use the same front-end (RTC)
as in APEmille, which is well-tested and rather ef-
ficient in exploiting memory accesses in burst mode
for contiguous data structures. The front-end mod-
ule of the C compiler will be derived from well-
known open-source compilers, likelcc or GNU-gcc.
After pre-processing and expansion by MPP, the as-
sembly code undergoes two levels of optimization.
First, high-level optimization tricks, like loop unfold-
ing, merging of arithmetic operations into “normal
form”, register-move removal, etc. are performed on
the assembly code. The assembly code is then sched-
uled in order to make optimal use of the machine
pipelines. This operation (known as the “shaking” of
the code) is particularly efficient thanks to the VLIW
(Very Long Instruction Word) control structure of the
processor. The code is then compressed and, if needed,
linked.

Our goal is to have both compilers on almost equal
footing, as far as sustained efficiency is concerned.

7. Outlook

APEmille provides substantial computing power
for the LGT community in Europe. These systems are
remarkably efficient and cheap as a result of an archi-
tecture closely and accurately tailored to the specific
requirements of the LGT simulation algorithms. This
approach is followed in the development of a future
generation system, based on the traditional APE archi-
tecture, which will meet the computing requirements
of the LGT community in the next 3–4 years.

In the long run, it is not clear whether dedicated
LGT architectures will retain their advantages, given
the dramatic performance improvements of commer-
cial micro-processors in recent years, especially if all
their hardware features are fully exploited [9]. Inter-
mediate size clusters of PCs can be easily assembled
today. The real challenge here is the development of
a communication fabric able to handle thousands of
interconnected PC’s. Part of the APE collaboration is
working along these lines.
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