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A B S T R A C T   

Code injection is one of the top cyber security attack vectors in the modern world. To overcome the limitations of 
conventional signature-based detection techniques, and to complement them when appropriate, multiple ma-
chine learning approaches have been proposed. While analysing these approaches, the surveys focus predomi-
nantly on the general intrusion detection, which can be further applied to specific vulnerabilities. In addition, 
among the machine learning steps, data preprocessing, being highly critical in the data analysis process, appears 
to be the least researched in the context of Network Intrusion Detection, namely in code injection. The goal of 
this survey is to fill in the gap through analysing and classifying the existing machine learning techniques applied 
to the code injection attack detection, with special attention to Deep Learning. Our analysis reveals that the way 
the input data is preprocessed considerably impacts the performance and attack detection rate. The proposed full 
preprocessing cycle demonstrates how various machine-learning-based approaches for detection of code injec-
tion attacks take advantage of different input data preprocessing techniques. The most used machine learning 
methods and preprocessing stages have been also identified.   

1. Introduction 

Code injection is the most popular and most impactful attack, which 
is at the top of the OWASP vulnerabilities list. The detection of code 
injection attacks, traditionally carried out using signature/pattern-based 
recognition techniques, has been recently supplemented by the appli-
cation of advanced machine learning approaches. The advantage of such 
techniques is that similar algorithms, e.g., Deep or Convolutional Neural 
Networks, may find application in a broad range of various threat 
detection scenarios. Indeed, big cyber security companies are investing 
significant funds into the research and deployment of machine learning 
algorithms for the cyberthreat detection purposes, including malware 
analysis, vulnerable code detection, and intrusion detection (i.e. 
vulnerability exploitation attempts). AI-enhanced security adoption is 
growing rapidly,1 and a range of machine learning methods for intrusion 
detection has already accumulated over the years. 

Within the existing amount of approaches and techniques, which of 
the machine learning methods are more suitable for the code injection 
attack detection, and is there any consistency in their application? 
Which is the best approach for the dataset composition for enhanced 

performance and/or accuracy? 
The hypothesised assumption, which we will investigate in depth in 

this paper, is that deep learning is the most suitable for code injection 
attack detection. We also argue that the way in which the input data is 
pre-processed (cleaned, reduced, reshaped, encoded, etc.) may signifi-
cantly influence and affect the performance and effectiveness of the 
machine learning techniques employed to detect code injection attacks. 
In general, this was of course expected, as some of the features present in 
the data input may turn out to be random in nature and corrupt the 
output results, or, similarly, some of the features may introduce biases. 
But, we believe, a merit of our survey, and a clear diversification of our 
work from companion surveys on related topics, is in summarising and 
classifying how different machine-learning-based code injection attack 
detection techniques take advantage of (or rely upon) different input 
data pre-processing techniques. The relevance of the research is high, as 
data preprocessing appears to be the least researched in the context of 
Network Intrusion Detection in general and in code injection in partic-
ular, and it very often involves more effort and time (over 50% of total 
effort) within the entire data analysis process [1,2]. 

About 150 academic publications related to machine learning for 
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cyber security (specifically, network intrusion detection) have been 
analysed, out of which only 20 covered preprocessing for code injection 
detection in sufficient details (see Section 4.4). Further revision revealed 
a wide variety of diverse preprocessing methods, that as well will be 
documented later on in the survey. 

More in details, the machine learning processing is based on four key 
steps, each with its own unique challenges.  

1. Data collection is typically the initial step, an acquisition of raw data, 
that highly depends on the objective or subjective selection criteria.  

2. Preprocessing, a highly critical step in the data analysis process, 
shapes data for the neural network to be trained, forming a struc-
tured multi-dimensional dataset. Preprocessing may increase or 
reduce the accuracy of the applied method based on a multitude of 
factors, discussed later in the survey. For example, duplicates can 
make the neural model biased.  

3. Choosing, applying and fine-tuning the machine learning algorithm 
(e.g., state vector machine, neural network, decision tree, etc.) for a 
selected task is another challenge, as none of those algorithms is 
universal. The configuration of a selected algorithm becomes the 
sub-task mainly based on a trial and error approach, to improve the 
accuracy of a selected method.  

4. The last step in the machine learning process is to read the output 
data, evaluate and present it in a way that can be further used by 
other systems or visually represented for human understanding. E.g., 
improper selection of a testing dataset can affect the metrics of the 
output performance. 

The goal of this survey is to contribute to the body of knowledge 
related to maximising the performance and effectiveness of the machine 
learning techniques employed in intrusion detection, specifically in code 
injection attack detection. The widely used deep learning has been 
selected for analysis, supplemented by techniques allowing for poten-
tially minimal or otherwise computationally optimal steps for a selected 
task. 

The survey objectives included revision of the methods proposed in 
the latest academic publications (articles and surveys), identification of 
common steps in their approaches, their analysis and classification. 
Specific attention was paid to the modular steps in data preparation 
starting from data acquisition to the initiation of the training process, as 
well as selection of the machine learning method. 

The survey scope is limited to reviewing the non-encrypted data 
transfer and features, that do not involve manipulations with the 
encrypted packet payload, traffic headers, or both. The issue of 
encrypted traffic is separated from our research as it is related to other 
techniques (e.g., cryptanalysis). The post-processing and result visual-
isation methods are not reviewed, as they have already been widely 
covered in several works (e.g. Refs. [3–5]). 

Given the above goals, objectives, and limitations, to present the 
work in a structured manner, the survey is organised as follows: 

Section 1 “Introduction” provides an overview of the researched 
area, sets the goal and objectives. 

Section 2 “Code injection attack and defence” explains the code in-

jection attack specificity and conventional defence. It also specifies the 
terms and notions relevant to the topic of the survey. 

Section 3 “Machine learning application for the code injection 
detection” lists and details the types of the selected machine learning 
approaches, with an extra focus on deep learning. It also highlights 
specific requirements for the data selection and addresses the methods of 

hyperparameter optimisation to maximise the performance or accuracy 
of the selected methods. 

Section 4 “Critical role of preprocessing in the detection enhance-
ment” reviews a wide variety of modern methods used for preprocessing, 
identifies the gaps and proposes a classification of the full preprocessing 
cycle to maximise the performance effectiveness. 

Section 5 “Conclusion” closes the current survey. 
References list the publications reviewed in this survey. 

2. Background 

According to OWASP, “code injection is the general term for attack 
types which consist of injecting the code that is then interpreted/ 
executed by the application”.2 In this survey, the code injection attack is 
understood as an intentional or unintentional use of the unforeseen 
software functionality, caused by processing of valid or invalid mali-
cious input data. Code injection as an attack method is used by a mali-
cious actor to input malicious code and system commands into a 
vulnerable point of entry in software (e.g., through the input field in a 
web application or header in the request) and change the course of 
execution. An algorithmic definition of code injection, that can be used 
to conventional intrusion detection systems, has been updated and 
improved by Ref. [6]. 

2.1. Code injection attacks 

Code injection attack3 relies on the input of the code that can be 
executed by a target program or an application. Code injection exploits 
improper handling and lack of data validation, which may include 
nonrestricted characters, data formats, or allocated memory space. 

A malicious actor is constrained by the functionality of the language 
of the application. For example, if a malicious actor is able to inject an 
HTML code into a web application and it is stored in the page file, they 
are only limited to HTML and JavaScript injections, that in some cases 
can nonetheless be escalated to a remote command execution. Alterna-
tively, a malicious code can be injected into the data about the file or 
into the command line through an application. Even though typically 
mentioned in the context of web applications, the code injection attack 
can target the application output or the memory used by the application. 

The code injection attack can be split into two groups: Binary attack 
and Source Code attack [7]. Most well-known types of the Source Code 
injection vulnerabilities are the SQL injection, PHP injection, and 
JavaScript injection. The code can be injected through visible or hidden 
input fields, manually, automatically, or through uploaded or addressed 
files. If the code is injected into the system command line, this attack will 
be defined as the command injection. Binary Code injection can happen 
via shell code injection into the executable file input and cause stack or 
heap overflow. 

2.1.1. Example: dynamic code evaluation vulnerability 
When the PHP eval () function is used, it passes the untrusted data 

that an attacker can modify, allowing for the code injection to be 
possible. Take the code block:   

2 https://owasp.org/www-community/attacks/Code_Injection.  
3 https://owasp.org/www-community/attacks/Code_Injection. 
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In the presented code the input validation is not present; thus, the 
code above is vulnerable to a code injection attack.  

An attacker can then take a step further and execute system com-
mands. With this condition, a code injection can also be used for com-
mand injection and further unauthorised access to the system (or a 
virtual container) hosting the web application:  

An attacker can use URL input field to inject a local or remote file:   

In a similar way the injection can be performed on an already 
compromised system, by supplying a malicious file to a process, in a 
manner described in the Command injection example in Section 2.1.4. 

2.1.2. Example: SQL injection 
SQL Injection is possible through the input fields or URL. Take the 

vulnerable code4:   

Should the attacker succeed in injecting the query with the value 105 
or 1 ¼ 1; then the already injected query inputSQL would look as fol-
lows:  

The output should return a page In the by replacing “or 1 = 1” 
statement with “DROP TABLE Users”.   

4 https://www.w3schools.com/sql/sql_injection.asp. 
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The result that is going to be executed will delete the table named 
“Users”:  

2.1.3. Example: exif code injection 
Exchangeable Image File Format (exif) data contains information 

about the file: e.g., file source, creation and modification dates, GPS 
coordinates, camera model, time, compression type, etc. In the vast 
majority of cases, this data is present in every image or photo.  

The created file (malicious_upload.png) can be renamed as mali-
cious_upload.php.png so the attackers can avoid basic defence mecha-
nism. After the upload is complete, the file has to be addressed:  

The NetCat listener will receive the callback from the exploited 
webserver. The requirement for this to be exploited is the PHP inter-
preted on the target webserver. Without the PHP interpreter, the NetCat 
listener will still receive the reverse shell, but it will be to the attacker’s 
own system. 

2.1.4. Example: command injection 
Take a simple main function, running as root, that executes a file 

using system command, by accepting a filename from an argument:  

This function can be used to display specific privileged data without 
the need for the user to interact with the system with the elevated 
privileges. As the entire program is executed with the highest privileges, 
system() executes with the root privileges. As a user or another program 
provides a legitimate filename, the call works as expected. If an attacker 
passes an argument “filename; rm -rf/” (including quotation marks, to 
ensure the entire string counts as a single argument). This way system(), 
after executing command cat, will execute rm -rf/ with root privileges 
damage the system. Alternatively, an attacker can pass “filename;/bin/ 
bash” and spawn a root shell. 

2.2. Code injection defence 

Code injection occurs when the application’s output has an altered 
syntactic structure. Ray and Ligatti [6] argue that an algorithmic 

definition of the code injection is not complete, as there are two other 
cases that have to be addressed: code injection that does not alter the 
output syntactic structure, and non-code injection attack that alters the 
output syntactic structure. This complicates the detection of code in-
jection attacks using conventional methods. 

Malicious code is not different from the non-malicious code at the 
logical level, making it harder to detect using conventional non-machine 

learning detection methods. According to the interpreter, everything 
that goes into the input field is legitimate and can be processed with or 
without an error. 

It is commonly believed that the code injection can be detected via 

signature recognition or via malicious access detection (e.g., canaries). 
As a countermeasure that does not require detection, sanitation is a 
technique of processing the input in such a way, that escape symbols 
cannot be injected into the code of the application. Automatic tech-
niques, like input validation and input encoding, can be used for addi-
tional security; as well as output encoding can be used to prevent the 
system from disclosing sensitive information (e.g., system version, er-
rors, successful injection output). 

As a good practice, at the applications development stage the use of 
vulnerable functions should be avoided, or, if used, this should be ac-

cording to the established secure development practices.5 

The survey by Mitropoulos et al. [8] classifies 41 defence methods 
against SQL injection, XSS, and other web application attacks, the ma-
jority of which do not use machine learning. 

SQL prevention techniques include prepared statements with 
Parameterized Queries, Escaping All User-Supplied Input, Hibernate 
Query Language Prepared Statement (Named Parameters), Whitelist 
Input Validation. As per [9] for the successful detection of an SQL in-
jection vulnerability in a web application, a set of conditions should be 
met: 1) a path from an application input to a vulnerable function should 
exist, 2) parametric functions are used, 3) an attacker can access the 
result of a database query through feedback of the query propagation to 

5 Secure development and deployment guidance, UK National Cyber Security 
Centre, https://www.ncsc.gov.uk/collection/developers-collection. 
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the leakage functions. 
The general syntax of URI in RFC 2616 [10] defines the unsafe 

characters that should not appear in benign queries. Queries that any of 
the unsafe characters are considered to be malicious and require filters 
to remove those queries, such as a filter, are proposed by Dong et al. (Y 
[11]. For example, the XSS prevention techniques typically include 
encoding of untrusted inputs with HTML, JavaScript, CSS, etc and 
sanitation of Markup. There are also anti-XSS headers available for 
additional security. 

In general, the techniques for query languages, compiled languages, 
and network protocols, provided by OWASP,6 include input validation, 
safe APIs, and context escape of user data. To visually illustrate the 
process of code injection prevention, Ray and Ligatti compare a basic 
algorithm in pseudocode with their own approach [6]. 

The machine learning intrusion detection, to be effective against the 
code injection, should consider its above-mentioned specificities and 
adjust relevant steps to maximise effectiveness. 

3. Machine learning application for the code injection detection 

The machine learning approaches can be presented as supervised 
(Regression and Classification), unsupervised (Clustering and Density 
estimation), semi-supervised and reinforcement learning. 

Bishop defines [12] the supervised learning as applications in which 
the training data comprises examples of the input patterns of values 
paired with their corresponding output values. Goodfellow et al. define 
the unsupervised learning [13] as a process where the algorithm must 
learn “to make sense of the data without [the] guide”. Semi-supervised 
learning contains the mixed characteristics of both, while the rein-
forcement learning is an intrinsically different type of machine learning 
[14]. In the reinforcement learning, the learner is not provided with any 
information about the actions to take, but instead must discover which 
actions yield the most reward by attempting them. 

In the context of machine learning application to cyber security, the 
mindmap of anomaly detection methods for the web and HTTP attacks 
has been presented in publications (Y [15]. Out of those methods, deep 
learning is the one that is most commonly applied in detecting the 
code-related vulnerabilities. It is applied to such types of artificial neural 
networks as deep neural networks (DNN), deep belief networks (DBNN), 
recurrent neural networks (RNN) and convolutional neural networks 
(CNN) [16]. For example, Gu et al. [17] present a comprehensive survey 
on the advances in the CNN architecture and techniques. Meanwhile, the 
code injection chaining would require time distributed analysis, and will 
have to use RNN or even long short-term memory (LSTM). 

The survey by Nagpal et al. [18] presents machine learning for the 
SQL injection detection. The authors review all the existing SQL 

injection attack types and their detection approaches, methods and 
tools, including the pre-deployment detection of vulnerable code in web 
applications. In 2019, Mitropoulos et al. [8] published a survey, 
reviewing methods of the web application attack detection, which 
included a class of hybrid approaches, some of which were based on 
machine learning (e.g., AMNESIA). 

With relation to the tools, one of the first commonly presented 
publications on the SQL injection detection using deep learning was 
released in 2005. It outlined the methods to detect the SQL injection 
attacks using neural networks and the tool was named AMNESIA [19]. 
Cai et al. outlined the method of transformation of the Natural language 
into the SQL queries using DNN. Both of those publications also detailed 
preprocessing of the input data and queries. Cheon [20], who also 
researched the SQL injection attack detection, this time using Bayesian 
classifier, approached preprocessing though the dataset randomisation. 

Uwagbole et al. [21] trained the support-vector machines (SVM) 
classifier to detect whether SQLIA is present in a web request. To train 
the model to a high performance, the authors present an algorithm with 
the dataset items input of the labelled class. It is also one of the few 
publications that provide insight into the real-life implementation of the 
SQL injection detection, using a proxy intercept web requests and 
analising them using the classifier. 

In their survey Alwan and Younis [22] list and classify the ap-
proaches and methods of the SQLIA detection. The authors claim that 
none of the enumerated tools addresses the issues of the more recent 
types of SQLIA, e.g., fast flux SQLIA. In the advanced cases of non-typical 
injections, the data preprocessing can assist in successful detection. 

Valeur et al. [23] proposed a method to identify queries that did not 
match multiple models of typical queries at runtime. As this was one of 
the early methods, it did not reach accuracy as high as modern ap-
proaches do, however the method has shown the potential of deep 
learning in malicious query detection. 

In addition to the works, published in 2005 and 2007, and classified 
in Ref. [22] we add the methods from the publications that specifically 
define the machine-learning-based methods, used for the code injection 
detection. Table 1 presents this list. 

The above list shows that there is a variety of machine learning 
methods applied to the code injection detection. The majority of the 
methods are supervised, with a half of them being deep learning 
methods, such as CNNs. The deep learning methods demonstrate 
themselves as more versatile, allowing to analyse 2D, 3D or 4D data 
using convolution (CNN), or LSTM, as they keep memory of the previous 
items from the dataset or network sessions. Detecting time-spread ma-
licious behaviour can trigger intrusion prevention mechanisms and 
improve overall security of the application. 

The machine learning approaches vary and the most widely used of 
them are reviewed below from the perspective of their use for the code 
analysis and intrusion detection. 

3.1. Supervised learning 

Supervised learning requires a dataset with marked samples that has 
to be collected and labelled for the optimal performance of the IDS. In 
the case of the code injection, the data set should contain both malicious 
(code injection queries) and non-malicious samples (benign queries). 

Among the multiple types of models, there are Support Vector Ma-
chines, Deep Neural Networks, Decision Trees and Random Forest, 
Naïve Bayse, etc. In the reviewed publications, two of these models 
received a wider coverage. 

Support vector machines (SVMs) are supervised learning models 
with the associated learning algorithms that analyse the data used for 
classification and regression analysis. For the code injection detection, 
SVMs were applied by Dussel et al. [24] and Dong et al. (Y [11]. 

Deep Neural Networks (DNN) is an artificial neural network that has 
layers between the input and output layers. For example, Cai et al. [25] 
use CNN and RNN, while Yan et al. [26] propose their own Hybrid Deep 

Table 1 
Code injection detection methods based on Machine Learning.  

Year Paper Learning Language 

2005 AMNESIA [19] NDFA SQL 
2007 Swaddler [35] libAnomaly PHP 
2008 [24] OC-SVM PHP, SQL 
2009 [30] Clustering SQL 
2013 [20] Bayesian SQL 
2017 HDLN [26] Hybrid JavaScript 
2017 [25] CNN, RNN SQL 
2017 AMODS (Y [11]. SVM SQL, XSS 
2018 DeepXSS [28] LSTM XSS 
2018 WIRECAML [44] DT, RF, LR, Naïve Bayse, TAN SQL, XSS 
2019 [33] Autoencoder SQL 
2020 [74] CNN, RNN, DT, RF SQL 
2021 [81] MLP, CNN SQL  

6 Injection Prevention Cheat Sheet, OWASP, https://cheatsheetseries.owasp. 
org/cheatsheets/Injection_Prevention_Cheat_Sheet.html. 
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Neural Network (HDNN) using multiple hidden layers in order to ach-
ieve better accuracy of their system in a supervised setting. CODDLE 
[27] is tested using multiple types of DNN separately, while Fang et al. 
[28] use only LSTM. 

More deep learning methods for intrusion detection have been 
reviewed in detail by Ferrag et al. [29]. 

3.2. Unsupervised learning 

Unsupervised learning (also known as clustering) does not require a 
labelled data set and allows the system a higher level of independence in 
pattern recognition, leading to a higher level of autonomy. The main 
area of application of unsupervised learning in cyber security is anomaly 
detection through behavioural analysis (e.g., user and machine network 
activity). 

Alternatively, unsupervised learning can be used for malformed code 
detection, which can be only insured with an adequate preprocessing. 
Thus, the learner can distinguish the difference between malicious and 
non-malicious queries or code strings. In other words, without sufficient 
preprocessing, the machine learning method will not be able to cluster 
patterns of symbols and detect any distinct difference between two 
(malicious and benign) queries. For example, Bockermann et all [30] 
applied clustering techniques to the SQL injection detection. 

In the pursuit of the deeper understanding of DNN, the autoencoders 
were introduced. Autoencoder is a symmetric DNN trained to have a 
target value equal to the given input value [31]. Autoencoders consist of 
two DNNs, encoder and decoder, and can be easily applied to resolve the 
problem of data compression (e.g., in the image and video recognition, 
large data transfer, analysis of specific types of cyber attacks). 
Furthermore, autoencoders allow the researcher to input raw data, 
including software code and scripts. For instance, Pan et al. [32] pre-
sented a method of detection of attacks on the web applications based on 
the Robust Software Modelling Tool (RSMT), which analyses the call 
traces as runtime behaviour of web applications. RSMT uses an 
autoencoder for analysis and call graphs as data. In RSTM (F. [33], used 
by Pan et al. a smaller amount of the labelled data is used to calculate 
reconstruction error of the autoencoder and establish a numeric value 
(threshold) to distinguish between normal and abnormal behaviours. 

Clustering can arguably be more efficient than the supervised 
learning for the detection of previously unknown attacks. 

3.3. Reinforcement learning 

As per [14], reinforcement learning is the learning of a mapping from 
the input situations (events) to the output actions so as to maximise a 
measurable reward or the reinforcement signal. In practice, it is a 
reward-based system, that works as a semi-supervised approach to 
learning. The machine-learning-based system learns from the environ-
ment and gets rewarded for correct predictions, and penalised for 
incorrect predictions. 

To the extent of our knowledge, there have not yet been any appli-
cations of the reinforcement learning to the code injection detection, as 
its successful applications to intrusion detection have started only 
recently. In 2020, Lopez-Martin et al. [34] presented a survey on the 
application of reinforcement learning to the issues of network intrusion 
detection in general. They state that for the code injection detection, 
reinforcement has to be limited to only one numeric reinforcement 
value, i.e. successful detection. 

3.4. Adversarial approach and datasets generation 

Most of the reviewed publications confirm that the scarcity of the 
datasets remains one of the biggest issues for machine learning in cyber 
security, which has been also confirmed in the recent survey by Ferrag 
et al. [29]. Finding a suitable dataset for a specific type of cyber attacks 
is a complex task. With many datasets already developed and emerging 

sophisticated attacks, bigger and more comprehensive datasets are 
required on a daily basis. More often than not, the acquisition of code 
injection training samples requires a manual dataset composition. Data 
can originate from a variety of collection methods, which can be as 
follows:  

• Manually collected from tutorials and public access (e.g, Cheat 
Sheets, GitHub, “hacker challenge” websites, etc.)  

• Honeypot logs  
• Payloads and recordings of the automatic tools (e.g., SQLmap, 

SQLninja, OWASP Xenotix XSS Exploit Framework, XSSer, Meta-
sploit Framework, etc.)  

• Publicly available data sets (e.g., CIC IDS, NSL-KDD, etc.)  
• Sample generation methods, like Generative Adversarial Network (e. 

g., PyGenerator7). 

A variety of automated tools can be used for data collection. For 
example, for he event collection Cova et al. [35] use modified Zend 
engine. Aceto et al. [36] collected data from a mobile service provider 
and from various applications on Android devices, which resulted in a 
binary dataset that was published by Yao et al. [37]. After collection or 
generation is complete, the raw data has to be preprocessed and then 
features must be extracted to transform any type of data into a numerical 
form that can be analysed during future stages. 

To date, one of the most popular datasets in cyber security is 
KDDCUP′998. It has been analysed by a large number of researchers for 
many types of cyber attacks and machine learning implementations. For 
example, using that dataset Li et al. (Y [38]. proposed a method based on 
autoencoders and deep belief network, with the final accuracy up to 92, 
1%. Autoencoders were used for query processing in the presented 
hybrid malicious code detection scheme based on AutoEncoder and 
Deep Belief Networks. Preprocessing for KDD has been reviewed in 
detail by Molina-Coronado et al. [39]. 

In the context of code injection attacks, collection of benign and 
malicious queries can yield a limited number of samples, that is insuf-
ficient for the effective model training. Generation of new datasets from 
the existing data can resolve this challenge. A trend in the recent years 
shows the use of Generative Adversarial Networks (GAN), however, 
there are multiple ways to successfully generate new samples from the 
existing ones. 

One of the issues with the generative approach (using GAN or any 
other algorithm) is related to the generation of the working samples. For 
example, in the image recognition setting the difference in images might 
be infeasible, while in the network intrusion setting, not all generated 
malicious samples can be successful attacks. 

Adversarial inputs created by introducing permutations of patterns 
from the already existing datasets can easily subvert their predictions. 
The 2017 report by Biggio et al. [40] highlights common misconceptions 
related to the evaluation of machine learning methods and approaches 
for security applications. 

3.4.1. Dataset generation 
When the data is insufficient for the DNN adequate training, the 

researchers might seek to collect a bigger dataset, or to generate addi-
tional data from the already existing dataset by adding permutations in 
specific values. 

Cheon et al. [20] develop their own way of generating samples based 
on the existing query templates, by randomising numbers, usernames, 
passwords, email addresses, etc. Edalat et al. [9] outline the dataset 
generation approach to multiply the number of malicious samples using 
concolic input generation [41]. 

7 Isao Takaesu, PyGenerator, GitHub, 2017, https://github.com/13o-bbr-bb 
q/machine_learning_security/tree/master/Generator.  

8 https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html. 

S. Abaimov and G. Bianchi                                                                                                                                                                                                                   

https://github.com/13o-bbr-bbq/machine_learning_security/tree/master/Generator
https://github.com/13o-bbr-bbq/machine_learning_security/tree/master/Generator
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html


Array 11 (2021) 100077

7

Uwagbole et al. [21] explored the generation of a new dataset using 
the known attack patterns, such as SQL tokens and symbols present 
during the injection process. 

Unlike in the SQL injection, generating the entire traffic units is a 
more sophisticated task. The definition of a specific traffic object de-
termines how the raw traffic is segmented into multiple traffic units [42] 
and presented as different types of traffic. The publications describing 
the application of deep learning for the traffic analysis9 [43–45] 
considered either flows or bidirectional flows as an object of classifica-
tion, with the exception of Lotfollahi et al. [46], where the object of 
classification is the single packet. 

In all the above cases, instances can occur that are longer or shorter 
than the considered fixed-length data inputs. In such cases, longer in-
stances are truncated to the designed length of bytes or packets, whereas 
in the case of shorter instances, padding is applied in the majority of the 
surveyed works. 

Generated code injection payloads can be used for the development 
of IDS, but can be also used to design advanced attack frameworks and 
fuzzers, that can bypass the most complex conventional filters and IDS. 

Some datasets can be large in size, and universities and research 
centres provide the already pre-processed datasets and pre-trained 
models for further research (e.g., University of New Brunswick10). 

3.4.2. Non-machine learning samples generation methods 
There also exist the non-machine learning based methods that 

include fuzzing for the attack generation and testing of the experimental 
system. They can also be used to create a dataset, that is usually stored in 
text files or database files. One of the most popular tools in fuzzing SQL 
databases is SQLmap,11 presented by Damele and Stampar. SQLmap is 
now a part of the majority of the existing security testing toolkits and 
operating systems. This non-machine learning toolkit can be used for the 
attack generation to test prototype systems against real life attacks. 
Cheon et al. [20] use SQLmap for the evaluation of their method. Edalat 
et al. [9], while also researching the SQL injection detection, instead of 
machine learning methods, use taint analysis for the evaluation of their 
ConsiDroid. 

The automatic scripts, toolsets, and virtual networks can be used for 
the attack sample generation. Tools like TCPReplay can be used to 
emulate the traffic activity from an already existing *.pcap file. Taken a 
step further, to generate a CICIDS2017 dataset,12 the University of 
Brunswick used a Virtual Machine with Kali Linux as an attack station. 
The network traffic was recorded during several days of simulations on a 
virtual network. After that, the IP addresses were removed from the 
dataset (CSV file), anonymizing the data. The newer versions of 2018 
and 2020 are also available. 

3.4.3. Increasing complexity of samples 
Using the adversarial approach, it is possible to create additional 

permutations and multiply the dataset, increasing the number of sam-
ples and improving the detective capabilities of the IDS. However, in 
real-life attacks, the malicious actors can use sophisticated techniques to 
avoid simple IDS. To be able to detect more sophisticated malicious 
queries, generative adversarial approach can be used to increase the 
complexity of code samples, both malicious and non-malicious. 

Salgado [47] outlined the techniques to optimise and obfuscate 
SQLIA, providing insight on how to potentially generate the dataset of 

advanced SQLIA for training of neural models for IDS. To the extent of 
our knowledge, there are no public mentions of this method application, 
even though it has promising results for the generation of adversarial 
code injection samples. 

3.4.4. Machine learning for attack simulation 
Machine learning application for dataset generation vary from 

sample multiplexing using the existing smaller datasets to various attack 
simulations [40] and synthetic payloads [48]. 

Kreuk et al. [48] introduced an approach for generating adversarial 
samples for the discrete input sets, such as binaries. The functional 
malicious binaries are modified by introducing a small sequence of bytes 
to the binary source file. The modified files are then detected as benign 
by the IDSs, while preserving their malicious features. The approach was 
applied to an end-to-end CNN malware detector and presents a high 
evasion rate. Their research also showed that generated malicious 
payload can be placed in different positions of the same file and across 
different files. 

Russell et al. [49] propose an adversarial learning approach without 
requiring paired labelled examples or source and target domains to be 
injections. They compare their method to the other approaches that 
require labelled pairs, and report almost similar performance. 

As an example of a specific vulnerability, addressed by the Adver-
sarial Machine Learning approach, we can mention the Return Oriented 
Programming (ROP). The ROP attack is an exploit technique (usually 
based on the buffer overflow vulnerability) that allows an attacker to 
execute code in the presence of security defences such as executable 
space protection and code signing. Li et al. (X [50]. present Ropnn, 
which uses the address space layout guided disassembly and DNNs to 
detect the ROP payloads in HTTP requests, PDF files, and images. The 
disassembler treats the input data as code pointers. The reported 
detection rate of such approach is 98.3% while using the adversarial 
dataset. Sun et al. (Y [51]. conducted a research in the injection attacks 
for the visual data using reinforcement learning. The research is not 
directly related to the code injection and cyber security, yet it provides 
insight into the possibilities and methods of injecting any data into the 
approach. 

Adversarial approach can also create a dataset of attack recordings, 
that have not been publicly used yet. For example, a time of evasion 
attacks has been presented by Biggio and Roli [40,52], as well as a few 
common misconceptions, highlighting the vulnerability of machine 
learning detection and classification algorithms to new attacks. 

3.5. Parameter fine-tuning 

Parameter fine-tuning is an important step in machine learning. It 
can be defined as the adjustment of parameters of the model for optimal 
performance. A parameter or a hyperparameter is a value that impacts 
the learning process. Every machine learning method has a set of such 
(sometimes unique) parameters. For example, Artificial Neural Net-
works (ANN) have different layers of different types, number of neurons, 
activation functions for each layer, optimisers, loss function for the 
output layer, batch size, and number of epochs. Tuning hyperparameters 
aims to improve the speed of and overcome the limitations of small 
datasets [53]. 

Truncation: One of the methods is to truncate the output layer of the 
already trained ANN and replace it with another layer with same acti-
vation that is directly relevant to a selected problem. 

Learning rate: Many methods have a variable parameter called 
“learning rate”, that can be increased to improve the speed of learning, 
or reduced to solve the issue of model overfitting in certain cases. 

Freezing the weights: In addition, the weights of the initial few layers 
of a DNN can be fixed or frozen, as they represent the curves and edges, 
pre-trained for a particular task. After this is done, “frozen” weights do 
not change, and the network will only readjust the weights of the sub-
sequent layers, relevant to a specific dataset. 

9 https://www.blackhat.com/docs/us-15/materials/us-15-Wang-The-Appli 
cations-Of-Deep-Learning-On-Traffic-Identification-wp.pdf.  
10 Intrusion Detection Evaluation Dataset (CICIDS2017), University of New 

Brunswick, https://www.unb.ca/cic/datasets/index.html.  
11 Bernardo Damele, A.G., Stampar, M.: Sqlmap: automatic SQL injection and 

database takeover tool, 2012, SQLmap, http://sqlmap.sourceforge.net/.  
12 Intrusion Detection Evaluation Dataset (CICIDS2017), University of New 

Brunswick, https://www.unb.ca/cic/datasets/index.html. 
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The tunability of machine learning hyperparameters has been 
reviewed and calculated by Probst et al. in Refs. [54,55], as well as in 
Ref. [56]. Hyperparameter fine-tuning can be done automatically using 
programming libraries and built-in functions, such as Keras Tuner.13 

Fine-tuning is also accessible via online services like Comet. ml,14 

OpenML,15 and Weights&Biases.16 

Literature review revealed that the process of machine learning has 
been widely covered in modern publications. Among the most broadly 
reviewed areas are the machine learning general approaches, algo-
rithms, training, post-processing and result visualisation methods (e.g. 
Refs. [3,29,57–59]). However, the data preprocessing has been the least 
researched, especially in the area of the Network Intrusion Detection. It 
is at the same time one of the most critical and labour and time 
consuming steps (over 50% of total effort) within the entire data analysis 
process [1,2]. The next Sections will provide an overview of the pre-
processing methods and their application, and will highlight its critical 
role in enhancing detection. 

4. Critical role of preprocessing in the detection rate 
enhancement 

Preprocessing is the process of data transformation and its conver-
sion into another form, that aids the neural network with the learning 
process. It changes the initial data in such a way that it allows the ma-
chine learning algorithms to analyse the data. Preprocessing can include 
any process that involves data manipulation before the correlation 
process (using machine learning or any other algorithm), and task- 
specific, as the architecture of the neural networks can be tailored for 
detection (of any type), classification (detection and attack identifica-
tion), or clustering. For example, it can include data cleaning and 
refinement (filtering, reducing, reshaping, encoding, etc), handling 
missing attributes, imbalanced dataset and elimination of noise or 

outliers. 
Chitraa and Davamani [60] define preprocessing as a series of pro-

cessing of web log file covering data cleaning, user identification, ses-
sion identification, path completion and transaction identification. 
Tomar and Agarwal in their survey [3] define preprocessing as a step, 
that is used to enhance the reliability of the collected data. Some authors 
(e.g. Ref. [61]) never actually use the term “preprocessing”, instead they 
use the term “parcing” for that stage, in some cases completely replacing 
the entire process with automated libraries (e.g., ScaPy). 

The revision of the selected academic publications revealed a wide 
variety of diverse preprocessing methods, that need to be summarized 
and classified for effective use in intrusion detection. The way in which 
the input data is pre-processed (cleaned, reduced, reshaped, encoded, 
etc.) significantly influences and affects the performance of the machine 
learning techniques employed to detect code injection attacks. For 
example, some of the features in the data set may be random in nature 
and corrupt the output results, or, similarly, may be more impactful and 
introduce biases. 

For the purpose of this survey and based on the reviewed publica-
tions, we propose to subdivide preprocessing into the data pretreatment 
followed by the actual data treatment consisting of feature-based and 
encoding-based preprocessing as two different ways of data optimisation 
and transformation. 

The following subsections will address in more details the Data 
Pretreatment, Feature-based and Encoding-based preprocessing and 
highlight their specificity in relation to the intrusion detection 

Fig. 1. Data pretreatment methods. Source: authors.  

Table 2 
Classification of Tokenization in data pretreatment.  

Classification List 

Start Label <script>,<frame>,<img>,<body>,etc 
End Label </script>,</frame>,</body>,etc 
Windows Event onerror = , onload = , onblur = , oncut = , etc 
Function Name alert (, prompt (, String.fromCharCode (, etc 
Script URL javascript:, vbscript:, etc 
Others >), \#, etc 

Source [28]. 

13 Keras Tuner, https://keras-team.github.io/keras-tuner/.  
14 https://www.comet.ml/site/.  
15 https://www.openml.org/.  
16 https://wandb.ai/site. 
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effectiveness. This will be followed by summarising and classifying how 
different machine-learning-based code injection attack detection tech-
niques take advantage of (or rely upon) different input data pre- 
processing techniques. 

4.1. Pretreatement 

Pretreatement may be defined as the process of preparing raw data 
for any further manipulations and correlations, including its cleaning 
and creating a database. This process follows the input data collection, 
that once selected for the dataset, has to be composed and prepared for 
the neural network to train on. 

Following the literature review, we present the following classifica-
tion of the pretreatment methods currently in use (See Fig. 1). 

Pretreatement can include several or all of the following steps:  

• Remove Null, NaN and Inf  
• Remove incomplete information  
• Remove duplicates, as they make neural model biased  
• Remove inputs with different outputs  
• Reshape (e.g., numpy array reshape)  
• Balance (to make the neural network unbiased)  
• Shuffle (many datasets are sorted, and before splitting they can be 

randomly shuffled for the experiment)  
• Split on training and testing  
• Split the training dataset further, if a neural network is analised for 

incremental learning, or multiple neural networks are trained for 
ensembles.  

• Labelling may complete the pretreament process with the subsequent 
data classification and creation of the dataset. 

It is worth noting that pretreatment does not involve any trans-
formation of the data values. In specific cases some steps of pretreatment 
might be repeated after the feature-based and encoding-based pre-
processing as well. For example, in the cases when the data cleaning 
(pretreatment), and its further encoding (preprocessing), produce du-
plicates, those have to be removed again (pretreatment). 

Dong et al. (Y [11]. mention data normalisation, that may reduce the 
number of samples, by techniques, such as decoding the ASCII charac-
ters, transforming to lowercase, un-escaping, removing queries whose 
length is less than four symbols, etc. After such normalisation, the 
initially different queries may become identical, as the distinguishing 
items were removed. However, transformation like this might be irre-
versible. For example, Valeur et al. [23] replace certain values in the 
query white spaces. When queries with different values but similar 
structures are pretreated using this method, they become similar or even 
duplicates. With an approach like this it may be impossible to backtrack 
the event record and identify the origin or condition of the attack. 

Deep learning is considered to be the most advanced technique and 
effective against the sophisticated attacks and constantly evolving attack 
vectors [29]. One of the earliest attempts to specifically detect code 
injection attacks (specifically SQL injections) using deep learning was 
AMNESIA, a method developed in 2005 by Halfond and Orso [19]. The 
entire preprocessing was similar to the one used by Gould et al. [62], 
except the use of NDFAs in AMNESIA instead of DFAs. 

Cova et al. [35] use a modified Zend engine to perform a linear scan 
of the sequence of statements, that identifies the corresponding basic 
blocks in the SQL queries, and associates a unique ID with each of them. 

In the method, suggested by Valeur et al. [23], the “event provider” 
forwards queries to the parser (pretreatment) that feeds it to the feature 
selector (preprocessing). The parser processes each incoming SQL query 
generating its high level-view. The parser outputs this representation as 
a sequence of tokens. Constants are the only elements of an SQL query 
that should contain the user supplied input. Thus, each token is meant to 
have a flag which indicates whether the token is a constant or not. To 
form a dataset, tokens representing database field names are augmented 

by a datatype attribute (e.g., varchar). 
Abdulhammed et al. [63] apply a “preprocessing function” (pre-

treatment, according to the presented classfication) to the CICIDS2017 
dataset by mapping the IP address. The mapped IP includes the Source IP 
Address (Src IP) as well as the Destination IP Address (Dst IP). As IP 
addresses cannot be processed by any classifier without pretreatment, 
they are converted either to a decimal format, or to assigned relevant ID 
numbers. 

As an example of a successful data preprocessing, Dong et al. (Y [11]. 
use the logs (6.11 Gb) where during pretreatment, that included 
cleaning, normalisation, and filtering, the data effectively reduced in 
volume by 4 times while ensuring its high quality. Another example of a 
complete data preprocessing is the above-mentioned CICIDS 2017 
dataset, which is reduced from 50 Gb of pcap files to less than 1 Gb csv 
file with all the features describing bidirectional traffic flow. 

4.1.1. Extraction of data 
The pretreatment begins with the data extraction from the collected 

data. Jayaprakash [64] presents a survey on the data pretreatment using 
web logs as a source of data. Their key steps are as follows:  

• Data Cleaning  
• User Identification  
• Session Identification  
• Path Completion  
• Transaction Identification 

Source data can be extracted from event history and system logs. For 
example, Jovanen et al. [65] acquired the log files containing textual 
data (strings) describing requests sent from the user to the server. 
N-gram analysis (See Section 4.3) is used for extracting meaningful 
features from the data, which means that in the pre-processing phase, 
textual logs are transformed into numerical matrices to facilitate the 
subsequent analysis phases. Dong et al. (Y [11]. examine the Web server 
logs to collect successful GET requests: requests with the return code 
that is equal to or greater than 200, and less than 300. Then, static re-
quests (e.g.,.html,.wav,.txt,.jpg) are removed. Finally, the remaining 
successful GET requests are parsed to extract queries like parameter1 =
value1&parameter2 = value2. Dong et al. claimed to achieve 94.79% 
accuracy. 

Dussel et al. [24] introduced a payload-based anomaly detection 
method through adding structural information from a protocol analyser, 
with the detection of SQL and PHP code injection attacks. The goal of 
that particular research was to analyse the network traffic based on the 
grammatical characteristics of an underlying protocol. 

The event history (logs) is usually combined in a log format, which 
includes the system activity information. For examples, web servers 
collect information about the connections and data transferred (e.g, IP 
address, timestamp, the actual HTTP request, Apache server response 
code and user agent header field) [65]. These logs might contain several 
actual intrusions, especially inside the HTTP requests that are not static, 
i.e., they contain dynamic parameters that depend on the user input. 

Meanwhile, Fang et al. [28] focus on generalisation and tokenization 
for pretreatment. Their DeepXSS uses a series of customizing regular 
expressions based on the features of the scripting language to tokenize 
the input data. The classification of the tokenization is presented in 
Table 2. DeepXSS relies on Word2vec,17 a deep learning tool released by 
Google in 2013. 

As per Uwagbole et al. [21], creating a dimension to accommodate 
the size of data by selecting the next hashing bits, that fit the dataset, can 
sometimes generate too much dimension and sparse data which are 
reduced by a filter-based featured selection, that leaves only top relevant 
vectors. The filter-based selection is used to achieve the reduced 

17 word2vec, Google, 2013, https://code.google.com/archive/p/word2vec/. 
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computation complexity without affecting the prediction accuracy in the 
classification process. In their work, the Chi-squared scored function is 
used to rank the top 5000 hashing features in descending order to return 
the most appropriate labels to improve the SQLIA prediction accuracy. 

Yan et al. [26] extract all JavaScript code written by developers 
(JavaScript libraries like JQuery are excluded) in the application to 
create their dataset. 

It is worth mentioning beyond the scope of our research, that before 
the pretreatment stage the collected data has to go through a quality 
check and proofing. Ehrlinger et al. [66] identified 667 tools to evaluate 
the data quality and composed a review of ways to measure data quality, 
clean it, and monitor. 

4.1.2. Cleaning 
The removal of values that cannot be processed is a tedious process 

that can delay the research. 
It is generally accepted, that removing duplicates reduces the size of 

dataset and reduces bias from the training process. If the dataset con-
tains many duplicates, with a single training pass the DNN “sees” the 
same sample multiple times, each time readjusting the function. 

Some programming and scripting languages have built-in or loadable 
functions for this step (e.g., R, Numpy in Python), however, out-of-the- 
box functions do not always work, and at the present stage the cleaning 
solutions have to be scripted manually. 

The above-mentioned scripts aim to identify the values that match or 
do not match a specific regular expression, detect new lines to form 
database rows, and then remove duplicating data, if necessary. Values 
such as “NaN”, “Infinity”, or unmatching value type can be either 
completely removed during this step, or transformed into a numeric 
value during the encoding-based preprocessing stage. 

Tomar et al. [3] present a notion of dirty data. They review the 
methods of handling the missing attributes in dirty data (filter-based 
method, imputation method, and embedded method), also the methods 
of handling noisy data. 

Jayaprakash [64] extracts data from the web logs by using commas 
and quotation marks as separators, thus, removing them, for example, 
using spreadsheet software [64,67], and by this shaping data into a 
matrix. 

In their experiment, Dong et al. (Y [11]. collect successful GET re-
quests. They subsequently remove static requests (e.g.,.html,.wav,.txt,. 
jpg), and finally, the remaining successful GET requests are parsed to 
extract queries like parameter1 = value1&parameter2 = value2. 

4.1.3. Unification 
In this paper we present the data unification as the data trans-

formation into a similar form. For example, if the mass media dataset 
contains a first name that is followed by a surname, it should be the case 
for every single cell in the dataset. Specific to code injection, values 

should be of specific type (e.g., some python libraries have issues with 
processing float32 and float64 together, even though both are the same 
numeric values). 

In deep learning some neural networks (e.g., CNN) require rows with 
data to be the same length, thus, empty cells have to be filled with zeroes 
or other values, that represent an empty slot. 

Fang et al. [28] pre-treat data by following specific steps: replace the 
various URLs in the input data with “http://website”; replace the 
numbers in the input data with “0”; replace the string as the function 
parameters with “param_string”. In addition, other special characters 
such as blank characters or control characters are removed. As per Dong 
et al. (Y. [11], data normalisation helps tighten the input space, 
including the decoding printable ASCII characters, un-escaping, trans-
forming to lowercase and removing queries whose length is less than 
four items. After normalisation, initially different queries may appear 
identical, similar to the approach by Fang et al. [28]. The identical 
duplicates are then removed. 

4.1.4. Balancing 
Another important factor for a high-quality data is its balanced 

representation meeting the requirements of the set parameters. Let the 
dataset contain 80% of malicious samples and 20% benign samples (e.g. 
Ref. [21]). If the neural network predicts all the queries in the dataset as 
1, the statistics will calculate the accuracy of the detection rate as 80%. 
To avoid biases in statistical calculations, and if the dataset allows it, it is 
advised to have the equal amount of malicious and benign samples. 
Though in practice, the script would simply compare the size of two 
subsets (benign and malicious) and remove (randomly or as per a spe-
cific logic) the excessive rows. 

The issue of imbalanced datasets is discussed by Chawla et al. [68] 
who provide insight into solutions to over-sampling and 
under-sampling. They use multiple imbalanced datasets for their 
experiments. 

Tomar et al. [3] suggest the sampling method and algorithm 
adjustment, to address the issues of imbalanced datasets. 

Even though there are methods, like Synthetic Minority Over- 
Sampling Technique (SMOTE), for a guided methodological sampling, 
it is still advised to manually balance the dataset, before the evaluation 
in experiments sensitive to statistics. 

Uwagbole et al. [21] balanced their dataset items and in their 
experiment these actions improve both the trained model recall and 
precision. 

However, in the real-life systems the malicious and non-malicious 
traffic are never balanced, and developers of defence systems have to 
use machine learning methods for non-balanced dataset preprocessing. 

4.1.5. Sampling and splitting on training and testing sets 
In the method proposed by Uwagbole et al. [21], the text 

Fig. 2. Dataset feature labelling procedure. Source: [21].  
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preprocessing involves a regular expression pattern matching. The 
imbalanced data set was corrected with the Synthetic Minority 
Over-Sampling Technique (SMOTE) by Chawla et al. [68] to have a 
dataset split equally as malicious and benign. These actions have proven 
to increase the trained model recall and precision. 

Most commonly used dataset splitting proportions are 80/20 (e.g. 
Ref. [68]) or 70/30 (e.g. Ref. [63]), which can be implemented through 
scripts, spreadsheet software or otherwise using functions from the 
programming libraries (e.g., SciKit). 

4.1.6. Labelling and classification 
For the supervised learning the data has to be labelled as well as 

marked. That is more a requirement, than an improvement, thus it is a 
part of pretreatment. However, if it is possible to classify an attack in a 
broader way then just a binary classification (benign or malicious), that 
might either increase or reduce the overall precision, on the case-specific 
basis. 

The basic way to mark the dataset for code injection detection is “0′′

or "-1′′ for the benign traffic or “1′′ for the attack, based on the activation 
function (e.g., Sigmoid or Tanh). For the code injection classification, 
the types have to be encoded in a sequence of ones and zeroes (e.g., [1 0] 
for SQL injection and [0 1] for XSS). 

Once the data is shaped and is already in a database or a text file, it 
can be transformed into a format that can be readable by the neural 
networks. 

Uwagbole et al. [21] label the dataset using the algorithm presented 
in Fig. 2. 

Another example is the work of Gao et al. [69], who use the NSL-KDD 
dataset and mark the normal traffic as 0, DoS as 1, Probe as 2, etc. 

4.1.7. Negative impact of pretreatment 
There are a few warning messages with regards to the data pre-

treatment that have been identified through the literature review. 
During the pretreatment step, the data may be prepared in ways that 
may contain programming biases, resulting in a poor performance of the 
system. For example, during balancing the intuitive solution would be to 
remove the random values from the dataset. However, removal of se-
quences at random may lead to the removal of patterns with a high 
impact on the learning process, and leave only more complex cases, 
which require more training to be identified. 

Shuffling the dataset in an uneven manner would result in a biased 
statistics, similar to the bias in an unbalanced dataset training. 
Furthermore, splitting dataset 50/50 as compared to 80/20 in an un-
balanced way may increase that bias. For example, if the training dataset 
contains only non-malicious samples, the model will not be able to 
detect malicious samples during the testing phase. 

Padding incomplete information, instead of removing, it is a com-
mon practice, yet it may result in a poor performance, as the neural 
networks may ignore certain features entirely. 

After the entire data preparation process is complete, the dataset may 
contain additional unintended duplicates, as a result of feature extrac-
tion and encoding. Thus, it is advised to perform additional checks for 
duplicates at the end. 

4.2. Feature-based preprocessing 

In this survey, we propose to single out a feature-based preprocessing 
as a separate step to form a dataset. Its function is to select, extract, or 
generate features. Selecting the right features for a particular task can 
improve the performance by reducing the amount of noise and 
randomness, as well as minimising complexity and generally reducing 
the amount of data required for effective analysis. The raw data may 
already have them but, more often, needs features to be calculated. For 
example, the number of packets in a single session is a feature that has to 
be counted. These values can be further used to generate an average 
payload size in a session as another feature. To be able to detect an 
attack, with a sufficient number of features, there is no need for the 
analysis of the payload data. 

“A Comprehensive Survey on Data Preprocessing Methods in Web 
Usage Mining” outlines the ways of data processing from web logs [64]. 
This approach is further enhanced in a survey by Ramirez-Gallego et al. 
[2], that also outlines dimensionality and instance reduction techniques 
for the data mining. 

4.2.1. Use of a feature-based preprocessing 
Feature-based preprocessing is used for refinement and enhancement 

of data though the following: 

Fig. 3. Fearure-based preprocessing and sources of data. Source: authors.  
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• Removing excessive data and minimising the volume of data - to 
emphasize only relevant values, and disregards irrelevant ones 
completely (e.g., turn pcaps into lists of sessions).  

• Replacing specific data - (e.g., to reduce or increase the number of 
variations of the same value) 

• Enhancing random data with additional knowledge - to add addi-
tional values, with information about the other values, thus 
increasing the overall knowledge of the data.  

• Highlight specific features to study their correlation. 

As per our proposed classification, the feature-based preprocessing 
stage can be grouped into three substages (Fig. 3):  

• Feature extraction (mandatory)  
• Feature engineering (optional)  
• Dimensionality reduction (optional) 

The feature-based prerocessing and feature extraction create a 
training dataset in the exact way the research is aiming for. For example 
(Fig. 3), the network traffic files (i.e., *.cap, *.pcap, *.pcapng, etc.) can 
be stripped of IP addresses and payloads, and merged in sessions, 
creating a table that depicts the traffic flow in the network. Data from 
the input fields can have similar features as the natural language (e.g., 
words, punctuation, etc.), while the machine state can have a pattern of 
configuration values as features. 

In the code injection detection, the feature-based preprocessing ex-
tracts data from request payloads, request headers, and web application 
input fields, and then analyses it, classifies (if needed), and encodes the 
query for the neural model predictions. The approach is generally 
similar to the use of the text data for machine learning, meaning the 
code symbols are analysed as a sequence. 

The feature-based preprocessing module usually applies one or 
several conversion methods (e.g., Encoding, Reshaping, Hashing, 
Reducing Dimensionality via mathematical analysis), transforms text 
data into a sequence of numeric values (either binary or decimal), and 

forwards it to the DNN. 
To detect the code injection attack, a neural network has to have 

samples of both malicious and non-malicious code, whether it is for 
supervised or unsupervised learning. In supervised learning it will also 
need to be labelled, in order to correlate a sequence of features with the 
desired output, while in unsupervised learning, the system will correlate 
the existing features and potentially detect anomalies on its own. 

The raw input dataset can contain the following:  

• Values of variables and input queries  
• Single line of code  
• Blocks of code (line by line with the memory of previous code)  
• Full execution analysis (state) 

Dong et al. (Y [11]. claim, that the key steps of query processing are 
data cleaning, data normalisation, and character filtering. Data cleaning 
and data normalisation in our classification are a part of pretreatment, 
while “character filtering” would be classified as feature extraction. 

4.2.2. Feature selection 
Feature selection, also known as feature extraction, is a technique 

which is used to derive values of information from an initial set of the 
measured pre-treated data. Those features are meant to facilitate the 
subsequent analysis and learning. Further dimensionality reduction 
techniques may include the Principle Component Analysis (PCA), K- 
means clustering and other clustering techniques, etc. 

The preprocessing approach by Valeur et al. [23] replaces variables 
with the “empty space” placeholders, generating a “skeleton query” and 
creating a set of query “profiles”. 

The feature extraction process by Dussel et al. [24] maps the appli-
cation layer messages, such as the HTTP requests, into a feature space in 
which similarity between messages can be represented with a numeric 
value. The method uses the data structures such as suffix trees or hash 
tables. 

Bockermann et al. [30] proposed an approach of using clustering for 

Fig. 4. Encoding-based preprocessing characteristics. Source: authors.  
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modelling the SQL statements to parse the tree structure of SQL queries 
as features, e.g., for correlating SQL queries with applications and dis-
tinguishing malicious and non-malicious queries. 

Tomar et al. [3] use feature selection for dimensionality reduction 
using two methods: feature ranking and feature subset selection. They 
propose feature selection using four different approaches - filter method, 
wrapper method, embedded method, and hybrid method, while also 
presenting comparative characteristics of these four methods. 

Features can be hashed, which allows to translate the dataset text 
items into a binary vector matrix suitable for training a model in Ma-
chine Learning. The hashing procedure creates an input matrix or vec-
tors that make a lookup of feature weights faster by augmenting the 
string comparison with a hash value comparison. Applying hashing to 
text features improves performance and scalability in the big data pre-
dictive analytics lacking in the existing SQLIA signature-based detection 
[3]. 

Alternative to hashing, the N-grams can be used to transform the text 
or a numerical feature vector into numeric values. This feature con-
struction transforms each query into a series of N-grams (binary-based 
and frequency-based). An N-gram is an N-character slice of a string [70], 
and its analysis has been successfully applied to intrusion detection. 
Furthermore, it is a fully automatic method and requires no prior 
knowledge about the target web application and target attacks. 

Juvonen et al. [65] applied the N-gram analysis for feature extraction 
and dimensionality reduction. Their paper focuses on the HTTP log data, 
that was previous reviewed by Ingham and Inoue [71]. As a test case, 
Uwagbole et al. [21] built a web application that expects a dictionary 
word list as variables. They used hashing tables and N-grams for 
preprocessing. 

Yan et al. [26] presented a Hybrid Deep Learning Network (HDLN), a 
more efficient model, based on the approach by Xiao et al. (X [72]. In 
addition to the already existing features in the dataset, Xiao et al. suggest 
to extracts the new features from the Abstract Syntax Tree of JavaScript 
in hybrid applications through the feature space generation and feature 
selection. 

The feature selection process can be manual or automated. Manually 
they can be selected via trial and error, while automatically, the features 
can be selected using Recursive Feature Elimination, LassoCV, etc. In 
2019 [36], proposed a deep learning approach as a viable strategy to 
design a mobile traffic classifiers based on automatically-extracted fea-
tures, able to cope with the encrypted traffic, and reflecting their com-
plex traffic patterns. For example:  

• Recursive Feature Elimination [73] 18  

• Lasso (least absolute shrinkage and selection operator; also Lasso or 
LASSO) [74].  

• Statistical tests:  
o SelectKBest19  

o Feature importance20 

4.2.3. Mathematical dimensionality reduction 
Pretreatment and feature selection and/or engineering structure the 

data and reduce the volume of data for training. For example, CIC-
FlowMeter21 allows to reduce traffic recordings (*.pcaps) to a text-file 
dataset of biflow traffic features (78–82 features). This manipulation 
reduces the size of the dataset from Gigabytes of network traffic files into 
a spreadsheet, containing all the features required for a successful 
network traffic flow analysis. 

With the features already extracted and dimensionally reduced (e.g., 
using principle component analysis, Kmeans clustering, etc.), a smaller 
neural network can be used, to analyse the patterns faster, without the 
need to detect any new features. For example [67], use the principal 
component analysis (PCA) as a form of preprocessing for Support Vector 
Machines (SVM). With a smaller dataset, the bigger neural networks will 
not train as effectively due to insufficient samples. The CICIDS2017 
dataset contains sessions described in 78 features, however, PCA can 
reduce the number of values down to 10 (principal components) without 
a feasible loss in accuracy [63]. Gao et al. [69] use PCA for the experi-
ments with NSL-KDD. 

To address the size of datasets and reduce resource requirements, the 
mathematical analysis can extract additional correlations between fea-
tures (usually involving frequency analysis) and reduce the number of 
values in the dataset. Very popular methods for the dimensionality 
reduction in the Network Intrusion Detection are K-means clustering 
and PCA. 

K-means clustering is a method of vector quantization, originally 
from signal processing, that is popular for the cluster analysis in data 
mining. PCA is a statistical procedure that uses an orthogonal trans-
formation to convert a set of observations of possibly correlated vari-
ables into a set of values of linearly uncorrelated variables called 
principal components. 

Tomar et al. [3] split dimensionality reduction into the Hard 
Dimension Reduction Problem and Soft Dimension Reduction Problem. 
A study by Abdulhammer et al. [63] uses PCA as one of the methods for 
dimensionality reduction in Intrusion Detection. 

4.2.4. Negative impact of feature-based preprocessing 
Identification, selection, extraction, and engineering of features can 

cause the lack or surplus of “knowledge” for the machine learning al-
gorithm to be trained, that results in training biases. The selection of 
features that describe data has been addressed in many academic papers. 
Incorrect selection of features may result in unwanted randomness and 
“confusion” for the neural networks, and thus, reduced accuracy. 
Furthermore, decision to use the excessive number of features increases 
the complexity of the preprocessing process, and the size of the dataset, 
resulting in the reduced training speed for neural networks. 

Similar to the selection of excessive features, the data enhancement 
method and feature engineering add classification attributes that inflate 
data. Those methods may result in adding drawbacks, instead of 
improving accuracy. 

4.3. Encoding-based preprocessing 

The intuitive approach to the encoding of the text-based data would 
be to use the natural language processing or simple per-symbol encod-
ing. However, preprocessing for the network packet headers, payloads, 
and code is different, as, unlike in the natural language, it cannot 
interpret a simple set of symbols between two white spaces or between a 
white space and a punctuation symbol. 

To finalise the full preprocessing cycle - the transformation of the 
extracted features into numeric values, that the machine learning 
methods can train on - we suggest the following there substages (Fig. 4). 

4.3.1. Transformation 
It is common for the pattern of symbols and numbers to be directly 

converted to the sequence of numbers. In the context of cyber security, 
encoding can transform a single item (word or symbol in the header, 
payload, or line of code) into one of the following:  

• single digit or value;  
• sequence of digits or values;  
• pair with a digit or value and a classification marker;  
• hash, further converted into one of the above. 

18 https://www.scikit-yb.org/en/latest/api/model_selection/rfecv.html.  
19 https://scikit-learn.org/stable/modules/generated/sklearn.feature_sele 

ction.SelectKBest.html#sklearn.feature_selection.SelectKBest.  
20 https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_imp 

ortances.html.  
21 https://www.unb.ca/cic/research/applications.html. 
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For example, if every symbol in an SQL query is converted into a 
relevant charcode, it does not enhance data, and potentially may lead to 
the reduction of the quality of data, as changing the case of symbols may 
lead to different numeric sequence (i.e., “A" is 101, “a" is 141). In cases 
when the use of this transformation is detrimental to the research, the 
previously mentioned issue can be mitigated by converting every sym-
bol into lower or upper case. Another example, Ling and Wu [75] 
convert a flag type data into single digits (tcp-1, icmp-2, and so on). 

Conversion of values like IP addresses can be another cornerstone. 
The intuitive conversion of IPv4 into a decimal value, and further di-
vision by 10 power 10, would not work as intended. For example, 
192.168.1.1 would be into 3232235777, and 192.167.1.1 into 
3232170241. Once scaled between 0 and 1, those two decimal values 
are very close to each other, even though they represent different sub-
networks, and the neural network may not be able to notice any 
difference. 

Keywords and special characters. Multiple methods try to address the 
conversion via the detection of keywords, operators, and escape symbols 
[20,23,27]. 

The method by Cheon et al. [20] presents a pre-processing algorithm 
(“converter”), that dissects SQL query into keywords and identifies them 
by the position of blank spaces: right side, both, or none. The converter is 
used to convert the HTTP parameters into numeric attributes. These 
attributes are supplied for the Classifier as features (length of parameters 
and the number of keywords). The keywords contain words and symbols 
in the SQL statements, like commas, equal signs, quotation marks, 
“SELECT”, “UNION” and so on. There are three types of keywords ac-
cording to the SQL statements. 

The research by Uwagbole et al. [21] uses a combination of data 
composed of the extracted dictionary wordlist with words and unique 
SQL tokens extracted from the MSSQL reserved keywords. The dataset 
items are labelled based on the exhibition of the SQLIA types charac-
teristics which are: the presence of the SQL tokens in the injection point, 
disjointed text, single quotes, semicolons, comments, hex, etc. The data 
set items labelling is represented in the binary values of 0 (SQL negative) 
or 1(SQL negative). 

4.3.2. Scaling 
After all the features are presented in a numeric code, each value has 

to be further scaled between 0 and 1 using built-in functions (e.g., 
Numpy interp, Sklearn MinMaxScaler), or manually (e.g., with mathe-
matical manipulations). 

Abdulhammed et al. [63] use their equation to re-scale the features 
in the dataset based on the minimum and maximum values of each 
feature. Some features in the original dataset vary between [0, 1] while 
other features vary between [0,∞). Therefore, these features are nor-
malised to restrict the range of the values between 0 and 1, which are 
then processed by the auto-encoder for feature reduction. 

xi =
xi − xmin

xmax − xmin  

4.3.3. Data augmentation through encoding 
The goal of data augmentation can be either to improve the accuracy 

(additional data is added), or to make the real-life data resemble closer 
the training dataset (as some of the variables might be missing). 

Data can be enhanced with additional knowledge. For example, 
words can be converted into a single value in a specific range and special 
symbols into values in a completely different, more recognizable range, 
artificially increasing the difference between the groups (or classes) of 
values. Furthermore, additional values may be added for the classifica-
tion to establish a new sequence of values. 

Oppose to Refs. [20,27] classify and augment data with additional 
knowledge, converting the keywords and symbols into pairs of values 
(value, type). 
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There is a variety of methods on the network data visualisation, that 
can be used to generate static images, and then further use various 
automated tools (e.g., imgaug22, AutoAugment [4], K-correct [5]) and 
image augmentation techniques presented in the surveys by Shorten and 
Khoshgoftaar [76] and Mikolajckzyk and Grochowski [77] to further 
improve the detection rates. 

4.3.4. Other encoding-based methods 

Automated approach. As oppose to the manual tool development of 
encoding methods, it is always possible to use the already existing 
methods of parcing data from the raw files to numeric sequences. For 
example, several parsers for the SQL dialects were used by Ref. [61] to 
obtain a parse tree. As stated by Bockermann et al. [30], the basic idea of 
Buehrer et al. [61] is to detect SQL injection attacks by means of changes 
in a queries syntax tree. Usually complex parsers are automatically 
generated based on a given grammar description using tools such as 
yacc, antlr or javacc. However, those parsers did not provide a satisfac-
tory numeric sequence, and had to be further vectorised. 

Gao et al. [69] use one-Hot-encoding to process text values into bi-
nary sequence. 

Translation using natural language approach. Traditional ways of pre-
processing are limited to a conversion of any data into a set of numeric 
values. However, in unique applications additional case-specific steps 
are required. 

Translation of natural language into commands, images, lines of 
code, and samples for the dataset has been researched since the early 
days of programming languages. To illustrate the mechanism in the 
context of the survey, we have studied the SQL query as an example. The 
approach of the natural language translation into SQL queries can be 
potentially abused by attackers to bypass filtering. 

Cai et al. [25] outlined a method of the Natural language conversion 
into the SQL queries using CNN and RNN, as well as provided techniques 
for preprocessing and postprocessing of the input data. Alternatively, a 
sequence-to-sequence model can be used for semantic preprocessing (C. 
[78], (L [79–81]. 

Masking is another method, used for the natural language process-
ing. Liang et al. [82] used masking for symbolic parsing by storing 
key-variable pairs in the memory. Masking presented by Cai et al. [25] 
supports more complex operations, covering both short-term and 
long-term dependencies. Moreover, the authors emphasize that the 
grammar structure of SQL is known to be more complicated than the 
logical forms used in semantic parsing. 

4.3.5. Negative impact of encoding-based preprocessing 
Incorrect encoding may result in misrepresentation of data for the 

Machine Learning algorithm to correlate features. Typically, simple 
conversion of payload symbols or values into charcode is an intuitive 
choice. However, for the code injection detection, this approach may 
give results close to random (50–60% accuracy of models). We have also 
identified a few ways in which the improper encoding might reduce the 
accuracy:  

• Scaling in a wrong range of values causes unintended clustering of 
features, which results in wrong correlation in features. 

• Introduction of additional mathematical conversions, such as hash-
ing the values, may create misrepresentation of features.  

• In a variety of automated solutions, the raw data is often unclean and 
confusing, and automated preprocessing may detect non-existent 
features. 

Those negative effects and their combinations impact the perfor-
mance of the final system in some very specific ways, yet the outcomes 
may be unpredictable and counter-intuitive during troubleshooting and 
debugging. 

4.4. Classification of existing preprocessing methods 

The revised sources highlighted a wide diversity in the approaches to 
all machine learning stages preliminary to the training, ranging from the 
use of raw data to the synthetically engineered features, from the 
manual to automated preprocessing. The in-depth analysis of the 20 
academic publications, selected based on their relevance to the code 
injection attack detection, and suggested machine learning methods 
have demonstrated that preprocessing was successfully used to maxi-
mise the effectiveness of their system. 

The following similarity characteristics were observed: 

• Only a few methods explicitly use preprocessing for data augmen-
tation in order to improve performance and/or accuracy.  

• None of the papers describes every step of the proposed classification 
of the full preprocessing cycle.  

• Pretreatment is almost exclusively mentioned for Cleaning and 
Unification.  

• Feature-based preprocessing is mentioned both as Feature extraction 
and Feature Engineering.  

• Feature extraction is the only step that is mentioned in every 
publication.  

• Dimensionality reduction is normally mentioned as a unique 
optional method, not as an essential one. 

• Encoding-based preprocessing is typically mentioned as trans-
formation of data into numeric values.  

• None of the papers show samples of the dataset in the state between 
preprocessing and training. 

It is our understanding that to ensure maximum efficiency the full 
preprocessing cycle should be respected. This cycle is suggested based 
on our previous research in the respective area [27]. To maximise the 
performance efficiency of machine learning for the code injection 
detection, we propose six stages of Pretreatment, three stages of 
Feature-based preprocessing, and three stages of Encoding-based pre-
processing. This approach, however, can be also applied to all other 
cyber security methods in general. Revealing the present inconsistencies 
and to harmonise the preprocessing methodology, we map the existing 
approaches against our proposed classification to identify the gaps. 

The above classification demonstrates that some of the stages were 
used explicitly while the others were only briefly mentioned without 
detail or not mentioned at all, potentially indicating that they were 
omitted. Based on Table 3 we conduct a statistical assessment of the use 
of preprocessing stages in the analysed works (Table 4). 

Table 4 
Percentage of preprocessing stages mentioned in the literature.  

Stage Substage At least 
mentioned 

Explicit mention or 
unique method 

Pretreatment Cleaning 85% 30% 
Unification 85% 55% 
Balancing 30% 20% 
Shuffling 5% 0% 
Splitting 25% 20% 
Labelling 45% 20% 

Feature-based 
preprocessing 

Feature Extraction 100% 85% 
Feature 
Engineering 

80% 65% 

Dimensionality 
Reduction 

40% 35% 

Encoding-based 
preprocessing 

Transformation 85% 70% 
Scaling 35% 25% 
Augmentation 25% 20%  

22 ImgAug, GitHub, https://github.com/aleju/imgaug. 
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As per the assessment, Feature-based preprocessing is the most rep-
resented stage. Feature extraction is mentioned in 100% of the analysed 
works, while shuffling of the dataset is the least mentioned substage. 
Cleaning, Unification, and Encoding Transformation are mentioned in 
85% of the methods, followed closely by Feature Engineering in 80%. 
The remaining stages and substages are mentioned in less than a half of 
the analysed publications. 

The above observations reveal the missing knowledge that could 
enhance the performance and/or accuracy of the designed intrusion 
detection systems. 

5. Conclusion 

Based on the selected academic publications, the survey explored the 
existing approaches to the applications of machine learning for the 
detection of code injection attacks, with special attention to deep 
learning. We identified at least 13 different methods of code injection 
detection using various types of machine learning. Deep learning is 
observed being the most used approach. 

The stages of machine learning for intrusion detection have been 
further revised and least researched have been identified. The findings 
confirm that the scarcity of the datasets remains one of the biggest and 
most common challenges for the adoption of machine learning in cyber 
security. The findings also revealed that data preprocessing being one of 
the most critical stages in machine learning, lacks consistency in the 
approaches in the context of code injection attack detection. 

Limitations and negative impacts in which preprocessing may reduce 
overall performance and detection rate have been also collected and 
documented in the study. 

The suggested classification of a full preprocessing cycle for the code 
injection detection will result in the harmonisation of the approaches to 
this stage and will improve the accuracy and performance of the 
machine-learning-based Intrusion Detection Systems. The proposed 
consecutive stages of data preprocessing can be further used by machine 
learning researchers and practitioners for other cyber security needs, 
such as network traffic analysis and intrusion detection. And finally, the 
presented classification will allow to better understand the role of deep 
learning in the code injection attack detection process in machine- 
learning-based Intrusion Detection Systems. 
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