
Array 11 (2021) 100077

Available online 17 July 2021
2590-0056/© 2021 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

A survey on the application of deep learning for code injection detection

Stanislav Abaimov a,*, Giuseppe Bianchi b

a Tor Vergata University of Rome, Italy/University of Bristol, UK
b CNIT/Tor Vergata University of Rome, Italy

A R T I C L E I N F O

Keywords:
Machine learning
Deep learning
Network intrusion detection
Code injection
Preprocessing

A B S T R A C T

Code injection is one of the top cyber security attack vectors in the modern world. To overcome the limitations of
conventional signature-based detection techniques, and to complement them when appropriate, multiple ma-
chine learning approaches have been proposed. While analysing these approaches, the surveys focus predomi-
nantly on the general intrusion detection, which can be further applied to specific vulnerabilities. In addition,
among the machine learning steps, data preprocessing, being highly critical in the data analysis process, appears
to be the least researched in the context of Network Intrusion Detection, namely in code injection. The goal of
this survey is to fill in the gap through analysing and classifying the existing machine learning techniques applied
to the code injection attack detection, with special attention to Deep Learning. Our analysis reveals that the way
the input data is preprocessed considerably impacts the performance and attack detection rate. The proposed full
preprocessing cycle demonstrates how various machine-learning-based approaches for detection of code injec-
tion attacks take advantage of different input data preprocessing techniques. The most used machine learning
methods and preprocessing stages have been also identified.

1. Introduction

Code injection is the most popular and most impactful attack, which
is at the top of the OWASP vulnerabilities list. The detection of code
injection attacks, traditionally carried out using signature/pattern-based
recognition techniques, has been recently supplemented by the appli-
cation of advanced machine learning approaches. The advantage of such
techniques is that similar algorithms, e.g., Deep or Convolutional Neural
Networks, may find application in a broad range of various threat
detection scenarios. Indeed, big cyber security companies are investing
significant funds into the research and deployment of machine learning
algorithms for the cyberthreat detection purposes, including malware
analysis, vulnerable code detection, and intrusion detection (i.e.
vulnerability exploitation attempts). AI-enhanced security adoption is
growing rapidly,1 and a range of machine learning methods for intrusion
detection has already accumulated over the years.

Within the existing amount of approaches and techniques, which of
the machine learning methods are more suitable for the code injection
attack detection, and is there any consistency in their application?
Which is the best approach for the dataset composition for enhanced

performance and/or accuracy?
The hypothesised assumption, which we will investigate in depth in

this paper, is that deep learning is the most suitable for code injection
attack detection. We also argue that the way in which the input data is
pre-processed (cleaned, reduced, reshaped, encoded, etc.) may signifi-
cantly influence and affect the performance and effectiveness of the
machine learning techniques employed to detect code injection attacks.
In general, this was of course expected, as some of the features present in
the data input may turn out to be random in nature and corrupt the
output results, or, similarly, some of the features may introduce biases.
But, we believe, a merit of our survey, and a clear diversification of our
work from companion surveys on related topics, is in summarising and
classifying how different machine-learning-based code injection attack
detection techniques take advantage of (or rely upon) different input
data pre-processing techniques. The relevance of the research is high, as
data preprocessing appears to be the least researched in the context of
Network Intrusion Detection in general and in code injection in partic-
ular, and it very often involves more effort and time (over 50% of total
effort) within the entire data analysis process [1,2].

About 150 academic publications related to machine learning for

* Corresponding author.
E-mail address: stanislav.abaimov@uniroma2.it (S. Abaimov).

1 Reinventing Cybersecurity with Artificial Intelligence, The new frontier in digital security, Capgemini Research Institute, 2019, https://www.capgemini.com/re
search/reinventing-cybersecurity-with-artificial-intelligence/.

Contents lists available at ScienceDirect

Array

journal homepage: www.sciencedirect.com/journal/array

https://doi.org/10.1016/j.array.2021.100077
Received 27 February 2021; Received in revised form 9 June 2021; Accepted 4 July 2021

mailto:stanislav.abaimov@uniroma2.it
https://www.capgemini.com/research/reinventing-cybersecurity-with-artificial-intelligence/
https://www.capgemini.com/research/reinventing-cybersecurity-with-artificial-intelligence/
www.sciencedirect.com/science/journal/25900056
https://www.sciencedirect.com/journal/array
https://doi.org/10.1016/j.array.2021.100077
https://doi.org/10.1016/j.array.2021.100077
https://doi.org/10.1016/j.array.2021.100077
http://creativecommons.org/licenses/by/4.0/

Array 11 (2021) 100077

2

cyber security (specifically, network intrusion detection) have been
analysed, out of which only 20 covered preprocessing for code injection
detection in sufficient details (see Section 4.4). Further revision revealed
a wide variety of diverse preprocessing methods, that as well will be
documented later on in the survey.

More in details, the machine learning processing is based on four key
steps, each with its own unique challenges.

1. Data collection is typically the initial step, an acquisition of raw data,
that highly depends on the objective or subjective selection criteria.

2. Preprocessing, a highly critical step in the data analysis process,
shapes data for the neural network to be trained, forming a struc-
tured multi-dimensional dataset. Preprocessing may increase or
reduce the accuracy of the applied method based on a multitude of
factors, discussed later in the survey. For example, duplicates can
make the neural model biased.

3. Choosing, applying and fine-tuning the machine learning algorithm
(e.g., state vector machine, neural network, decision tree, etc.) for a
selected task is another challenge, as none of those algorithms is
universal. The configuration of a selected algorithm becomes the
sub-task mainly based on a trial and error approach, to improve the
accuracy of a selected method.

4. The last step in the machine learning process is to read the output
data, evaluate and present it in a way that can be further used by
other systems or visually represented for human understanding. E.g.,
improper selection of a testing dataset can affect the metrics of the
output performance.

The goal of this survey is to contribute to the body of knowledge
related to maximising the performance and effectiveness of the machine
learning techniques employed in intrusion detection, specifically in code
injection attack detection. The widely used deep learning has been
selected for analysis, supplemented by techniques allowing for poten-
tially minimal or otherwise computationally optimal steps for a selected
task.

The survey objectives included revision of the methods proposed in
the latest academic publications (articles and surveys), identification of
common steps in their approaches, their analysis and classification.
Specific attention was paid to the modular steps in data preparation
starting from data acquisition to the initiation of the training process, as
well as selection of the machine learning method.

The survey scope is limited to reviewing the non-encrypted data
transfer and features, that do not involve manipulations with the
encrypted packet payload, traffic headers, or both. The issue of
encrypted traffic is separated from our research as it is related to other
techniques (e.g., cryptanalysis). The post-processing and result visual-
isation methods are not reviewed, as they have already been widely
covered in several works (e.g. Refs. [3–5]).

Given the above goals, objectives, and limitations, to present the
work in a structured manner, the survey is organised as follows:

Section 1 “Introduction” provides an overview of the researched
area, sets the goal and objectives.

Section 2 “Code injection attack and defence” explains the code in-

jection attack specificity and conventional defence. It also specifies the
terms and notions relevant to the topic of the survey.

Section 3 “Machine learning application for the code injection
detection” lists and details the types of the selected machine learning
approaches, with an extra focus on deep learning. It also highlights
specific requirements for the data selection and addresses the methods of

hyperparameter optimisation to maximise the performance or accuracy
of the selected methods.

Section 4 “Critical role of preprocessing in the detection enhance-
ment” reviews a wide variety of modern methods used for preprocessing,
identifies the gaps and proposes a classification of the full preprocessing
cycle to maximise the performance effectiveness.

Section 5 “Conclusion” closes the current survey.
References list the publications reviewed in this survey.

2. Background

According to OWASP, “code injection is the general term for attack
types which consist of injecting the code that is then interpreted/
executed by the application”.2 In this survey, the code injection attack is
understood as an intentional or unintentional use of the unforeseen
software functionality, caused by processing of valid or invalid mali-
cious input data. Code injection as an attack method is used by a mali-
cious actor to input malicious code and system commands into a
vulnerable point of entry in software (e.g., through the input field in a
web application or header in the request) and change the course of
execution. An algorithmic definition of code injection, that can be used
to conventional intrusion detection systems, has been updated and
improved by Ref. [6].

2.1. Code injection attacks

Code injection attack3 relies on the input of the code that can be
executed by a target program or an application. Code injection exploits
improper handling and lack of data validation, which may include
nonrestricted characters, data formats, or allocated memory space.

A malicious actor is constrained by the functionality of the language
of the application. For example, if a malicious actor is able to inject an
HTML code into a web application and it is stored in the page file, they
are only limited to HTML and JavaScript injections, that in some cases
can nonetheless be escalated to a remote command execution. Alterna-
tively, a malicious code can be injected into the data about the file or
into the command line through an application. Even though typically
mentioned in the context of web applications, the code injection attack
can target the application output or the memory used by the application.

The code injection attack can be split into two groups: Binary attack
and Source Code attack [7]. Most well-known types of the Source Code
injection vulnerabilities are the SQL injection, PHP injection, and
JavaScript injection. The code can be injected through visible or hidden
input fields, manually, automatically, or through uploaded or addressed
files. If the code is injected into the system command line, this attack will
be defined as the command injection. Binary Code injection can happen
via shell code injection into the executable file input and cause stack or
heap overflow.

2.1.1. Example: dynamic code evaluation vulnerability
When the PHP eval () function is used, it passes the untrusted data

that an attacker can modify, allowing for the code injection to be
possible. Take the code block:

2 https://owasp.org/www-community/attacks/Code_Injection.
3 https://owasp.org/www-community/attacks/Code_Injection.

S. Abaimov and G. Bianchi

https://owasp.org/www-community/attacks/Code_Injection
https://owasp.org/www-community/attacks/Code_Injection

Array 11 (2021) 100077

3

In the presented code the input validation is not present; thus, the
code above is vulnerable to a code injection attack.

An attacker can then take a step further and execute system com-
mands. With this condition, a code injection can also be used for com-
mand injection and further unauthorised access to the system (or a
virtual container) hosting the web application:

An attacker can use URL input field to inject a local or remote file:

In a similar way the injection can be performed on an already
compromised system, by supplying a malicious file to a process, in a
manner described in the Command injection example in Section 2.1.4.

2.1.2. Example: SQL injection
SQL Injection is possible through the input fields or URL. Take the

vulnerable code4:

Should the attacker succeed in injecting the query with the value 105
or 1 ¼ 1; then the already injected query inputSQL would look as fol-
lows:

The output should return a page In the by replacing “or 1 = 1”
statement with “DROP TABLE Users”.

4 https://www.w3schools.com/sql/sql_injection.asp.

S. Abaimov and G. Bianchi

https://www.w3schools.com/sql/sql_injection.asp

Array 11 (2021) 100077

4

The result that is going to be executed will delete the table named
“Users”:

2.1.3. Example: exif code injection
Exchangeable Image File Format (exif) data contains information

about the file: e.g., file source, creation and modification dates, GPS
coordinates, camera model, time, compression type, etc. In the vast
majority of cases, this data is present in every image or photo.

The created file (malicious_upload.png) can be renamed as mali-
cious_upload.php.png so the attackers can avoid basic defence mecha-
nism. After the upload is complete, the file has to be addressed:

The NetCat listener will receive the callback from the exploited
webserver. The requirement for this to be exploited is the PHP inter-
preted on the target webserver. Without the PHP interpreter, the NetCat
listener will still receive the reverse shell, but it will be to the attacker’s
own system.

2.1.4. Example: command injection
Take a simple main function, running as root, that executes a file

using system command, by accepting a filename from an argument:

This function can be used to display specific privileged data without
the need for the user to interact with the system with the elevated
privileges. As the entire program is executed with the highest privileges,
system() executes with the root privileges. As a user or another program
provides a legitimate filename, the call works as expected. If an attacker
passes an argument “filename; rm -rf/” (including quotation marks, to
ensure the entire string counts as a single argument). This way system(),
after executing command cat, will execute rm -rf/ with root privileges
damage the system. Alternatively, an attacker can pass “filename;/bin/
bash” and spawn a root shell.

2.2. Code injection defence

Code injection occurs when the application’s output has an altered
syntactic structure. Ray and Ligatti [6] argue that an algorithmic

definition of the code injection is not complete, as there are two other
cases that have to be addressed: code injection that does not alter the
output syntactic structure, and non-code injection attack that alters the
output syntactic structure. This complicates the detection of code in-
jection attacks using conventional methods.

Malicious code is not different from the non-malicious code at the
logical level, making it harder to detect using conventional non-machine

learning detection methods. According to the interpreter, everything
that goes into the input field is legitimate and can be processed with or
without an error.

It is commonly believed that the code injection can be detected via

signature recognition or via malicious access detection (e.g., canaries).
As a countermeasure that does not require detection, sanitation is a
technique of processing the input in such a way, that escape symbols
cannot be injected into the code of the application. Automatic tech-
niques, like input validation and input encoding, can be used for addi-
tional security; as well as output encoding can be used to prevent the
system from disclosing sensitive information (e.g., system version, er-
rors, successful injection output).

As a good practice, at the applications development stage the use of
vulnerable functions should be avoided, or, if used, this should be ac-

cording to the established secure development practices.5

The survey by Mitropoulos et al. [8] classifies 41 defence methods
against SQL injection, XSS, and other web application attacks, the ma-
jority of which do not use machine learning.

SQL prevention techniques include prepared statements with
Parameterized Queries, Escaping All User-Supplied Input, Hibernate
Query Language Prepared Statement (Named Parameters), Whitelist
Input Validation. As per [9] for the successful detection of an SQL in-
jection vulnerability in a web application, a set of conditions should be
met: 1) a path from an application input to a vulnerable function should
exist, 2) parametric functions are used, 3) an attacker can access the
result of a database query through feedback of the query propagation to

5 Secure development and deployment guidance, UK National Cyber Security
Centre, https://www.ncsc.gov.uk/collection/developers-collection.

S. Abaimov and G. Bianchi

https://www.ncsc.gov.uk/collection/developers-collection

Array 11 (2021) 100077

5

the leakage functions.
The general syntax of URI in RFC 2616 [10] defines the unsafe

characters that should not appear in benign queries. Queries that any of
the unsafe characters are considered to be malicious and require filters
to remove those queries, such as a filter, are proposed by Dong et al. (Y
[11]. For example, the XSS prevention techniques typically include
encoding of untrusted inputs with HTML, JavaScript, CSS, etc and
sanitation of Markup. There are also anti-XSS headers available for
additional security.

In general, the techniques for query languages, compiled languages,
and network protocols, provided by OWASP,6 include input validation,
safe APIs, and context escape of user data. To visually illustrate the
process of code injection prevention, Ray and Ligatti compare a basic
algorithm in pseudocode with their own approach [6].

The machine learning intrusion detection, to be effective against the
code injection, should consider its above-mentioned specificities and
adjust relevant steps to maximise effectiveness.

3. Machine learning application for the code injection detection

The machine learning approaches can be presented as supervised
(Regression and Classification), unsupervised (Clustering and Density
estimation), semi-supervised and reinforcement learning.

Bishop defines [12] the supervised learning as applications in which
the training data comprises examples of the input patterns of values
paired with their corresponding output values. Goodfellow et al. define
the unsupervised learning [13] as a process where the algorithm must
learn “to make sense of the data without [the] guide”. Semi-supervised
learning contains the mixed characteristics of both, while the rein-
forcement learning is an intrinsically different type of machine learning
[14]. In the reinforcement learning, the learner is not provided with any
information about the actions to take, but instead must discover which
actions yield the most reward by attempting them.

In the context of machine learning application to cyber security, the
mindmap of anomaly detection methods for the web and HTTP attacks
has been presented in publications (Y [15]. Out of those methods, deep
learning is the one that is most commonly applied in detecting the
code-related vulnerabilities. It is applied to such types of artificial neural
networks as deep neural networks (DNN), deep belief networks (DBNN),
recurrent neural networks (RNN) and convolutional neural networks
(CNN) [16]. For example, Gu et al. [17] present a comprehensive survey
on the advances in the CNN architecture and techniques. Meanwhile, the
code injection chaining would require time distributed analysis, and will
have to use RNN or even long short-term memory (LSTM).

The survey by Nagpal et al. [18] presents machine learning for the
SQL injection detection. The authors review all the existing SQL

injection attack types and their detection approaches, methods and
tools, including the pre-deployment detection of vulnerable code in web
applications. In 2019, Mitropoulos et al. [8] published a survey,
reviewing methods of the web application attack detection, which
included a class of hybrid approaches, some of which were based on
machine learning (e.g., AMNESIA).

With relation to the tools, one of the first commonly presented
publications on the SQL injection detection using deep learning was
released in 2005. It outlined the methods to detect the SQL injection
attacks using neural networks and the tool was named AMNESIA [19].
Cai et al. outlined the method of transformation of the Natural language
into the SQL queries using DNN. Both of those publications also detailed
preprocessing of the input data and queries. Cheon [20], who also
researched the SQL injection attack detection, this time using Bayesian
classifier, approached preprocessing though the dataset randomisation.

Uwagbole et al. [21] trained the support-vector machines (SVM)
classifier to detect whether SQLIA is present in a web request. To train
the model to a high performance, the authors present an algorithm with
the dataset items input of the labelled class. It is also one of the few
publications that provide insight into the real-life implementation of the
SQL injection detection, using a proxy intercept web requests and
analising them using the classifier.

In their survey Alwan and Younis [22] list and classify the ap-
proaches and methods of the SQLIA detection. The authors claim that
none of the enumerated tools addresses the issues of the more recent
types of SQLIA, e.g., fast flux SQLIA. In the advanced cases of non-typical
injections, the data preprocessing can assist in successful detection.

Valeur et al. [23] proposed a method to identify queries that did not
match multiple models of typical queries at runtime. As this was one of
the early methods, it did not reach accuracy as high as modern ap-
proaches do, however the method has shown the potential of deep
learning in malicious query detection.

In addition to the works, published in 2005 and 2007, and classified
in Ref. [22] we add the methods from the publications that specifically
define the machine-learning-based methods, used for the code injection
detection. Table 1 presents this list.

The above list shows that there is a variety of machine learning
methods applied to the code injection detection. The majority of the
methods are supervised, with a half of them being deep learning
methods, such as CNNs. The deep learning methods demonstrate
themselves as more versatile, allowing to analyse 2D, 3D or 4D data
using convolution (CNN), or LSTM, as they keep memory of the previous
items from the dataset or network sessions. Detecting time-spread ma-
licious behaviour can trigger intrusion prevention mechanisms and
improve overall security of the application.

The machine learning approaches vary and the most widely used of
them are reviewed below from the perspective of their use for the code
analysis and intrusion detection.

3.1. Supervised learning

Supervised learning requires a dataset with marked samples that has
to be collected and labelled for the optimal performance of the IDS. In
the case of the code injection, the data set should contain both malicious
(code injection queries) and non-malicious samples (benign queries).

Among the multiple types of models, there are Support Vector Ma-
chines, Deep Neural Networks, Decision Trees and Random Forest,
Naïve Bayse, etc. In the reviewed publications, two of these models
received a wider coverage.

Support vector machines (SVMs) are supervised learning models
with the associated learning algorithms that analyse the data used for
classification and regression analysis. For the code injection detection,
SVMs were applied by Dussel et al. [24] and Dong et al. (Y [11].

Deep Neural Networks (DNN) is an artificial neural network that has
layers between the input and output layers. For example, Cai et al. [25]
use CNN and RNN, while Yan et al. [26] propose their own Hybrid Deep

Table 1
Code injection detection methods based on Machine Learning.

Year Paper Learning Language

2005 AMNESIA [19] NDFA SQL
2007 Swaddler [35] libAnomaly PHP
2008 [24] OC-SVM PHP, SQL
2009 [30] Clustering SQL
2013 [20] Bayesian SQL
2017 HDLN [26] Hybrid JavaScript
2017 [25] CNN, RNN SQL
2017 AMODS (Y [11]. SVM SQL, XSS
2018 DeepXSS [28] LSTM XSS
2018 WIRECAML [44] DT, RF, LR, Naïve Bayse, TAN SQL, XSS
2019 [33] Autoencoder SQL
2020 [74] CNN, RNN, DT, RF SQL
2021 [81] MLP, CNN SQL

6 Injection Prevention Cheat Sheet, OWASP, https://cheatsheetseries.owasp.
org/cheatsheets/Injection_Prevention_Cheat_Sheet.html.

S. Abaimov and G. Bianchi

https://cheatsheetseries.owasp.org/cheatsheets/Injection_Prevention_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Injection_Prevention_Cheat_Sheet.html

Array 11 (2021) 100077

6

Neural Network (HDNN) using multiple hidden layers in order to ach-
ieve better accuracy of their system in a supervised setting. CODDLE
[27] is tested using multiple types of DNN separately, while Fang et al.
[28] use only LSTM.

More deep learning methods for intrusion detection have been
reviewed in detail by Ferrag et al. [29].

3.2. Unsupervised learning

Unsupervised learning (also known as clustering) does not require a
labelled data set and allows the system a higher level of independence in
pattern recognition, leading to a higher level of autonomy. The main
area of application of unsupervised learning in cyber security is anomaly
detection through behavioural analysis (e.g., user and machine network
activity).

Alternatively, unsupervised learning can be used for malformed code
detection, which can be only insured with an adequate preprocessing.
Thus, the learner can distinguish the difference between malicious and
non-malicious queries or code strings. In other words, without sufficient
preprocessing, the machine learning method will not be able to cluster
patterns of symbols and detect any distinct difference between two
(malicious and benign) queries. For example, Bockermann et all [30]
applied clustering techniques to the SQL injection detection.

In the pursuit of the deeper understanding of DNN, the autoencoders
were introduced. Autoencoder is a symmetric DNN trained to have a
target value equal to the given input value [31]. Autoencoders consist of
two DNNs, encoder and decoder, and can be easily applied to resolve the
problem of data compression (e.g., in the image and video recognition,
large data transfer, analysis of specific types of cyber attacks).
Furthermore, autoencoders allow the researcher to input raw data,
including software code and scripts. For instance, Pan et al. [32] pre-
sented a method of detection of attacks on the web applications based on
the Robust Software Modelling Tool (RSMT), which analyses the call
traces as runtime behaviour of web applications. RSMT uses an
autoencoder for analysis and call graphs as data. In RSTM (F. [33], used
by Pan et al. a smaller amount of the labelled data is used to calculate
reconstruction error of the autoencoder and establish a numeric value
(threshold) to distinguish between normal and abnormal behaviours.

Clustering can arguably be more efficient than the supervised
learning for the detection of previously unknown attacks.

3.3. Reinforcement learning

As per [14], reinforcement learning is the learning of a mapping from
the input situations (events) to the output actions so as to maximise a
measurable reward or the reinforcement signal. In practice, it is a
reward-based system, that works as a semi-supervised approach to
learning. The machine-learning-based system learns from the environ-
ment and gets rewarded for correct predictions, and penalised for
incorrect predictions.

To the extent of our knowledge, there have not yet been any appli-
cations of the reinforcement learning to the code injection detection, as
its successful applications to intrusion detection have started only
recently. In 2020, Lopez-Martin et al. [34] presented a survey on the
application of reinforcement learning to the issues of network intrusion
detection in general. They state that for the code injection detection,
reinforcement has to be limited to only one numeric reinforcement
value, i.e. successful detection.

3.4. Adversarial approach and datasets generation

Most of the reviewed publications confirm that the scarcity of the
datasets remains one of the biggest issues for machine learning in cyber
security, which has been also confirmed in the recent survey by Ferrag
et al. [29]. Finding a suitable dataset for a specific type of cyber attacks
is a complex task. With many datasets already developed and emerging

sophisticated attacks, bigger and more comprehensive datasets are
required on a daily basis. More often than not, the acquisition of code
injection training samples requires a manual dataset composition. Data
can originate from a variety of collection methods, which can be as
follows:

• Manually collected from tutorials and public access (e.g, Cheat
Sheets, GitHub, “hacker challenge” websites, etc.)

• Honeypot logs
• Payloads and recordings of the automatic tools (e.g., SQLmap,

SQLninja, OWASP Xenotix XSS Exploit Framework, XSSer, Meta-
sploit Framework, etc.)

• Publicly available data sets (e.g., CIC IDS, NSL-KDD, etc.)
• Sample generation methods, like Generative Adversarial Network (e.

g., PyGenerator7).

A variety of automated tools can be used for data collection. For
example, for he event collection Cova et al. [35] use modified Zend
engine. Aceto et al. [36] collected data from a mobile service provider
and from various applications on Android devices, which resulted in a
binary dataset that was published by Yao et al. [37]. After collection or
generation is complete, the raw data has to be preprocessed and then
features must be extracted to transform any type of data into a numerical
form that can be analysed during future stages.

To date, one of the most popular datasets in cyber security is
KDDCUP′998. It has been analysed by a large number of researchers for
many types of cyber attacks and machine learning implementations. For
example, using that dataset Li et al. (Y [38]. proposed a method based on
autoencoders and deep belief network, with the final accuracy up to 92,
1%. Autoencoders were used for query processing in the presented
hybrid malicious code detection scheme based on AutoEncoder and
Deep Belief Networks. Preprocessing for KDD has been reviewed in
detail by Molina-Coronado et al. [39].

In the context of code injection attacks, collection of benign and
malicious queries can yield a limited number of samples, that is insuf-
ficient for the effective model training. Generation of new datasets from
the existing data can resolve this challenge. A trend in the recent years
shows the use of Generative Adversarial Networks (GAN), however,
there are multiple ways to successfully generate new samples from the
existing ones.

One of the issues with the generative approach (using GAN or any
other algorithm) is related to the generation of the working samples. For
example, in the image recognition setting the difference in images might
be infeasible, while in the network intrusion setting, not all generated
malicious samples can be successful attacks.

Adversarial inputs created by introducing permutations of patterns
from the already existing datasets can easily subvert their predictions.
The 2017 report by Biggio et al. [40] highlights common misconceptions
related to the evaluation of machine learning methods and approaches
for security applications.

3.4.1. Dataset generation
When the data is insufficient for the DNN adequate training, the

researchers might seek to collect a bigger dataset, or to generate addi-
tional data from the already existing dataset by adding permutations in
specific values.

Cheon et al. [20] develop their own way of generating samples based
on the existing query templates, by randomising numbers, usernames,
passwords, email addresses, etc. Edalat et al. [9] outline the dataset
generation approach to multiply the number of malicious samples using
concolic input generation [41].

7 Isao Takaesu, PyGenerator, GitHub, 2017, https://github.com/13o-bbr-bb
q/machine_learning_security/tree/master/Generator.

8 https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html.

S. Abaimov and G. Bianchi

https://github.com/13o-bbr-bbq/machine_learning_security/tree/master/Generator
https://github.com/13o-bbr-bbq/machine_learning_security/tree/master/Generator
https://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

Array 11 (2021) 100077

7

Uwagbole et al. [21] explored the generation of a new dataset using
the known attack patterns, such as SQL tokens and symbols present
during the injection process.

Unlike in the SQL injection, generating the entire traffic units is a
more sophisticated task. The definition of a specific traffic object de-
termines how the raw traffic is segmented into multiple traffic units [42]
and presented as different types of traffic. The publications describing
the application of deep learning for the traffic analysis9 [43–45]
considered either flows or bidirectional flows as an object of classifica-
tion, with the exception of Lotfollahi et al. [46], where the object of
classification is the single packet.

In all the above cases, instances can occur that are longer or shorter
than the considered fixed-length data inputs. In such cases, longer in-
stances are truncated to the designed length of bytes or packets, whereas
in the case of shorter instances, padding is applied in the majority of the
surveyed works.

Generated code injection payloads can be used for the development
of IDS, but can be also used to design advanced attack frameworks and
fuzzers, that can bypass the most complex conventional filters and IDS.

Some datasets can be large in size, and universities and research
centres provide the already pre-processed datasets and pre-trained
models for further research (e.g., University of New Brunswick10).

3.4.2. Non-machine learning samples generation methods
There also exist the non-machine learning based methods that

include fuzzing for the attack generation and testing of the experimental
system. They can also be used to create a dataset, that is usually stored in
text files or database files. One of the most popular tools in fuzzing SQL
databases is SQLmap,11 presented by Damele and Stampar. SQLmap is
now a part of the majority of the existing security testing toolkits and
operating systems. This non-machine learning toolkit can be used for the
attack generation to test prototype systems against real life attacks.
Cheon et al. [20] use SQLmap for the evaluation of their method. Edalat
et al. [9], while also researching the SQL injection detection, instead of
machine learning methods, use taint analysis for the evaluation of their
ConsiDroid.

The automatic scripts, toolsets, and virtual networks can be used for
the attack sample generation. Tools like TCPReplay can be used to
emulate the traffic activity from an already existing *.pcap file. Taken a
step further, to generate a CICIDS2017 dataset,12 the University of
Brunswick used a Virtual Machine with Kali Linux as an attack station.
The network traffic was recorded during several days of simulations on a
virtual network. After that, the IP addresses were removed from the
dataset (CSV file), anonymizing the data. The newer versions of 2018
and 2020 are also available.

3.4.3. Increasing complexity of samples
Using the adversarial approach, it is possible to create additional

permutations and multiply the dataset, increasing the number of sam-
ples and improving the detective capabilities of the IDS. However, in
real-life attacks, the malicious actors can use sophisticated techniques to
avoid simple IDS. To be able to detect more sophisticated malicious
queries, generative adversarial approach can be used to increase the
complexity of code samples, both malicious and non-malicious.

Salgado [47] outlined the techniques to optimise and obfuscate
SQLIA, providing insight on how to potentially generate the dataset of

advanced SQLIA for training of neural models for IDS. To the extent of
our knowledge, there are no public mentions of this method application,
even though it has promising results for the generation of adversarial
code injection samples.

3.4.4. Machine learning for attack simulation
Machine learning application for dataset generation vary from

sample multiplexing using the existing smaller datasets to various attack
simulations [40] and synthetic payloads [48].

Kreuk et al. [48] introduced an approach for generating adversarial
samples for the discrete input sets, such as binaries. The functional
malicious binaries are modified by introducing a small sequence of bytes
to the binary source file. The modified files are then detected as benign
by the IDSs, while preserving their malicious features. The approach was
applied to an end-to-end CNN malware detector and presents a high
evasion rate. Their research also showed that generated malicious
payload can be placed in different positions of the same file and across
different files.

Russell et al. [49] propose an adversarial learning approach without
requiring paired labelled examples or source and target domains to be
injections. They compare their method to the other approaches that
require labelled pairs, and report almost similar performance.

As an example of a specific vulnerability, addressed by the Adver-
sarial Machine Learning approach, we can mention the Return Oriented
Programming (ROP). The ROP attack is an exploit technique (usually
based on the buffer overflow vulnerability) that allows an attacker to
execute code in the presence of security defences such as executable
space protection and code signing. Li et al. (X [50]. present Ropnn,
which uses the address space layout guided disassembly and DNNs to
detect the ROP payloads in HTTP requests, PDF files, and images. The
disassembler treats the input data as code pointers. The reported
detection rate of such approach is 98.3% while using the adversarial
dataset. Sun et al. (Y [51]. conducted a research in the injection attacks
for the visual data using reinforcement learning. The research is not
directly related to the code injection and cyber security, yet it provides
insight into the possibilities and methods of injecting any data into the
approach.

Adversarial approach can also create a dataset of attack recordings,
that have not been publicly used yet. For example, a time of evasion
attacks has been presented by Biggio and Roli [40,52], as well as a few
common misconceptions, highlighting the vulnerability of machine
learning detection and classification algorithms to new attacks.

3.5. Parameter fine-tuning

Parameter fine-tuning is an important step in machine learning. It
can be defined as the adjustment of parameters of the model for optimal
performance. A parameter or a hyperparameter is a value that impacts
the learning process. Every machine learning method has a set of such
(sometimes unique) parameters. For example, Artificial Neural Net-
works (ANN) have different layers of different types, number of neurons,
activation functions for each layer, optimisers, loss function for the
output layer, batch size, and number of epochs. Tuning hyperparameters
aims to improve the speed of and overcome the limitations of small
datasets [53].

Truncation: One of the methods is to truncate the output layer of the
already trained ANN and replace it with another layer with same acti-
vation that is directly relevant to a selected problem.

Learning rate: Many methods have a variable parameter called
“learning rate”, that can be increased to improve the speed of learning,
or reduced to solve the issue of model overfitting in certain cases.

Freezing the weights: In addition, the weights of the initial few layers
of a DNN can be fixed or frozen, as they represent the curves and edges,
pre-trained for a particular task. After this is done, “frozen” weights do
not change, and the network will only readjust the weights of the sub-
sequent layers, relevant to a specific dataset.

9 https://www.blackhat.com/docs/us-15/materials/us-15-Wang-The-Appli
cations-Of-Deep-Learning-On-Traffic-Identification-wp.pdf.
10 Intrusion Detection Evaluation Dataset (CICIDS2017), University of New

Brunswick, https://www.unb.ca/cic/datasets/index.html.
11 Bernardo Damele, A.G., Stampar, M.: Sqlmap: automatic SQL injection and

database takeover tool, 2012, SQLmap, http://sqlmap.sourceforge.net/.
12 Intrusion Detection Evaluation Dataset (CICIDS2017), University of New

Brunswick, https://www.unb.ca/cic/datasets/index.html.

S. Abaimov and G. Bianchi

https://www.blackhat.com/docs/us-15/materials/us-15-Wang-The-Applications-Of-Deep-Learning-On-Traffic-Identification-wp.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Wang-The-Applications-Of-Deep-Learning-On-Traffic-Identification-wp.pdf
https://www.unb.ca/cic/datasets/index.html
http://sqlmap.sourceforge.net/
https://www.unb.ca/cic/datasets/index.html

Array 11 (2021) 100077

8

The tunability of machine learning hyperparameters has been
reviewed and calculated by Probst et al. in Refs. [54,55], as well as in
Ref. [56]. Hyperparameter fine-tuning can be done automatically using
programming libraries and built-in functions, such as Keras Tuner.13

Fine-tuning is also accessible via online services like Comet. ml,14

OpenML,15 and Weights&Biases.16

Literature review revealed that the process of machine learning has
been widely covered in modern publications. Among the most broadly
reviewed areas are the machine learning general approaches, algo-
rithms, training, post-processing and result visualisation methods (e.g.
Refs. [3,29,57–59]). However, the data preprocessing has been the least
researched, especially in the area of the Network Intrusion Detection. It
is at the same time one of the most critical and labour and time
consuming steps (over 50% of total effort) within the entire data analysis
process [1,2]. The next Sections will provide an overview of the pre-
processing methods and their application, and will highlight its critical
role in enhancing detection.

4. Critical role of preprocessing in the detection rate
enhancement

Preprocessing is the process of data transformation and its conver-
sion into another form, that aids the neural network with the learning
process. It changes the initial data in such a way that it allows the ma-
chine learning algorithms to analyse the data. Preprocessing can include
any process that involves data manipulation before the correlation
process (using machine learning or any other algorithm), and task-
specific, as the architecture of the neural networks can be tailored for
detection (of any type), classification (detection and attack identifica-
tion), or clustering. For example, it can include data cleaning and
refinement (filtering, reducing, reshaping, encoding, etc), handling
missing attributes, imbalanced dataset and elimination of noise or

outliers.
Chitraa and Davamani [60] define preprocessing as a series of pro-

cessing of web log file covering data cleaning, user identification, ses-
sion identification, path completion and transaction identification.
Tomar and Agarwal in their survey [3] define preprocessing as a step,
that is used to enhance the reliability of the collected data. Some authors
(e.g. Ref. [61]) never actually use the term “preprocessing”, instead they
use the term “parcing” for that stage, in some cases completely replacing
the entire process with automated libraries (e.g., ScaPy).

The revision of the selected academic publications revealed a wide
variety of diverse preprocessing methods, that need to be summarized
and classified for effective use in intrusion detection. The way in which
the input data is pre-processed (cleaned, reduced, reshaped, encoded,
etc.) significantly influences and affects the performance of the machine
learning techniques employed to detect code injection attacks. For
example, some of the features in the data set may be random in nature
and corrupt the output results, or, similarly, may be more impactful and
introduce biases.

For the purpose of this survey and based on the reviewed publica-
tions, we propose to subdivide preprocessing into the data pretreatment
followed by the actual data treatment consisting of feature-based and
encoding-based preprocessing as two different ways of data optimisation
and transformation.

The following subsections will address in more details the Data
Pretreatment, Feature-based and Encoding-based preprocessing and
highlight their specificity in relation to the intrusion detection

Fig. 1. Data pretreatment methods. Source: authors.

Table 2
Classification of Tokenization in data pretreatment.

Classification List

Start Label <script>,<frame>,,<body>,etc
End Label </script>,</frame>,</body>,etc
Windows Event onerror = , onload = , onblur = , oncut = , etc
Function Name alert (, prompt (, String.fromCharCode (, etc
Script URL javascript:, vbscript:, etc
Others >), \#, etc

Source [28].

13 Keras Tuner, https://keras-team.github.io/keras-tuner/.
14 https://www.comet.ml/site/.
15 https://www.openml.org/.
16 https://wandb.ai/site.

S. Abaimov and G. Bianchi

https://keras-team.github.io/keras-tuner/
https://www.comet.ml/site/
https://www.openml.org/
https://wandb.ai/site

Array 11 (2021) 100077

9

effectiveness. This will be followed by summarising and classifying how
different machine-learning-based code injection attack detection tech-
niques take advantage of (or rely upon) different input data pre-
processing techniques.

4.1. Pretreatement

Pretreatement may be defined as the process of preparing raw data
for any further manipulations and correlations, including its cleaning
and creating a database. This process follows the input data collection,
that once selected for the dataset, has to be composed and prepared for
the neural network to train on.

Following the literature review, we present the following classifica-
tion of the pretreatment methods currently in use (See Fig. 1).

Pretreatement can include several or all of the following steps:

• Remove Null, NaN and Inf
• Remove incomplete information
• Remove duplicates, as they make neural model biased
• Remove inputs with different outputs
• Reshape (e.g., numpy array reshape)
• Balance (to make the neural network unbiased)
• Shuffle (many datasets are sorted, and before splitting they can be

randomly shuffled for the experiment)
• Split on training and testing
• Split the training dataset further, if a neural network is analised for

incremental learning, or multiple neural networks are trained for
ensembles.

• Labelling may complete the pretreament process with the subsequent
data classification and creation of the dataset.

It is worth noting that pretreatment does not involve any trans-
formation of the data values. In specific cases some steps of pretreatment
might be repeated after the feature-based and encoding-based pre-
processing as well. For example, in the cases when the data cleaning
(pretreatment), and its further encoding (preprocessing), produce du-
plicates, those have to be removed again (pretreatment).

Dong et al. (Y [11]. mention data normalisation, that may reduce the
number of samples, by techniques, such as decoding the ASCII charac-
ters, transforming to lowercase, un-escaping, removing queries whose
length is less than four symbols, etc. After such normalisation, the
initially different queries may become identical, as the distinguishing
items were removed. However, transformation like this might be irre-
versible. For example, Valeur et al. [23] replace certain values in the
query white spaces. When queries with different values but similar
structures are pretreated using this method, they become similar or even
duplicates. With an approach like this it may be impossible to backtrack
the event record and identify the origin or condition of the attack.

Deep learning is considered to be the most advanced technique and
effective against the sophisticated attacks and constantly evolving attack
vectors [29]. One of the earliest attempts to specifically detect code
injection attacks (specifically SQL injections) using deep learning was
AMNESIA, a method developed in 2005 by Halfond and Orso [19]. The
entire preprocessing was similar to the one used by Gould et al. [62],
except the use of NDFAs in AMNESIA instead of DFAs.

Cova et al. [35] use a modified Zend engine to perform a linear scan
of the sequence of statements, that identifies the corresponding basic
blocks in the SQL queries, and associates a unique ID with each of them.

In the method, suggested by Valeur et al. [23], the “event provider”
forwards queries to the parser (pretreatment) that feeds it to the feature
selector (preprocessing). The parser processes each incoming SQL query
generating its high level-view. The parser outputs this representation as
a sequence of tokens. Constants are the only elements of an SQL query
that should contain the user supplied input. Thus, each token is meant to
have a flag which indicates whether the token is a constant or not. To
form a dataset, tokens representing database field names are augmented

by a datatype attribute (e.g., varchar).
Abdulhammed et al. [63] apply a “preprocessing function” (pre-

treatment, according to the presented classfication) to the CICIDS2017
dataset by mapping the IP address. The mapped IP includes the Source IP
Address (Src IP) as well as the Destination IP Address (Dst IP). As IP
addresses cannot be processed by any classifier without pretreatment,
they are converted either to a decimal format, or to assigned relevant ID
numbers.

As an example of a successful data preprocessing, Dong et al. (Y [11].
use the logs (6.11 Gb) where during pretreatment, that included
cleaning, normalisation, and filtering, the data effectively reduced in
volume by 4 times while ensuring its high quality. Another example of a
complete data preprocessing is the above-mentioned CICIDS 2017
dataset, which is reduced from 50 Gb of pcap files to less than 1 Gb csv
file with all the features describing bidirectional traffic flow.

4.1.1. Extraction of data
The pretreatment begins with the data extraction from the collected

data. Jayaprakash [64] presents a survey on the data pretreatment using
web logs as a source of data. Their key steps are as follows:

• Data Cleaning
• User Identification
• Session Identification
• Path Completion
• Transaction Identification

Source data can be extracted from event history and system logs. For
example, Jovanen et al. [65] acquired the log files containing textual
data (strings) describing requests sent from the user to the server.
N-gram analysis (See Section 4.3) is used for extracting meaningful
features from the data, which means that in the pre-processing phase,
textual logs are transformed into numerical matrices to facilitate the
subsequent analysis phases. Dong et al. (Y [11]. examine the Web server
logs to collect successful GET requests: requests with the return code
that is equal to or greater than 200, and less than 300. Then, static re-
quests (e.g.,.html,.wav,.txt,.jpg) are removed. Finally, the remaining
successful GET requests are parsed to extract queries like parameter1 =
value1¶meter2 = value2. Dong et al. claimed to achieve 94.79%
accuracy.

Dussel et al. [24] introduced a payload-based anomaly detection
method through adding structural information from a protocol analyser,
with the detection of SQL and PHP code injection attacks. The goal of
that particular research was to analyse the network traffic based on the
grammatical characteristics of an underlying protocol.

The event history (logs) is usually combined in a log format, which
includes the system activity information. For examples, web servers
collect information about the connections and data transferred (e.g, IP
address, timestamp, the actual HTTP request, Apache server response
code and user agent header field) [65]. These logs might contain several
actual intrusions, especially inside the HTTP requests that are not static,
i.e., they contain dynamic parameters that depend on the user input.

Meanwhile, Fang et al. [28] focus on generalisation and tokenization
for pretreatment. Their DeepXSS uses a series of customizing regular
expressions based on the features of the scripting language to tokenize
the input data. The classification of the tokenization is presented in
Table 2. DeepXSS relies on Word2vec,17 a deep learning tool released by
Google in 2013.

As per Uwagbole et al. [21], creating a dimension to accommodate
the size of data by selecting the next hashing bits, that fit the dataset, can
sometimes generate too much dimension and sparse data which are
reduced by a filter-based featured selection, that leaves only top relevant
vectors. The filter-based selection is used to achieve the reduced

17 word2vec, Google, 2013, https://code.google.com/archive/p/word2vec/.

S. Abaimov and G. Bianchi

https://code.google.com/archive/p/word2vec/

Array 11 (2021) 100077

10

computation complexity without affecting the prediction accuracy in the
classification process. In their work, the Chi-squared scored function is
used to rank the top 5000 hashing features in descending order to return
the most appropriate labels to improve the SQLIA prediction accuracy.

Yan et al. [26] extract all JavaScript code written by developers
(JavaScript libraries like JQuery are excluded) in the application to
create their dataset.

It is worth mentioning beyond the scope of our research, that before
the pretreatment stage the collected data has to go through a quality
check and proofing. Ehrlinger et al. [66] identified 667 tools to evaluate
the data quality and composed a review of ways to measure data quality,
clean it, and monitor.

4.1.2. Cleaning
The removal of values that cannot be processed is a tedious process

that can delay the research.
It is generally accepted, that removing duplicates reduces the size of

dataset and reduces bias from the training process. If the dataset con-
tains many duplicates, with a single training pass the DNN “sees” the
same sample multiple times, each time readjusting the function.

Some programming and scripting languages have built-in or loadable
functions for this step (e.g., R, Numpy in Python), however, out-of-the-
box functions do not always work, and at the present stage the cleaning
solutions have to be scripted manually.

The above-mentioned scripts aim to identify the values that match or
do not match a specific regular expression, detect new lines to form
database rows, and then remove duplicating data, if necessary. Values
such as “NaN”, “Infinity”, or unmatching value type can be either
completely removed during this step, or transformed into a numeric
value during the encoding-based preprocessing stage.

Tomar et al. [3] present a notion of dirty data. They review the
methods of handling the missing attributes in dirty data (filter-based
method, imputation method, and embedded method), also the methods
of handling noisy data.

Jayaprakash [64] extracts data from the web logs by using commas
and quotation marks as separators, thus, removing them, for example,
using spreadsheet software [64,67], and by this shaping data into a
matrix.

In their experiment, Dong et al. (Y [11]. collect successful GET re-
quests. They subsequently remove static requests (e.g.,.html,.wav,.txt,.
jpg), and finally, the remaining successful GET requests are parsed to
extract queries like parameter1 = value1¶meter2 = value2.

4.1.3. Unification
In this paper we present the data unification as the data trans-

formation into a similar form. For example, if the mass media dataset
contains a first name that is followed by a surname, it should be the case
for every single cell in the dataset. Specific to code injection, values

should be of specific type (e.g., some python libraries have issues with
processing float32 and float64 together, even though both are the same
numeric values).

In deep learning some neural networks (e.g., CNN) require rows with
data to be the same length, thus, empty cells have to be filled with zeroes
or other values, that represent an empty slot.

Fang et al. [28] pre-treat data by following specific steps: replace the
various URLs in the input data with “http://website”; replace the
numbers in the input data with “0”; replace the string as the function
parameters with “param_string”. In addition, other special characters
such as blank characters or control characters are removed. As per Dong
et al. (Y. [11], data normalisation helps tighten the input space,
including the decoding printable ASCII characters, un-escaping, trans-
forming to lowercase and removing queries whose length is less than
four items. After normalisation, initially different queries may appear
identical, similar to the approach by Fang et al. [28]. The identical
duplicates are then removed.

4.1.4. Balancing
Another important factor for a high-quality data is its balanced

representation meeting the requirements of the set parameters. Let the
dataset contain 80% of malicious samples and 20% benign samples (e.g.
Ref. [21]). If the neural network predicts all the queries in the dataset as
1, the statistics will calculate the accuracy of the detection rate as 80%.
To avoid biases in statistical calculations, and if the dataset allows it, it is
advised to have the equal amount of malicious and benign samples.
Though in practice, the script would simply compare the size of two
subsets (benign and malicious) and remove (randomly or as per a spe-
cific logic) the excessive rows.

The issue of imbalanced datasets is discussed by Chawla et al. [68]
who provide insight into solutions to over-sampling and
under-sampling. They use multiple imbalanced datasets for their
experiments.

Tomar et al. [3] suggest the sampling method and algorithm
adjustment, to address the issues of imbalanced datasets.

Even though there are methods, like Synthetic Minority Over-
Sampling Technique (SMOTE), for a guided methodological sampling,
it is still advised to manually balance the dataset, before the evaluation
in experiments sensitive to statistics.

Uwagbole et al. [21] balanced their dataset items and in their
experiment these actions improve both the trained model recall and
precision.

However, in the real-life systems the malicious and non-malicious
traffic are never balanced, and developers of defence systems have to
use machine learning methods for non-balanced dataset preprocessing.

4.1.5. Sampling and splitting on training and testing sets
In the method proposed by Uwagbole et al. [21], the text

Fig. 2. Dataset feature labelling procedure. Source: [21].

S. Abaimov and G. Bianchi

http://website

Array 11 (2021) 100077

11

preprocessing involves a regular expression pattern matching. The
imbalanced data set was corrected with the Synthetic Minority
Over-Sampling Technique (SMOTE) by Chawla et al. [68] to have a
dataset split equally as malicious and benign. These actions have proven
to increase the trained model recall and precision.

Most commonly used dataset splitting proportions are 80/20 (e.g.
Ref. [68]) or 70/30 (e.g. Ref. [63]), which can be implemented through
scripts, spreadsheet software or otherwise using functions from the
programming libraries (e.g., SciKit).

4.1.6. Labelling and classification
For the supervised learning the data has to be labelled as well as

marked. That is more a requirement, than an improvement, thus it is a
part of pretreatment. However, if it is possible to classify an attack in a
broader way then just a binary classification (benign or malicious), that
might either increase or reduce the overall precision, on the case-specific
basis.

The basic way to mark the dataset for code injection detection is “0′′

or "-1′′ for the benign traffic or “1′′ for the attack, based on the activation
function (e.g., Sigmoid or Tanh). For the code injection classification,
the types have to be encoded in a sequence of ones and zeroes (e.g., [1 0]
for SQL injection and [0 1] for XSS).

Once the data is shaped and is already in a database or a text file, it
can be transformed into a format that can be readable by the neural
networks.

Uwagbole et al. [21] label the dataset using the algorithm presented
in Fig. 2.

Another example is the work of Gao et al. [69], who use the NSL-KDD
dataset and mark the normal traffic as 0, DoS as 1, Probe as 2, etc.

4.1.7. Negative impact of pretreatment
There are a few warning messages with regards to the data pre-

treatment that have been identified through the literature review.
During the pretreatment step, the data may be prepared in ways that
may contain programming biases, resulting in a poor performance of the
system. For example, during balancing the intuitive solution would be to
remove the random values from the dataset. However, removal of se-
quences at random may lead to the removal of patterns with a high
impact on the learning process, and leave only more complex cases,
which require more training to be identified.

Shuffling the dataset in an uneven manner would result in a biased
statistics, similar to the bias in an unbalanced dataset training.
Furthermore, splitting dataset 50/50 as compared to 80/20 in an un-
balanced way may increase that bias. For example, if the training dataset
contains only non-malicious samples, the model will not be able to
detect malicious samples during the testing phase.

Padding incomplete information, instead of removing, it is a com-
mon practice, yet it may result in a poor performance, as the neural
networks may ignore certain features entirely.

After the entire data preparation process is complete, the dataset may
contain additional unintended duplicates, as a result of feature extrac-
tion and encoding. Thus, it is advised to perform additional checks for
duplicates at the end.

4.2. Feature-based preprocessing

In this survey, we propose to single out a feature-based preprocessing
as a separate step to form a dataset. Its function is to select, extract, or
generate features. Selecting the right features for a particular task can
improve the performance by reducing the amount of noise and
randomness, as well as minimising complexity and generally reducing
the amount of data required for effective analysis. The raw data may
already have them but, more often, needs features to be calculated. For
example, the number of packets in a single session is a feature that has to
be counted. These values can be further used to generate an average
payload size in a session as another feature. To be able to detect an
attack, with a sufficient number of features, there is no need for the
analysis of the payload data.

“A Comprehensive Survey on Data Preprocessing Methods in Web
Usage Mining” outlines the ways of data processing from web logs [64].
This approach is further enhanced in a survey by Ramirez-Gallego et al.
[2], that also outlines dimensionality and instance reduction techniques
for the data mining.

4.2.1. Use of a feature-based preprocessing
Feature-based preprocessing is used for refinement and enhancement

of data though the following:

Fig. 3. Fearure-based preprocessing and sources of data. Source: authors.

S. Abaimov and G. Bianchi

Array 11 (2021) 100077

12

• Removing excessive data and minimising the volume of data - to
emphasize only relevant values, and disregards irrelevant ones
completely (e.g., turn pcaps into lists of sessions).

• Replacing specific data - (e.g., to reduce or increase the number of
variations of the same value)

• Enhancing random data with additional knowledge - to add addi-
tional values, with information about the other values, thus
increasing the overall knowledge of the data.

• Highlight specific features to study their correlation.

As per our proposed classification, the feature-based preprocessing
stage can be grouped into three substages (Fig. 3):

• Feature extraction (mandatory)
• Feature engineering (optional)
• Dimensionality reduction (optional)

The feature-based prerocessing and feature extraction create a
training dataset in the exact way the research is aiming for. For example
(Fig. 3), the network traffic files (i.e., *.cap, *.pcap, *.pcapng, etc.) can
be stripped of IP addresses and payloads, and merged in sessions,
creating a table that depicts the traffic flow in the network. Data from
the input fields can have similar features as the natural language (e.g.,
words, punctuation, etc.), while the machine state can have a pattern of
configuration values as features.

In the code injection detection, the feature-based preprocessing ex-
tracts data from request payloads, request headers, and web application
input fields, and then analyses it, classifies (if needed), and encodes the
query for the neural model predictions. The approach is generally
similar to the use of the text data for machine learning, meaning the
code symbols are analysed as a sequence.

The feature-based preprocessing module usually applies one or
several conversion methods (e.g., Encoding, Reshaping, Hashing,
Reducing Dimensionality via mathematical analysis), transforms text
data into a sequence of numeric values (either binary or decimal), and

forwards it to the DNN.
To detect the code injection attack, a neural network has to have

samples of both malicious and non-malicious code, whether it is for
supervised or unsupervised learning. In supervised learning it will also
need to be labelled, in order to correlate a sequence of features with the
desired output, while in unsupervised learning, the system will correlate
the existing features and potentially detect anomalies on its own.

The raw input dataset can contain the following:

• Values of variables and input queries
• Single line of code
• Blocks of code (line by line with the memory of previous code)
• Full execution analysis (state)

Dong et al. (Y [11]. claim, that the key steps of query processing are
data cleaning, data normalisation, and character filtering. Data cleaning
and data normalisation in our classification are a part of pretreatment,
while “character filtering” would be classified as feature extraction.

4.2.2. Feature selection
Feature selection, also known as feature extraction, is a technique

which is used to derive values of information from an initial set of the
measured pre-treated data. Those features are meant to facilitate the
subsequent analysis and learning. Further dimensionality reduction
techniques may include the Principle Component Analysis (PCA), K-
means clustering and other clustering techniques, etc.

The preprocessing approach by Valeur et al. [23] replaces variables
with the “empty space” placeholders, generating a “skeleton query” and
creating a set of query “profiles”.

The feature extraction process by Dussel et al. [24] maps the appli-
cation layer messages, such as the HTTP requests, into a feature space in
which similarity between messages can be represented with a numeric
value. The method uses the data structures such as suffix trees or hash
tables.

Bockermann et al. [30] proposed an approach of using clustering for

Fig. 4. Encoding-based preprocessing characteristics. Source: authors.

S. Abaimov and G. Bianchi

Array 11 (2021) 100077

13

modelling the SQL statements to parse the tree structure of SQL queries
as features, e.g., for correlating SQL queries with applications and dis-
tinguishing malicious and non-malicious queries.

Tomar et al. [3] use feature selection for dimensionality reduction
using two methods: feature ranking and feature subset selection. They
propose feature selection using four different approaches - filter method,
wrapper method, embedded method, and hybrid method, while also
presenting comparative characteristics of these four methods.

Features can be hashed, which allows to translate the dataset text
items into a binary vector matrix suitable for training a model in Ma-
chine Learning. The hashing procedure creates an input matrix or vec-
tors that make a lookup of feature weights faster by augmenting the
string comparison with a hash value comparison. Applying hashing to
text features improves performance and scalability in the big data pre-
dictive analytics lacking in the existing SQLIA signature-based detection
[3].

Alternative to hashing, the N-grams can be used to transform the text
or a numerical feature vector into numeric values. This feature con-
struction transforms each query into a series of N-grams (binary-based
and frequency-based). An N-gram is an N-character slice of a string [70],
and its analysis has been successfully applied to intrusion detection.
Furthermore, it is a fully automatic method and requires no prior
knowledge about the target web application and target attacks.

Juvonen et al. [65] applied the N-gram analysis for feature extraction
and dimensionality reduction. Their paper focuses on the HTTP log data,
that was previous reviewed by Ingham and Inoue [71]. As a test case,
Uwagbole et al. [21] built a web application that expects a dictionary
word list as variables. They used hashing tables and N-grams for
preprocessing.

Yan et al. [26] presented a Hybrid Deep Learning Network (HDLN), a
more efficient model, based on the approach by Xiao et al. (X [72]. In
addition to the already existing features in the dataset, Xiao et al. suggest
to extracts the new features from the Abstract Syntax Tree of JavaScript
in hybrid applications through the feature space generation and feature
selection.

The feature selection process can be manual or automated. Manually
they can be selected via trial and error, while automatically, the features
can be selected using Recursive Feature Elimination, LassoCV, etc. In
2019 [36], proposed a deep learning approach as a viable strategy to
design a mobile traffic classifiers based on automatically-extracted fea-
tures, able to cope with the encrypted traffic, and reflecting their com-
plex traffic patterns. For example:

• Recursive Feature Elimination [73] 18

• Lasso (least absolute shrinkage and selection operator; also Lasso or
LASSO) [74].

• Statistical tests:
o SelectKBest19

o Feature importance20

4.2.3. Mathematical dimensionality reduction
Pretreatment and feature selection and/or engineering structure the

data and reduce the volume of data for training. For example, CIC-
FlowMeter21 allows to reduce traffic recordings (*.pcaps) to a text-file
dataset of biflow traffic features (78–82 features). This manipulation
reduces the size of the dataset from Gigabytes of network traffic files into
a spreadsheet, containing all the features required for a successful
network traffic flow analysis.

With the features already extracted and dimensionally reduced (e.g.,
using principle component analysis, Kmeans clustering, etc.), a smaller
neural network can be used, to analyse the patterns faster, without the
need to detect any new features. For example [67], use the principal
component analysis (PCA) as a form of preprocessing for Support Vector
Machines (SVM). With a smaller dataset, the bigger neural networks will
not train as effectively due to insufficient samples. The CICIDS2017
dataset contains sessions described in 78 features, however, PCA can
reduce the number of values down to 10 (principal components) without
a feasible loss in accuracy [63]. Gao et al. [69] use PCA for the experi-
ments with NSL-KDD.

To address the size of datasets and reduce resource requirements, the
mathematical analysis can extract additional correlations between fea-
tures (usually involving frequency analysis) and reduce the number of
values in the dataset. Very popular methods for the dimensionality
reduction in the Network Intrusion Detection are K-means clustering
and PCA.

K-means clustering is a method of vector quantization, originally
from signal processing, that is popular for the cluster analysis in data
mining. PCA is a statistical procedure that uses an orthogonal trans-
formation to convert a set of observations of possibly correlated vari-
ables into a set of values of linearly uncorrelated variables called
principal components.

Tomar et al. [3] split dimensionality reduction into the Hard
Dimension Reduction Problem and Soft Dimension Reduction Problem.
A study by Abdulhammer et al. [63] uses PCA as one of the methods for
dimensionality reduction in Intrusion Detection.

4.2.4. Negative impact of feature-based preprocessing
Identification, selection, extraction, and engineering of features can

cause the lack or surplus of “knowledge” for the machine learning al-
gorithm to be trained, that results in training biases. The selection of
features that describe data has been addressed in many academic papers.
Incorrect selection of features may result in unwanted randomness and
“confusion” for the neural networks, and thus, reduced accuracy.
Furthermore, decision to use the excessive number of features increases
the complexity of the preprocessing process, and the size of the dataset,
resulting in the reduced training speed for neural networks.

Similar to the selection of excessive features, the data enhancement
method and feature engineering add classification attributes that inflate
data. Those methods may result in adding drawbacks, instead of
improving accuracy.

4.3. Encoding-based preprocessing

The intuitive approach to the encoding of the text-based data would
be to use the natural language processing or simple per-symbol encod-
ing. However, preprocessing for the network packet headers, payloads,
and code is different, as, unlike in the natural language, it cannot
interpret a simple set of symbols between two white spaces or between a
white space and a punctuation symbol.

To finalise the full preprocessing cycle - the transformation of the
extracted features into numeric values, that the machine learning
methods can train on - we suggest the following there substages (Fig. 4).

4.3.1. Transformation
It is common for the pattern of symbols and numbers to be directly

converted to the sequence of numbers. In the context of cyber security,
encoding can transform a single item (word or symbol in the header,
payload, or line of code) into one of the following:

• single digit or value;
• sequence of digits or values;
• pair with a digit or value and a classification marker;
• hash, further converted into one of the above.

18 https://www.scikit-yb.org/en/latest/api/model_selection/rfecv.html.
19 https://scikit-learn.org/stable/modules/generated/sklearn.feature_sele

ction.SelectKBest.html#sklearn.feature_selection.SelectKBest.
20 https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_imp

ortances.html.
21 https://www.unb.ca/cic/research/applications.html.

S. Abaimov and G. Bianchi

https://www.scikit-yb.org/en/latest/api/model_selection/rfecv.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html#sklearn.feature_selection.SelectKBest
https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.SelectKBest.html#sklearn.feature_selection.SelectKBest
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://scikit-learn.org/stable/auto_examples/ensemble/plot_forest_importances.html
https://www.unb.ca/cic/research/applications.html

Array 11 (2021) 100077

14

For example, if every symbol in an SQL query is converted into a
relevant charcode, it does not enhance data, and potentially may lead to
the reduction of the quality of data, as changing the case of symbols may
lead to different numeric sequence (i.e., “A" is 101, “a" is 141). In cases
when the use of this transformation is detrimental to the research, the
previously mentioned issue can be mitigated by converting every sym-
bol into lower or upper case. Another example, Ling and Wu [75]
convert a flag type data into single digits (tcp-1, icmp-2, and so on).

Conversion of values like IP addresses can be another cornerstone.
The intuitive conversion of IPv4 into a decimal value, and further di-
vision by 10 power 10, would not work as intended. For example,
192.168.1.1 would be into 3232235777, and 192.167.1.1 into
3232170241. Once scaled between 0 and 1, those two decimal values
are very close to each other, even though they represent different sub-
networks, and the neural network may not be able to notice any
difference.

Keywords and special characters. Multiple methods try to address the
conversion via the detection of keywords, operators, and escape symbols
[20,23,27].

The method by Cheon et al. [20] presents a pre-processing algorithm
(“converter”), that dissects SQL query into keywords and identifies them
by the position of blank spaces: right side, both, or none. The converter is
used to convert the HTTP parameters into numeric attributes. These
attributes are supplied for the Classifier as features (length of parameters
and the number of keywords). The keywords contain words and symbols
in the SQL statements, like commas, equal signs, quotation marks,
“SELECT”, “UNION” and so on. There are three types of keywords ac-
cording to the SQL statements.

The research by Uwagbole et al. [21] uses a combination of data
composed of the extracted dictionary wordlist with words and unique
SQL tokens extracted from the MSSQL reserved keywords. The dataset
items are labelled based on the exhibition of the SQLIA types charac-
teristics which are: the presence of the SQL tokens in the injection point,
disjointed text, single quotes, semicolons, comments, hex, etc. The data
set items labelling is represented in the binary values of 0 (SQL negative)
or 1(SQL negative).

4.3.2. Scaling
After all the features are presented in a numeric code, each value has

to be further scaled between 0 and 1 using built-in functions (e.g.,
Numpy interp, Sklearn MinMaxScaler), or manually (e.g., with mathe-
matical manipulations).

Abdulhammed et al. [63] use their equation to re-scale the features
in the dataset based on the minimum and maximum values of each
feature. Some features in the original dataset vary between [0, 1] while
other features vary between [0,∞). Therefore, these features are nor-
malised to restrict the range of the values between 0 and 1, which are
then processed by the auto-encoder for feature reduction.

xi =
xi − xmin

xmax − xmin

4.3.3. Data augmentation through encoding
The goal of data augmentation can be either to improve the accuracy

(additional data is added), or to make the real-life data resemble closer
the training dataset (as some of the variables might be missing).

Data can be enhanced with additional knowledge. For example,
words can be converted into a single value in a specific range and special
symbols into values in a completely different, more recognizable range,
artificially increasing the difference between the groups (or classes) of
values. Furthermore, additional values may be added for the classifica-
tion to establish a new sequence of values.

Oppose to Refs. [20,27] classify and augment data with additional
knowledge, converting the keywords and symbols into pairs of values
(value, type).

Ta
bl

e
3

Cl
as

si
fic

at
io

n
su

m
m

ar
is

in
g

th
e

ex
is

tin
g

ap
pr

oa
ch

es
 to

 th
e

da
ta

 p
re

pr
oc

es
si

ng
. S

ou
rc

e:
 a

ut
ho

rs
.

Pr
et

re
at

m
en

t
Fe

at
ur

e-
ba

se
d

pr
ep

ro
ce

ss
in

g
En

co
di

ng
-b

as
ed

 p
re

pr
oc

es
si

ng

Cl
ea

ni
ng

U

ni
fic

at
io

n
Ba

la
nc

in
g

Sh
uf

fli
ng

Sp

lit
tin

g
La

be
lli

ng

Fe
at

ur
e

ex
tr

ac
tio

n
Fe

at
ur

e
en

gi
ne

er
in

g
D

im
en

si
on

al
ity

 r
ed

uc
tio

n
Tr

an
sf

or
m

in
g

Sc
al

in
g

A
ug

m
en

ta
tio

n

[3
]

V

.

V

.
V

V

V

[6

4]

V

V

V

.

.

[6
7]

.

.

.
.

V

V

(Y

 [
11

].

V

.

V

V

V

V

V

.
[2

8]

.
V

.
V

V

V

V

[2

1]

.
.

V

.
V

V

V

V

[6

8]

.
V

V

V

V

[6
3]

.

V

V

V

V

V

V

V

[6
9]

.

.
V

.

V

V

V

V

V

[2
4]

.

V

V

.

V

[2
3]

.

V

.

V

V

V

[2
0]

.

V

.

V

V

V

V

[2
7]

.

V

V

V

V

V

V

V

[3
0]

.

V

V

V

V

[6

5]

V

V

V

V

V

[7

5]

V

V

V

V

[4

4]

V

.
.

V

V

V

.

[3
3]

.

.

V

.
V

.

[7
4]

V

.

V

V

V

.

[8

1]

V

V

.

V

.
V

V
–

ex
pl

ic
itl

y
m

en
tio

ne
d

in
 d

et
ai

l o
r

un
iq

ue
 a

pp
ro

ac
h

su
gg

es
te

d.

. –
 m

en
tio

ne
d

or
 p

er
fo

rm
ed

.
[e

m
pt

y
sp

ac
e]

 –
 n

ot
 m

en
tio

ne
d.

S. Abaimov and G. Bianchi

Array 11 (2021) 100077

15

There is a variety of methods on the network data visualisation, that
can be used to generate static images, and then further use various
automated tools (e.g., imgaug22, AutoAugment [4], K-correct [5]) and
image augmentation techniques presented in the surveys by Shorten and
Khoshgoftaar [76] and Mikolajckzyk and Grochowski [77] to further
improve the detection rates.

4.3.4. Other encoding-based methods

Automated approach. As oppose to the manual tool development of
encoding methods, it is always possible to use the already existing
methods of parcing data from the raw files to numeric sequences. For
example, several parsers for the SQL dialects were used by Ref. [61] to
obtain a parse tree. As stated by Bockermann et al. [30], the basic idea of
Buehrer et al. [61] is to detect SQL injection attacks by means of changes
in a queries syntax tree. Usually complex parsers are automatically
generated based on a given grammar description using tools such as
yacc, antlr or javacc. However, those parsers did not provide a satisfac-
tory numeric sequence, and had to be further vectorised.

Gao et al. [69] use one-Hot-encoding to process text values into bi-
nary sequence.

Translation using natural language approach. Traditional ways of pre-
processing are limited to a conversion of any data into a set of numeric
values. However, in unique applications additional case-specific steps
are required.

Translation of natural language into commands, images, lines of
code, and samples for the dataset has been researched since the early
days of programming languages. To illustrate the mechanism in the
context of the survey, we have studied the SQL query as an example. The
approach of the natural language translation into SQL queries can be
potentially abused by attackers to bypass filtering.

Cai et al. [25] outlined a method of the Natural language conversion
into the SQL queries using CNN and RNN, as well as provided techniques
for preprocessing and postprocessing of the input data. Alternatively, a
sequence-to-sequence model can be used for semantic preprocessing (C.
[78], (L [79–81].

Masking is another method, used for the natural language process-
ing. Liang et al. [82] used masking for symbolic parsing by storing
key-variable pairs in the memory. Masking presented by Cai et al. [25]
supports more complex operations, covering both short-term and
long-term dependencies. Moreover, the authors emphasize that the
grammar structure of SQL is known to be more complicated than the
logical forms used in semantic parsing.

4.3.5. Negative impact of encoding-based preprocessing
Incorrect encoding may result in misrepresentation of data for the

Machine Learning algorithm to correlate features. Typically, simple
conversion of payload symbols or values into charcode is an intuitive
choice. However, for the code injection detection, this approach may
give results close to random (50–60% accuracy of models). We have also
identified a few ways in which the improper encoding might reduce the
accuracy:

• Scaling in a wrong range of values causes unintended clustering of
features, which results in wrong correlation in features.

• Introduction of additional mathematical conversions, such as hash-
ing the values, may create misrepresentation of features.

• In a variety of automated solutions, the raw data is often unclean and
confusing, and automated preprocessing may detect non-existent
features.

Those negative effects and their combinations impact the perfor-
mance of the final system in some very specific ways, yet the outcomes
may be unpredictable and counter-intuitive during troubleshooting and
debugging.

4.4. Classification of existing preprocessing methods

The revised sources highlighted a wide diversity in the approaches to
all machine learning stages preliminary to the training, ranging from the
use of raw data to the synthetically engineered features, from the
manual to automated preprocessing. The in-depth analysis of the 20
academic publications, selected based on their relevance to the code
injection attack detection, and suggested machine learning methods
have demonstrated that preprocessing was successfully used to maxi-
mise the effectiveness of their system.

The following similarity characteristics were observed:

• Only a few methods explicitly use preprocessing for data augmen-
tation in order to improve performance and/or accuracy.

• None of the papers describes every step of the proposed classification
of the full preprocessing cycle.

• Pretreatment is almost exclusively mentioned for Cleaning and
Unification.

• Feature-based preprocessing is mentioned both as Feature extraction
and Feature Engineering.

• Feature extraction is the only step that is mentioned in every
publication.

• Dimensionality reduction is normally mentioned as a unique
optional method, not as an essential one.

• Encoding-based preprocessing is typically mentioned as trans-
formation of data into numeric values.

• None of the papers show samples of the dataset in the state between
preprocessing and training.

It is our understanding that to ensure maximum efficiency the full
preprocessing cycle should be respected. This cycle is suggested based
on our previous research in the respective area [27]. To maximise the
performance efficiency of machine learning for the code injection
detection, we propose six stages of Pretreatment, three stages of
Feature-based preprocessing, and three stages of Encoding-based pre-
processing. This approach, however, can be also applied to all other
cyber security methods in general. Revealing the present inconsistencies
and to harmonise the preprocessing methodology, we map the existing
approaches against our proposed classification to identify the gaps.

The above classification demonstrates that some of the stages were
used explicitly while the others were only briefly mentioned without
detail or not mentioned at all, potentially indicating that they were
omitted. Based on Table 3 we conduct a statistical assessment of the use
of preprocessing stages in the analysed works (Table 4).

Table 4
Percentage of preprocessing stages mentioned in the literature.

Stage Substage At least
mentioned

Explicit mention or
unique method

Pretreatment Cleaning 85% 30%
Unification 85% 55%
Balancing 30% 20%
Shuffling 5% 0%
Splitting 25% 20%
Labelling 45% 20%

Feature-based
preprocessing

Feature Extraction 100% 85%
Feature
Engineering

80% 65%

Dimensionality
Reduction

40% 35%

Encoding-based
preprocessing

Transformation 85% 70%
Scaling 35% 25%
Augmentation 25% 20%

22 ImgAug, GitHub, https://github.com/aleju/imgaug.

S. Abaimov and G. Bianchi

https://github.com/aleju/imgaug

Array 11 (2021) 100077

16

As per the assessment, Feature-based preprocessing is the most rep-
resented stage. Feature extraction is mentioned in 100% of the analysed
works, while shuffling of the dataset is the least mentioned substage.
Cleaning, Unification, and Encoding Transformation are mentioned in
85% of the methods, followed closely by Feature Engineering in 80%.
The remaining stages and substages are mentioned in less than a half of
the analysed publications.

The above observations reveal the missing knowledge that could
enhance the performance and/or accuracy of the designed intrusion
detection systems.

5. Conclusion

Based on the selected academic publications, the survey explored the
existing approaches to the applications of machine learning for the
detection of code injection attacks, with special attention to deep
learning. We identified at least 13 different methods of code injection
detection using various types of machine learning. Deep learning is
observed being the most used approach.

The stages of machine learning for intrusion detection have been
further revised and least researched have been identified. The findings
confirm that the scarcity of the datasets remains one of the biggest and
most common challenges for the adoption of machine learning in cyber
security. The findings also revealed that data preprocessing being one of
the most critical stages in machine learning, lacks consistency in the
approaches in the context of code injection attack detection.

Limitations and negative impacts in which preprocessing may reduce
overall performance and detection rate have been also collected and
documented in the study.

The suggested classification of a full preprocessing cycle for the code
injection detection will result in the harmonisation of the approaches to
this stage and will improve the accuracy and performance of the
machine-learning-based Intrusion Detection Systems. The proposed
consecutive stages of data preprocessing can be further used by machine
learning researchers and practitioners for other cyber security needs,
such as network traffic analysis and intrusion detection. And finally, the
presented classification will allow to better understand the role of deep
learning in the code injection attack detection process in machine-
learning-based Intrusion Detection Systems.

Credit author statement

The research was conducted by Dr Stanislav Abaimov during the
final year of the PhD programme under the supervision and guidance of
Professor Giuseppe Bianchi. The presented survey was initiated as a joint
idea by both authors and as a continuation of the previous research,
conducted by Dr Stanislav Abaimov and Professor Giuseppe Bianchi,
which was published as a novel method.

Declaration of competing interest

The authors whose names are listed immediately below certify that
they have NO affiliations with or involvement in any organization or
entity with any financial interest (such as honoraria; educational grants;
participation in speakers’ bureaus; membership, employment, consul-
tancies, stock ownership, or other equity interest; and expert testimony
or patent-licensing arrangements), or non-financial interest (such as
personal or professional relationships, affiliations, knowledge or beliefs)
in the subject matter or materials discussed in this manuscript.

Acknowledgments

This work is partially supported by the EU Commission in the frame
of the Horizon 2020 project SPARTA (grant #830892).

References

[1] Pyle Dorian. Data preparation for data mining. Morgan Kaufmann Publishers;
1999.

[2] Ramírez-Gallego Sergio, Krawczyk Bartosz, García Salvador, Woźniak Michał,
Herrera Francisco. A survey on data preprocessing for data stream mining: current
status and future directions. Neurocomputing 2017;239(May):39–57. htt
ps://www.sciencedirect.com/science/article/abs/pii/S0925231217302631.

[3] Tomar Divya, Agarwal Sonali. A survey on pre-processing and post-processing
techniques in data mining. International Journal of Database Theory and
Application 2014;7(4):99–128. https://doi.org/10.14257/ijdta.2014.7.4.09.

[4] Cubuk Ekin D, Zoph Barret, Mane Dandelion, Vasudevan Vijay, Quoc V Le.
AutoAugment: learning augmentation policies from data. May, http://arxiv.
org/abs/1805.09501; 2018.

[5] Hoyle Ben, Michael Rau Markus, Bonnett Christopher, Seitz Stella, Weller Jochen.
“Data augmentation for machine learning redshifts applied to SDSS galaxies,”
january. 2015. https://doi.org/10.1093/mnras/stv599.

[6] Ray Donald, Ligatti Jay. Defining code-injection attacks. ACM SIGPLAN notices,
vol. 47. New York, NY, USA: ACM PUB27; 2012. p. 179–90. https://doi.org/
10.1145/2103621.2103678.

[7] Mitropoulos Dimitris, Spinellis Diomidis. Fatal injection: a survey of modern code
injection attack countermeasures. PeerJ Computer Science 2017;2017(11):e136.
https://doi.org/10.7717/peerj-cs.136.

[8] Mitropoulos Dimitris, Louridas Panos, Polychronakis Michalis, Dennis
Keromytis Angelos. Defending against web application attacks: approaches,
challenges and implications. IEEE Trans Dependable Secure Comput 2019;16(2):
188–203. https://doi.org/10.1109/TDSC.2017.2665620.

[9] Edalat Ehsan, Sadeghiyan Babak, Ghassemi Fatemeh. ConsiDroid: a concolic-based
tool for detecting SQL injection vulnerability in android apps. http://arxiv.
org/abs/1811.10448; 2018. 1, 10.

[10] Fielding Roy, Jim Gettys, Jeffrey Mogul, Henrik Frystyk, Larry Masinter,
Paul Leach, Berners-Lee Tim. Hypertext transfer protocol–HTTP/1.1. 1999.

[11] Dong Ying, Zhang Yuqing, Ma Hua, Wu Qianru, Liu Qixu, Wang Kai, Wang Wenjie.
An adaptive system for detecting malicious queries in web attacks. Sci China Inf Sci
2018;61(3). https://doi.org/10.1007/s11432-017-9288-4.

[12] Bishop Christopher M. Pattern recognition and machine learning (information
science and statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc; 2006.

[13] Goodfellow Ian, Bengio Yoshua, Courville Aaron. Deep learning (adaptive
computation and machine learning series). Nature 2016;521. https://doi.org/
10.1038/nmeth.3707.

[14] Sutton Richard S, Barto Andrew G. Reinforcement learning: an introdcution. MIT
Press; 2018.

[15] Dong Ying, Zhang Yuqing. “Adaptively detecting malicious queries in web attacks,”
january. 2017. https://doi.org/10.1007/s11432-017-9288-4.

[16] Cireşan Dan, Meier Ueli, Juergen Schmidhuber. Multi-column deep neural
networks for image classification. February; 2012. http://arxiv.org/abs/
1202.2745.

[17] Gu Jiuxiang, Wang Zhenhua, Kuen Jason, Ma Lianyang, Shahroudy Amir,
Shuai Bing, Liu Ting, et al. Recent advances in convolutional neural networks.
Pattern Recogn 2018;77(May):354–77. https://doi.org/10.1016/J.
PATCOG.2017.10.013.

[18] Nagpal Bharti, Chauhan Naresh, Singh Nanhay. A survey on the detection of SQL
injection attacks and their countermeasures. Journal of Information Processing
Systems 2017;13(4):689–702. https://doi.org/10.3745/JIPS.03.0024.

[19] Halfond William GJ, Orso Alessandro, Abdoulaye Kindy Diallo, Sakib Khan
Pathan Al. AMNESIA: analysis and monitoring for NEutralizing SQL-injection
attacks. Int J Commun Network Inf Secur 2013;5. https://doi.org/10.1145/
1101908.1101935.

[20] Cheon Eun Hong, Huang Zhongyue, Yon Sik Lee. Preventing SQL injection attack
based on machine learning. International Journal of Advancements in Computing
Technology 2013;5(9):967–74. https://doi.org/10.4156/ijact.vol5.issue9.115.

[21] Uwagbole Solomon Ogbomon, Buchanan William J, Fan Lu. Applied machine
learning predictive analytics to SQL injection attack detection and prevention. In:
Proceedings of the IM 2017 - 2017 IFIP/IEEE international symposium on
integrated network and service management; 2017. https://doi.org/10.23919/
INM.2017.7987433. 1087–90.

[22] Alwan Zainab S, Younis Manal F. Detection and prevention of SQL injection attack:
a survey. Int J Comput Sci Mobile Comput 2017;6(8):5–17. https://www.ijcsmc.co
m/docs/papers/August2017/V6I8201701.pdf.

[23] Valeur Fredrik, Mutz Darren, Vigna Giovanni. A learning-based approach to the
detection of SQL attacks. https://doi.org/10.1007/11506881_8; 2005. 123, 140.

[24] Düssel Patrick, Gehl Christian, Laskov Pavel, Rieck Konrad. In: Incorporation of
application layer protocol syntax into anomaly detection. Berlin, Heidelberg:
Springer; 2008. p. 188–202. https://doi.org/10.1007/978-3-540-89862-7_17.

[25] Cai Ruichu, Xu Boyan, Zhang Zhenjie, Yang Xiaoyan, Li Zijian, Liang Zhihao. An
encoder-decoder framework translating natural language to database queries. In:
IJCAI international joint conference on artificial intelligence 2018-july; 2018.
3977–83.

[26] Yan Ruibo, Xiao Xi, Hu Guangwu, Peng Sancheng, Jiang Yong. New deep learning
method to detect code injection attacks on hybrid applications. J Syst Software
2018;137(March):67–77. https://doi.org/10.1016/j.jss.2017.11.001.

[27] Abaimov Stanislav, Bianchi Giuseppe. CODDLE: code-injection detection with deep
learning. IEEE Access 2019;7:128617–27. https://doi.org/10.1109/
access.2019.2939870.

S. Abaimov and G. Bianchi

http://refhub.elsevier.com/S2590-0056(21)00025-4/sref1
http://refhub.elsevier.com/S2590-0056(21)00025-4/sref1
https://www.sciencedirect.com/science/article/abs/pii/S0925231217302631
https://www.sciencedirect.com/science/article/abs/pii/S0925231217302631
https://doi.org/10.14257/ijdta.2014.7.4.09
http://arxiv.org/abs/1805.09501
http://arxiv.org/abs/1805.09501
https://doi.org/10.1093/mnras/stv599
https://doi.org/10.1145/2103621.2103678
https://doi.org/10.1145/2103621.2103678
https://doi.org/10.7717/peerj-cs.136
https://doi.org/10.1109/TDSC.2017.2665620
http://arxiv.org/abs/1811.10448
http://arxiv.org/abs/1811.10448
http://refhub.elsevier.com/S2590-0056(21)00025-4/sref10
http://refhub.elsevier.com/S2590-0056(21)00025-4/sref10
https://doi.org/10.1007/s11432-017-9288-4
http://refhub.elsevier.com/S2590-0056(21)00025-4/sref12
http://refhub.elsevier.com/S2590-0056(21)00025-4/sref12
https://doi.org/10.1038/nmeth.3707
https://doi.org/10.1038/nmeth.3707
http://refhub.elsevier.com/S2590-0056(21)00025-4/sref14
http://refhub.elsevier.com/S2590-0056(21)00025-4/sref14
https://doi.org/10.1007/s11432-017-9288-4
http://arxiv.org/abs/1202.2745
http://arxiv.org/abs/1202.2745
https://doi.org/10.1016/J.PATCOG.2017.10.013
https://doi.org/10.1016/J.PATCOG.2017.10.013
https://doi.org/10.3745/JIPS.03.0024
https://doi.org/10.1145/1101908.1101935
https://doi.org/10.1145/1101908.1101935
https://doi.org/10.4156/ijact.vol5.issue9.115
https://doi.org/10.23919/INM.2017.7987433
https://doi.org/10.23919/INM.2017.7987433
https://www.ijcsmc.com/docs/papers/August2017/V6I8201701.pdf
https://www.ijcsmc.com/docs/papers/August2017/V6I8201701.pdf
https://doi.org/10.1007/11506881_8
https://doi.org/10.1007/978-3-540-89862-7_17
http://refhub.elsevier.com/S2590-0056(21)00025-4/sref25
http://refhub.elsevier.com/S2590-0056(21)00025-4/sref25
http://refhub.elsevier.com/S2590-0056(21)00025-4/sref25
http://refhub.elsevier.com/S2590-0056(21)00025-4/sref25
https://doi.org/10.1016/j.jss.2017.11.001
https://doi.org/10.1109/access.2019.2939870
https://doi.org/10.1109/access.2019.2939870

Array 11 (2021) 100077

17

[28] Fang Yong, Yang Li, Liu Liang, Huang Cheng. DeepXSS. In: Association for
computing machinery (ACM); 2018. p. 47–51. https://doi.org/10.1145/
3194452.3194469.

[29] Ferrag, Amine Mohamed, Maglaras Leandros, Moschoyiannis Sotiris,
Janicke Helge. Deep learning for cyber security intrusion detection: approaches,
datasets, and comparative study. Journal of Information Security and Applications
2020;50(February):102419. https://doi.org/10.1016/j.jisa.2019.102419.

[30] Bockermann Christian, Martin Apel, Meier Michael. Learning SQL for database
intrusion detection using context-sensitive modelling (extended Abstract). In:
Lecture notes in computer science (including subseries lecture notes in artificial
intelligence and lecture notes in bioinformatics) 5587 LNCS; 2009. p. 196–205.
https://doi.org/10.1007/978-3-642-02918-9_12.

[31] Vincent Pascal, Larochelle Hugo, Lajoie Isabelle, Bengio Yoshua, Manzagol Pierre-
Antoine. Stacked denoising autoencoders: learning useful representations in a deep
network with a local denoising criterion. Undefined 2010. https://www.semantics
cholar.org/paper/Stacked-Denoising-Autoencoders%3A-Learning-Useful-in-Vince
nt-Larochelle/e2b7f37cd97a7907b1b8a41138721ed06a0b76cd.

[32] Pan Yao, Sun Fangzhou, White Jules, Douglas C Schmidt, Jacob Staples,
Lee Krause. Detecting web attacks with end-to-end deep learning. Acm 2019;1–14.
https://www.dre.vanderbilt.edu/~schmidt/PDF/machine-learning-feasibility-s
tudy.pdf.

[33] Sun Fangzhou, Zhang Peng, White Jules, Schmidt Douglas, Jacob Staples,
Lee Krause. “A feasibility study of autonomically detecting in-process cyber-
attacks.” in 2017 3rd IEEE international Conference on cybernetics (CYBCONF), 1–8.
IEEE; 2017. https://doi.org/10.1109/CYBConf.2017.7985745.

[34] Lopez-Martin Manuel, Carro Belen, Sanchez-Esguevillas Antonio. Application of
deep reinforcement learning to intrusion detection for supervised problems. Expert
Syst Appl 2020;141(March):112963. https://doi.org/10.1016/j.
eswa.2019.112963.

[35] Cova Marco, Balzarotti Davide, Felmetsger Viktoria, Vigna Giovanni. Swaddler: an
approach for the anomaly-based detection of state violations in web applications.
Recent Advances in Intrusion Detection 2007:63–86. https://doi.org/10.1007/
978-3-540-74320-0_4.

[36] Aceto Giuseppe, Ciuonzo Domenico, Montieri Antonio, Pescape Antonio. Mobile
encrypted traffic classification using deep learning: experimental evaluation,
lessons learned, and challenges. IEEE Transactions on Network and Service
Management 2019;16(2):445–58. https://doi.org/10.1109/TNSM.2019.2899085.

[37] Yao Hongyi, Ranjan Gyan, Tongaonkar Alok, Liao Yong, Mao Zhuoqing Morley.
SAMPLES: self adaptive mining of persistent LExical snippets for classifying mobile
application traffic. In: Proceedings of the 21st annual international conference on
mobile computing and networking - MobiCom ’15. New York, New York, USA:
ACM Press; 2015. p. 439–51. https://doi.org/10.1145/2789168.2790097.

[38] Li Yuancheng, Ma Rong, Jiao Runhai. A hybrid malicious code detection method
based on deep learning. International Journal of Security and Its Applications
2015;9(5):205–16. https://doi.org/10.14257/ijsia.2015.9.5.21.

[39] Molina-Coronado Borja, Mori Usue, Alexander Mendiburu, Miguel-Alonso José.
Survey of network intrusion detection methods from the perspective of the
knowledge discovery in databases process,” january. 2020. http://arxiv.org/abs/2
001.09697.

[40] Kolosnjaji Bojan, Demontis Ambra, Biggio Battista, Maiorca Davide,
Giacinto Giorgio, Eckert Claudia, Roli Fabio. Adversarial malware binaries:
evading deep learning for malware detection in executables. In: European signal
processing conference. European Signal Processing Conference, EUSIPCO; 2018.
https://doi.org/10.23919/EUSIPCO.2018.8553214. 2018-Septe:533–37.

[41] Sadeghi Alireza, Bagheri Hamid, Garcia Joshua, Malek Sam. A taxonomy and
qualitative comparison of program analysis techniques for security assessment of
android software. IEEE Trans Software Eng 2017;43(6):492–530. https://doi.org/
10.1109/TSE.2016.2615307.

[42] Dainotti Alberto, Pescape Antonio, Claffy Kimberly. Issues and future directions in
traffic classification. IEEE Network 2012;26(1):35–40. https://doi.org/10.1109/
MNET.2012.6135854.

[43] Wei Wang, Zhu Ming, Zeng Xuewen, Ye Xiaozhou, Sheng Yiqiang. Malware traffic
classification using convolutional neural network for representation learning. In
2017 international Conference on information networking (ICOIN), 712–17. IEEE;
2017. https://doi.org/10.1109/ICOIN.2017.7899588.

[44] Wang Wei, Zhu Ming, Wang Jinlin, Zeng Xuewen, Yang Zhongzhen. End-to-End
encrypted traffic classification with one-dimensional convolution neural networks.
In: 2017 IEEE international conference on intelligence and security informatics
(ISI). IEEE; 2017. p. 43–8. https://doi.org/10.1109/ISI.2017.8004872.

[45] Lopez-Martin Manuel, Carro Belen, Sanchez-Esguevillas Antonio, Jaime Lloret.
Network traffic classifier with convolutional and recurrent neural networks for
internet of things. IEEE Access 2017;5. https://doi.org/10.1109/
ACCESS.2017.2747560. 18042–50.

[46] Lotfollahi Mohammad, Shirali Hossein Zade Ramin, Jafari Siavoshani Mahdi,
Saberian Mohammdsadegh. “Deep packet: a novel approach for encrypted traffic
classification using deep learning,” september. 2017. http://arxiv.org/abs/1
709.02656.

[47] Salgado By Roberto. SQL injection optimization and obfuscation techniques. 2013.
[48] Kreuk Felix, Barak Assi, Aviv-Reuven Shir, Moran Baruch, Pinkas Benny,

Joseph Keshet. “Deceiving end-to-end deep learning malware detectors using
adversarial examples,” february. 2018. http://arxiv.org/abs/1802.04528.

[49] Russell Rebecca, Kim Louis, Hamilton Lei, Lazovich Tomo, Jacob Harer,
Ozdemir Onur, Paul Ellingwood, McConley Marc. Automated vulnerability
detection in source code using deep representation learning. In: Proceedings - 17th
IEEE international conference on machine learning and applications, ICMLA 2018.

Institute of Electrical and Electronics Engineers Inc; 2019. https://doi.org/
10.1109/ICMLA.2018.00120. 757–62.

[50] Li Xusheng, Hu Zhisheng, Fu Yiwei, Chen Ping, Zhu Minghui, Liu Peng. ROPNN:
detection of ROP payloads using deep neural networks. ” July; 2018. http://arxiv.
org/abs/1807.11110.

[51] Sun Yiwei, Wang Suhang, Tang Xianfeng, Hsieh Tsung-Yu, Honavar Vasant. “Node
injection attacks on graphs via reinforcement learning,” september. 2019. htt
p://arxiv.org/abs/1909.06543.

[52] Biggio Battista, Corona Igino, Maiorca Davide, Nelson Blaine, Nedim Srndic,
Laskov Pavel, Giacinto Giorgio, Roli Fabio. Evasion attacks against machine
learning at test time. In: Lecture notes in computer science (including subseries
lecture notes in artificial intelligence and lecture notes in bioinformatics) 8190
LNAI (PART 3); 2017. p. 387–402. https://doi.org/10.1007/978-3-642-40994-3_
25.

[53] Vabalas Andrius, Gowen Emma, Poliakoff Ellen, Casson Alexander J. Machine
learning algorithm validation with a limited sample size. PloS One 2019;14(11):
e0224365. https://doi.org/10.1371/journal.pone.0224365.

[54] Probst Philipp, Bischl Bernd, Anne-Laure Boulesteix. Tunability: importance of
hyperparameters of machine learning algorithms. J Mach Learn Res 2018;20
(February). http://arxiv.org/abs/1802.09596.

[55] Probst Philipp, Wright Marvin N, Laure Boulesteix Anne. Hyperparameters and
tuning strategies for random forest.” wiley interdisciplinary reviews: data mining
and knowledge discovery. Wiley-Blackwell; 2019. https://doi.org/10.1002/
widm.1301.

[56] Zhou Yadi, Cahya Suntara, Combs Steven A, Nicolaou Christos A, Wang Jibo,
Desai Prashant V, Shen Jie. Exploring tunable hyperparameters for deep neural
networks with industrial ADME data sets. J Chem Inf Model 2019;59(3):1005–16.
https://doi.org/10.1021/acs.jcim.8b00671.

[57] Hamed Tarfa, Ernst Jason B, Kremer Stefan C. A survey and taxonomy of classifiers
of intrusion detection systems. In: Computer and network security essentials.
Springer International Publishing; 2017. p. 21–39. https://doi.org/10.1007/978-3-
319-58424-9_2.

[58] Brundage Miles, Avin Shahar, Clark Jack, Toner Helen, Eckersley Peter,
Garfinkel Ben, Allan Dafoe, et al. “The malicious use of artificial intelligence:
forecasting, prevention, and mitigation,” february. 2018. http://arxiv.org/abs/1
802.07228.

[59] Liu Hongyu, Lang Bo. Machine learning and deep learning methods for intrusion
detection systems: a survey. Appl Sci 2019;9(20):4396. https://doi.org/10.3390/
app9204396.

[60] Chitraa V, Davamani Dr Antony Selvdoss. A survey on preprocessing methods for
web usage data. CoRR 2010;abs/1004.1. http://sites.google.com/site/ijcsis/.

[61] Buehrer Gregory T, Weide Bruce W, Sivilotti Paolo AG. Using parse tree validation
to prevent SQL injection attacks. In Proceedings of the 5th international Workshop on
software Engineering and middleware - sem ’05, vol. 106. New York, New York, USA:
ACM Press; 2005. https://doi.org/10.1145/1108473.1108496.

[62] Gould C, Su Z, Devanbu P. Static checking of dynamically generated queries in
database applications. In: Proceedings. 26th international conference on software
engineering, 645–54. IEEE Comput. Soc; 2004. https://doi.org/10.1109/
ICSE.2004.1317486.

[63] Abdulhammed Razan, Hassan Musafer, Ali Alessa, Faezipour Miad,
Abuzneid Abdelshakour. Features dimensionality reduction approaches for
machine learning based network intrusion detection. Electronics 2019;8(3):322.
https://doi.org/10.3390/electronics8030322.

[64] Jayaprakash Sujith. A comprehensive survey on data preprocessing methods in
web usage minning, vol. 6; 2015. www.ijcsit.com.

[65] Juvonen Antti, Sipola Tuomo. Anomaly detection framework using rule extraction
for efficient intrusion detection. 2014. October, http://arxiv.org/abs/1410.7709.

[66] Ehrlinger Lisa, Rusz Elisa, Wolfram Wöß. “A survey of data quality measurement
and monitoring tools,” july. 2019. http://arxiv.org/abs/1907.08138.

[67] Raja M Chithik, Munir Ahmed Rabbani M. Combined analysis of support vector
machine and principle component analysis for IDS. In: Proceedings of the
international conference on communication and electronics systems, ICCES 2016.
Institute of Electrical and Electronics Engineers Inc; 2016. https://doi.org/
10.1109/CESYS.2016.7889868.

[68] Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority
over-sampling technique. In: Journal of artificial intelligence research; 2011.
https://doi.org/10.1613/jair.953. June.

[69] Gao Xianwei, Shan Chun, Hu Changzhen, Niu Zequn, Liu Zhen. An adaptive
ensemble machine learning model for intrusion detection. IEEE Access 2019;7:
82512–21. https://doi.org/10.1109/ACCESS.2019.2923640.

[70] Cavnar William B, Trenkle John M. N-Gram-Based text categorization. https://
www.semanticscholar.org/paper/N-gram-based-text-categorization-Cavnar-Tren
kle/1c610a7e67b578de78436e8959b3ea462ca3e56d; 1994.

[71] Ingham Kenneth L, Inoue Hajime. Comparing anomaly detection techniques for
HTTP. In: Recent advances in intrusion detection. Berlin, Heidelberg: Springer
Berlin Heidelberg; 2007. p. 42–62. https://doi.org/10.1007/978-3-540-74320-0_3.

[72] Xiao Xi, Yan Ruibo, Ye Runguo, Li Qing, Peng Sancheng, Jiang Yong. Detection and
prevention of code injection attacks on HTML5-based apps. In: Proceedings - 2015
3rd international conference on advanced cloud and big data. Institute of Electrical
and Electronics Engineers Inc; 2016. https://doi.org/10.1109/CBD.2015.48. CBD
2015, 254–61.

[73] Guyon Isabelle, Weston Jason, Barnhill Stephen, Vapnik Vladimir. Gene selection
for cancer classification using support vector machines. Mach Learn 2002;46(1–3):
389–422. https://doi.org/10.1023/A:1012487302797.

[74] Tibshirani Robert. Regression shriknage and selectino via the Lasso. J Roy Stat Soc
B 1996;58(1):267–88. https://doi.org/10.2307/2346178.

S. Abaimov and G. Bianchi

https://doi.org/10.1145/3194452.3194469
https://doi.org/10.1145/3194452.3194469
https://doi.org/10.1016/j.jisa.2019.102419
https://doi.org/10.1007/978-3-642-02918-9_12
https://www.semanticscholar.org/paper/Stacked-Denoising-Autoencoders%3A-Learning-Useful-in-Vincent-Larochelle/e2b7f37cd97a7907b1b8a41138721ed06a0b76cd
https://www.semanticscholar.org/paper/Stacked-Denoising-Autoencoders%3A-Learning-Useful-in-Vincent-Larochelle/e2b7f37cd97a7907b1b8a41138721ed06a0b76cd
https://www.semanticscholar.org/paper/Stacked-Denoising-Autoencoders%3A-Learning-Useful-in-Vincent-Larochelle/e2b7f37cd97a7907b1b8a41138721ed06a0b76cd
https://www.dre.vanderbilt.edu/%7Eschmidt/PDF/machine-learning-feasibility-study.pdf
https://www.dre.vanderbilt.edu/%7Eschmidt/PDF/machine-learning-feasibility-study.pdf
https://doi.org/10.1109/CYBConf.2017.7985745
https://doi.org/10.1016/j.eswa.2019.112963
https://doi.org/10.1016/j.eswa.2019.112963
https://doi.org/10.1007/978-3-540-74320-0_4
https://doi.org/10.1007/978-3-540-74320-0_4
https://doi.org/10.1109/TNSM.2019.2899085
https://doi.org/10.1145/2789168.2790097
https://doi.org/10.14257/ijsia.2015.9.5.21
http://arxiv.org/abs/2001.09697
http://arxiv.org/abs/2001.09697
https://doi.org/10.23919/EUSIPCO.2018.8553214
https://doi.org/10.1109/TSE.2016.2615307
https://doi.org/10.1109/TSE.2016.2615307
https://doi.org/10.1109/MNET.2012.6135854
https://doi.org/10.1109/MNET.2012.6135854
https://doi.org/10.1109/ICOIN.2017.7899588
https://doi.org/10.1109/ISI.2017.8004872
https://doi.org/10.1109/ACCESS.2017.2747560
https://doi.org/10.1109/ACCESS.2017.2747560
http://arxiv.org/abs/1709.02656
http://arxiv.org/abs/1709.02656
http://refhub.elsevier.com/S2590-0056(21)00025-4/sref47
http://arxiv.org/abs/1802.04528
https://doi.org/10.1109/ICMLA.2018.00120
https://doi.org/10.1109/ICMLA.2018.00120
http://arxiv.org/abs/1807.11110
http://arxiv.org/abs/1807.11110
http://arxiv.org/abs/1909.06543
http://arxiv.org/abs/1909.06543
https://doi.org/10.1007/978-3-642-40994-3_25
https://doi.org/10.1007/978-3-642-40994-3_25
https://doi.org/10.1371/journal.pone.0224365
http://arxiv.org/abs/1802.09596
https://doi.org/10.1002/widm.1301
https://doi.org/10.1002/widm.1301
https://doi.org/10.1021/acs.jcim.8b00671
https://doi.org/10.1007/978-3-319-58424-9_2
https://doi.org/10.1007/978-3-319-58424-9_2
http://arxiv.org/abs/1802.07228
http://arxiv.org/abs/1802.07228
https://doi.org/10.3390/app9204396
https://doi.org/10.3390/app9204396
http://sites.google.com/site/ijcsis/
https://doi.org/10.1145/1108473.1108496
https://doi.org/10.1109/ICSE.2004.1317486
https://doi.org/10.1109/ICSE.2004.1317486
https://doi.org/10.3390/electronics8030322
http://www.ijcsit.com
http://arxiv.org/abs/1410.7709
http://arxiv.org/abs/1907.08138
https://doi.org/10.1109/CESYS.2016.7889868
https://doi.org/10.1109/CESYS.2016.7889868
https://doi.org/10.1613/jair.953
https://doi.org/10.1109/ACCESS.2019.2923640
https://www.semanticscholar.org/paper/N-gram-based-text-categorization-Cavnar-Trenkle/1c610a7e67b578de78436e8959b3ea462ca3e56d
https://www.semanticscholar.org/paper/N-gram-based-text-categorization-Cavnar-Trenkle/1c610a7e67b578de78436e8959b3ea462ca3e56d
https://www.semanticscholar.org/paper/N-gram-based-text-categorization-Cavnar-Trenkle/1c610a7e67b578de78436e8959b3ea462ca3e56d
https://doi.org/10.1007/978-3-540-74320-0_3
https://doi.org/10.1109/CBD.2015.48
https://doi.org/10.1023/A:1012487302797
https://doi.org/10.2307/2346178

Array 11 (2021) 100077

18

[75] Ling Jie, Wu Chengzhi. Feature selection and deep learning based approach for
network intrusion detection. In: Proceedings of the 3rd international conference on
mechatronics engineering and information Technology (ICMEIT 2019). Paris,
France: Atlantis Press; 2019. https://doi.org/10.2991/icmeit-19.2019.122.

[76] Shorten Connor, Khoshgoftaar Taghi M. A survey on image data augmentation for
deep learning. Journal of Big Data 2019;6(1):60. https://doi.org/10.1186/s40537-
019-0197-0.

[77] Mikolajczyk Agnieszka, Grochowski Michal. Data augmentation for improving
deep learning in image classification problem. In: 2018 international
interdisciplinary PhD workshop (IIPhDW), 117–22. IEEE; 2018. https://doi.org/
10.1109/IIPHDW.2018.8388338.

[78] Xiao Chunyang, Dymetman Marc, Gardent Claire. Sequence-based structured
prediction for semantic parsing. Proceedings of the 54th annual Meeting of the
Association for computational linguistics, vol. 1. Stroudsburg, PA, USA: Association

for Computational Linguistics; 2016. https://doi.org/10.18653/v1/P16-1127.
Long Papers), 1341–50.

[79] Dong Li, Lapata Mirella. “language to logical form with neural attention,” january.
2016. http://arxiv.org/abs/1601.01280.

[80] Guu Kelvin, Pasupat Panupong, Liu Evan Zheran, Liang Percy. “From language to
programs: bridging reinforcement learning and maximum marginal likelihood,”
april. http://arxiv.org/abs/1704.07926; 2017.

[81] Chen Ding, Yan Qiseng, Wu Chunwang, Zhao Jun. SQL injection attack detection
and prevention techniques using deep learning. In: Journal of physics: conference
series. IOP Publishing Ltd; 2021. https://doi.org/10.1088/1742-6596/1757/1/
012055. 1757:12055.

[82] Liang Chen, Berant Jonathan, Le Quoc, Forbus Kenneth D, Ni Lao. “Neural
symbolic machines: learning semantic parsers on freebase with weak supervision,”
october. 2016. http://arxiv.org/abs/1611.00020.

S. Abaimov and G. Bianchi

https://doi.org/10.2991/icmeit-19.2019.122
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1109/IIPHDW.2018.8388338
https://doi.org/10.1109/IIPHDW.2018.8388338
https://doi.org/10.18653/v1/P16-1127
http://arxiv.org/abs/1601.01280
http://arxiv.org/abs/1704.07926
https://doi.org/10.1088/1742-6596/1757/1/012055
https://doi.org/10.1088/1742-6596/1757/1/012055
http://arxiv.org/abs/1611.00020

	A survey on the application of deep learning for code injection detection
	1 Introduction
	2 Background
	2.1 Code injection attacks
	2.1.1 Example: dynamic code evaluation vulnerability
	2.1.2 Example: SQL injection
	2.1.3 Example: exif code injection
	2.1.4 Example: command injection

	2.2 Code injection defence

	3 Machine learning application for the code injection detection
	3.1 Supervised learning
	3.2 Unsupervised learning
	3.3 Reinforcement learning
	3.4 Adversarial approach and datasets generation
	3.4.1 Dataset generation
	3.4.2 Non-machine learning samples generation methods
	3.4.3 Increasing complexity of samples
	3.4.4 Machine learning for attack simulation

	3.5 Parameter fine-tuning

	4 Critical role of preprocessing in the detection rate enhancement
	4.1 Pretreatement
	4.1.1 Extraction of data
	4.1.2 Cleaning
	4.1.3 Unification
	4.1.4 Balancing
	4.1.5 Sampling and splitting on training and testing sets
	4.1.6 Labelling and classification
	4.1.7 Negative impact of pretreatment

	4.2 Feature-based preprocessing
	4.2.1 Use of a feature-based preprocessing
	4.2.2 Feature selection
	4.2.3 Mathematical dimensionality reduction
	4.2.4 Negative impact of feature-based preprocessing

	4.3 Encoding-based preprocessing
	4.3.1 Transformation
	Keywords and special characters

	4.3.2 Scaling
	4.3.3 Data augmentation through encoding
	4.3.4 Other encoding-based methods
	Automated approach
	Translation using natural language approach

	4.3.5 Negative impact of encoding-based preprocessing

	4.4 Classification of existing preprocessing methods

	5 Conclusion
	Credit author statement
	Declaration of competing interest
	Acknowledgments
	References

