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Abstract

A method to solve a one-phase Stefan problem associated to the Burgers equation is outlined. It is shown that the
problem admits an exact solution which is a shock wave. The shock wave travels with the appropriate free boundary velocity
and is found to be stable. q 2000 Published by Elsevier Science B.V.

Stefan problems for the linear heat equation are
physically important and there is an extensive litera-

Ž w xture see Ref. 1 and references therein, and Refs.
w x2,3 associated with them. Indeed, they arise in very
simple physical situations such as the process of
evaporation and condensation of drops, the dissolu-
tion of gas bubbles in liquid and the melting of ice
when heated at the boundary with a prescribed tem-
perature.

In certain cases a method of solution has been
found and existence theorems have been proven
w x2,4 .

More recently, a class of Stefan problems in
w xnonlinear heat conduction was considered in 5 and

the exact solution was constructed in parametric
form.

In the following we outline a method for solving a
one-phase Stefan problem for the Burgers equation
Ž .Burgers–Stefan problem . We reduce the problem

Ž .to a nonlinear integral equation in one variable time
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and show that the problem admits an explicit shock
wave solution which is moreover stable in the free
boundary configuration.

The Burgers–Stefan problem is a natural exten-
sion to nonlinear diffusive systems of the previous
studies associated with the linear heat equation. In
fact, the Burgers equation is the simplest evolution
equation which combines together the effects of
diffusion and nonlinearity.

The Burgers–Stefan problem is characterized as
follows: the equation

u su y2uu , usu x ,t , t)0 1Ž . Ž .t x x x

is considered on the semi-infinite domain x
g y`,s t , with the initial datumŽ .Ž .
u x ,0 su x )0, y`-x-b 2aŽ . Ž . Ž .0

u b s0, b)0 2bŽ . Ž .0

subject to the boundary conditions

u y`,t su )0, t00 3aŽ . Ž .1

u s t ,t s0, t00 with s 0 sb 3bŽ . Ž . Ž .Ž .
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u s t ,t ss t , t00. 3cŽ . Ž . Ž .Ž . ˙x

In the above relations u ,b are positive constants;1
Ž .s t is an unknown function which describes the

motion of the free boundary and has to be deter-
Ž . Ž .mined together with u x,t . 3c is a condition on

the flux at the free boundary, arising from energy
considerations.

We start our analysis by introducing the general-
w xized Hopf–Cole transformation 6

x
X Xu x ,t sÕ x ,t C t y d x Õ x ,t 4aŽ . Ž . Ž . Ž . Ž .H

Ž .s t

x
X X

Õ x ,t sC t u x ,t exp y d x u x ,tŽ . Ž . Ž . Ž .H
Ž .s t

4bŽ .

with the initial condition

C 0 s1 4cŽ . Ž .
Ž .Under this transformation Eq. 1 is mapped into the

linear heat equation

Õ sÕ 5Ž .t x x

with the compatibility condition

Ċ t syÕ s t ,t . 7cŽ . Ž . Ž .Ž .x

Ž . Ž .Moreover from 2a and 3a,b we obtain the follow-
Ž .ing set of initial and boundary data for Eq. 5 :

x
X X

Õ x ,0 sÕ x su x exp y d x u xŽ . Ž . Ž . Ž .H0 0 0
b

6aŽ .

with

Õ x )0, Õ b s0 6bŽ . Ž . Ž .0 0

and

Õ s t ,t sC t u s t ,t s0, 7aŽ . Ž . Ž . Ž .Ž . Ž .
Õ s t ,t sC t u s t ,t syC t s t .Ž . Ž . Ž . Ž . Ž .Ž . Ž . ˙x x

7bŽ .

The one-phase Burgers–Stefan problem is then re-
duced to the one-phase Stefan problem for the linear

Ž . Ž .heat Eq. 5 with initial datum 6a,b and with
boundary conditions at the free boundary given by
Ž .7a–c .

In order to solve this problem, we first observe
Ž . Ž .that 7b and 7c imply

C t sexp s t yb , 8aŽ . Ž . Ž .
which can be inverted as

t X X Xs t sbq ln 1y d t Õ s t ,t . 8bŽ . Ž . Ž .Ž .H x
0

Next, we introduce the fundamental kernel of the
heat equation

1 1 x 2

K x ,t s exp y 9Ž . Ž .ž /' ' 4 t2 p t

and integrate Green’s identity

E E Õ E K E
K yÕ y KÕ s0 10Ž . Ž .ž /Ej Ej Ej Et

Ž .over the domain y`-j-s t , 0-´-t- ty´

Ž Ž . . Ž .and let ´™0. Using Õ s t ,t s0 and K xyj ,0
Ž .sd xyj , we get the solution of the Stefan prob-
Ž . Ž . Ž .lem 5 , 6a,b , 7a–c as

b t
Õ x ,t s K xyj ,t Õ j djq dt KŽ . Ž . Ž .H H0

y` 0

= xys t ,tyt Õ s t ,t 11Ž . Ž . Ž .Ž . Ž .x

Ž . Ž .with s t given by 8b .
Ž . Ž .From Eq. 11 we see that Õ x,t is known once

Ž Ž . .Õ s t ,t is known. We then take the derivative ofx
Ž . Ž .yboth sides in 11 and evaluate it as x™s t .

Ž Ž . . Ž . w xBy putting Õ s t ,t sz t and using cf. 2x

E
X X X Xlim d t K xys t ,ty t z tŽ . Ž .Ž .H

y E xŽ .x™s t 0

t X X X X1s z t q d t K s t ys t ,ty t z t ,Ž . Ž . Ž . Ž .Ž .H x2
0

we obtain

b Xz t s2 dj K s t yj ,t Õ jŽ . Ž . Ž .Ž .H 0
y`

t X X X Xq2 d t K s t ys t ,ty t z tŽ . Ž . Ž .Ž .H x
0

12aŽ .
with

t X Xs t sbq ln 1y d t z t . 12bŽ . Ž . Ž .Hž /0

Ž . Ž . Ž .The Stefan problem 5 , 6a,b , 7a–c has then been
Ž .reduced to the nonlinear integral Eq. 12a,b in one
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independent variable. We have been able to establish
Ž .existence and uniqueness of the solution z t for

w xsmall times 7 and will give a detailed report on this
Ž .elsewhere. We point out that once z t is shown to

Ž .exist and to be unique, from 11 existence and
Ž .uniqueness of Õ x,t there follows. Hence the solu-

Ž .tion u x,t of the original Burgers–Stefan problem
Ž . Ž .exists and is unique for small times , due to 4a

Ž . Ž . Ž .with C t given by 8a and 12b .
We now turn our attention to a particular solution

of the Burgers–Stefan problem. Namely, we show
that there is a shock solution which travels with the
same velocity as that of the free boundary. We

Ž .consider the usual shock solution of Eq. 1 :

u yuŽ .2 1
Õ x ,t su qŽ . 1 1qexp u yu xyVtyxŽ Ž . Ž .2 1 0

13aŽ .

with

Vs u qu , u -u 13bŽ . Ž .1 2 2 1

Ž .and u a constant to be determined. 13a,b de-2

scribes a shock which is travelling to the right with
velocity V, and is compatible with the initial condi-

Ž . Ž .tion 2a and with the boundary condition 3a .
If we now impose the conditions at the free

Ž . Ž .boundary 3b and 3c , we get

s0
s t sx q qVt 14aŽ . Ž .0 u yuŽ .1 2

and

Vsyu u sys t 14bŽ . Ž .˙1 2

Ž . Ž .14a and 14b imply that the shock and the bound-
ary are both moving to the right with the same
velocity.

The same relations also imply that the initial
position of the boundary, the velocity V and the
value of the constant u are given by2

u syu 1qu , 15aŽ . Ž .2 1 1

Vsu2 1qu , 15bŽ . Ž .1 1

s0e su u . 15cŽ .1 2

In order to sketch the stability of such solution we
consider a small perturbation affecting both the shock
and the motion of the free boundary. In this context
we set

usuquX 16aŽ .ˆ

s t ss t qsX t 16bŽ . Ž . Ž . Ž .ˆ

Ž Ž . .where u is the shock solution satisfying u s t ,t s0ˆ ˆ ˆ
and uX,sX are small perturbations. By linearizing Eq.
Ž .1 around u, we getˆ

w sw y2uw , 17aŽ .ˆt x x x

where the position uX sw has been made.x
Ž .The boundary conditions 3b,c together with

Ž .16a,b give the condition for w at the free boundary

E
2w qVw qV w s0, 17bŽ .x x x xE t Ž .xss t

Ž . Ž .where 13b and 14b have also been used.
The change of variables

w x ,t sw X ,t , XsxyVt 18Ž . Ž . Ž .

Ž . Ž .maps 17a and 17b into

w sw y 2uyV w 19aŽ . Ž .ˆt X X X

and

E
2w qV w s0 19bŽ .X XE t Xs0

respectively.
Ž .We now solve 19a with the initial condition

w X ,0 s f X 19cŽ . Ž . Ž .

and the asymptotically vanishing condition w™0 as
X™y`.

In terms of the Laplace transform

`
yq tw X ,q s d te w X ,t , 20Ž . Ž . Ž .ˆ H

0
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Ž .from 19a–c we get

w X ,q sexp yp XŽ . Ž .Ž .ˆ

=

k XyjŽ .eXk Xc e q dj F jŽ .H1 2k0

yk XyjŽ .eX
y dj F j 21aŽ . Ž .H

2ky`

with

F X syf X exp qP X 21bŽ . Ž . Ž . Ž .Ž .
VX X XP X s yu X d X 21cŽ . Ž . Ž .ˆH ž /20

1 22V
ks qqVq 21dŽ .ž /4

and the constant c given by1

V G kŽ .
X 2c s f 0 V qq ky y ,Ž . Ž .1 ž /2 kyV 2Ž .

21eŽ .

where

ekj
0

G k s F j dj . 21fŽ . Ž . Ž .H
2ky`

XŽ .The small perturbation u X,t is then obtained by
Ž .inverting 21a and taking the X-derivative. When

XŽ .the asymptotic, large time behaviour of u X,t is
considered, the following results are obtained: in the
region V)1 there holds

V
VX

X XŽ .yV t yp X2u X ,t ( e e e yp XŽ . Ž .ž /2t™`

=
V

Aq 22aŽ .2ž /V yV

with

0
As F j dj .Ž .H

y`

In the region V - 1 there obtains instead

V
VX 2X yV t2u X ,t ( e eŽ . 2V yVt™` Ž .

=
V

X Ž .yp Xp X y e 22bŽ . Ž .ž /2

finally, at V s 1 it is

1 Ž .yp XX e
2X Xytu X ,t ( te e yp X . 22cŽ . Ž . Ž .ž /2t™`

We can then conclude that the small perturbation
XŽ .u X,t is asymptotically vanishing at t™`.
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