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Abstract

In the last decade, the use of neural networks (NN) and of other soft computing methods has begun to spread also in the astronomical

community which, due to the required accuracy of the measurements, is usually reluctant to use automatic tools to perform even the most

common tasks of data reduction and data mining. The federation of heterogeneous large astronomical databases which is foreseen in the

framework of the astrophysical virtual observatory and national virtual observatory projects, is, however, posing unprecedented data mining

and visualization problems which will find a rather natural and user friendly answer in artificial intelligence tools based on NNs, fuzzy sets or

genetic algorithms. This review is aimed to both astronomers (who often have little knowledge of the methodological background) and

computer scientists (who often know little about potentially interesting applications), and therefore will be structured as follows: after giving

a short introduction to the subject, we shall summarize the methodological background and focus our attention on some of the most

interesting fields of application, namely: object extraction and classification, time series analysis, noise identification, and data mining. Most

of the original work described in the paper has been performed in the framework of the AstroNeural collaboration (Napoli-Salerno).
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1. Overview

The fact that artificial neural networks (NN) were

originally introduced as simplified models of the brain

functioning (processing nodes instead of neurons, multiple

connections instead of dendrites and axons) has often had

misleading effects on unexperienced users and it is at the

origin of the widespread and obviously wrong belief that

such tools may do wonders when set loose on oceans of data

(Witten & Frank, 2000). As stressed by Bailer-Jones, Gupta,

and Singh (2001), even though the logic of the processing of

the signals in the brain and in artificial NNs is very similar,

the human brain consists of 1011 neurons each connected to

many others with a complex topology for a total of 1014

synaptic connections. Such a level of complexity is

unattainable — even in the wildest speculations — by

artificial NNs which, at most, can be used to mimic a few

simple capabilities of the mind such as: modeling memory,

pattern recognition, short term dynamical predictions, etc.

In its most general definition, a NN is a tool which learns

about a problem through relationship which are intrinsic to

the data rather than through a set of predetermined rules.

Before proceeding to describe some astronomical appli-

cations, however, we need to do a little systematics. A NN

can be schematized as a set of N layers, (see Fig. 1) each

layer i being composed by mi neurons. The first layer (i ¼ 1)

is usually called ‘input layer’, the intermediate ones ‘hidden

layers’ and the last one (i ¼ N) ‘output layer’. Each neuron

xi of the input layer can be connected to one, more or all
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the neurons of the adjacent layer, and this connection is

characterized by a weight wð1Þ
j;i :

Usually the neuron j in the hidden layer derives a

weighted sum of all inputs applied to it (the vector x) and,

through either a linear or a non-linear function, produces an

output value zð1Þ ¼ f ðw; xÞ which is passed to the neurons in

the next layer, and so on up to the last hidden layer

(i ¼ N 2 1) which produces an output vector y: The output

layer then performs a simple sum of its inputs and derives

the output:

yk ¼ g
XM
j¼0

wðN21Þ
k;j zðN22Þ

i

0
@

1
A ð1Þ

where zi is the output of the ith neuron of the N 2 2 level.

The free parameters of the NN are the weight vectors, while

the number of layers, the number of neurons in each layer,

and the activation functions are chosen from the beginning

and specify the so called ‘architecture’ of the NN.

The whole game of using NNs is in the fact that, in order

for the network to yield appropriate outputs for given inputs,

the weights must be set to suitable values. The way this is

obtained allows a further distinction among modes of

operations, namely between ‘supervised’ and ‘unsuper-

vised’ methods. In this case, supervised means that the NN

learns how to produce the correct output using a rather large

subset of data for which there is an a priori and accurate

knowledge of the correct answer. Unsupervised means

instead that the NN identifies clusters (or patterns) using

only some statistical properties of the input data without any

need for a priori knowledge. Since this distinction is of

fundamental relevance, let us focus on a specific astronom-

ical application, namely the well known star–galaxy

classification problem which is of paramount relevance in

most astronomical applications and which can be

approached in both the pixel and in the catalogue spaces1

and using both supervised and unsupervised methods.

For simplicity, let us assume that we are working in the

catalogue space and that the input is a table where each row

is an input vector containing astrometric, morphological and

photometric parameters for all objects in a given field.

Supervised methods require that for a rather large subset

of data in the input space there must be an a priori and

accurate knowledge of the desired property (in this case the

membership into either the star or the galaxy classes). This

subset defines the ‘training set’ and, in order for the NN to

learn properly, it needs to sample the whole parameter

space. The ‘a priori knowledge’ needed for the objects in the

training sets needs therefore to be acquired by means of

either visual or automatic inspection of higher S/N and

better angular resolution data, and cannot be imported from

other data sets, unless they overlap and are homogeneous to

the one which is under study. Simulated training data, while

sometimes useful for testing, usually fail to reproduce the

complexity of true data. Summarizing: supervised methods

are usually fast and very accurate, but the construction of a

proper training set may be a rather troublesome task

(Andreon, Gargiulo, Longo, Tagliaferri, & Capuano, 2000).

Unsupervised methods, instead, do not require a labelled

training set and can be used to cluster the input data in

classes on the basis of their statistical properties only.

Whether these clusters are or are not significant to a specific

problem and which meaning has to be attributed to a given

class, is not obvious and requires an additional phase, the so

called ‘labeling’. The labeling can be carried out even if the

desired information (label) is available only for a small

number of objects representative of the desired classes (in

this case, for a few stars and a few galaxies).

A further distinction among different NNs can be based

on the way the information propagates across the network:

either feedforward (i.e. the information propagates only

from the layer K to the layer K þ 1), or recurrent (i.e. the

information may propagate in loops).

As we shall see in what follows, the optimal choices of

the architecture of the network and of its operating modes

depend strongly on the intrinsic nature of the specific

problem to be solved and, since no well defined recipe

exists, the user has often to rely on a trial and error

procedure. It has to be stressed, in fact that all neural

techniques in order to be effective, require a lengthy

procedure to be optimized, and an extensive testing is

needed to evaluate their robustness against noise and

inaccuracy of the input data. More detailed examples and

descriptions will be provided in the following sections.

2. Astronomical applications of NNs

In the last few years there has been an increased interest

toward the astronomical applications of NNs even though,

in spite of the great variety of problems addressed, most

applications still make use of an handful of neural models

only. This situation is bound to change due to the huge

increase in both the quality and the amount of data which are

becoming available to the astronomical community

Fig. 1. The architecture of a two layer MLP.

1 We shall call pixel space the space defined by the raw data, and

catalogue space the multi-dimensional one defined by the parameters which

are derived from the raw data.
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worldwide. Conservative predictions lead in fact to expect

that in less than 5 years, much more than 10 TB of data will

be acquired worldwide every night and, due to the ongoing

efforts for the implementation of the International Virtual

Observatory (IVO),2 most of these data will become

available to the community via the network. These huge

and heterogeneous data sets will open possibilities which so

far are just unthinkable, but it is already clear that their

scientific exploitation will require the implementation of

automatic tools capable to perform a large fraction of the

routine data reduction, data mining and data analysis work.

Some recent reviews of specific aspects of the appli-

cations of NNs to astronomical problems can be found in

Bailer-Jones et al. (2001) and Gulati and Altamirano (2001).

We shall now try, without any pretension of completeness,

to summarize some of the most relevant applications which

have appeared in the last years. Historically speaking, the

first ‘astronomical’ NNs were applied to star/galaxy

recognition, and to spectral and morphological classifi-

cations (Odewhan, Stockwell, Penninton, Humpreys, &

Zumach, 1992; Klusch & Napiwotzki, 1993). While the

problem of star/galaxy classification seems to have been

satisfactorily answered Andreon et al. (2000), the other two

problems, due to their intrinsic complexity, are still far from

being settled (Bazell & Aha, 2001; Ball, 2001; Coryn &

Bailer-Jones, 2000; Goderya, Shaukat, & Lolling, 2002;

Odewhan & Nielsen, 1994; Snider et al. 2001; Weaver,

2002), for recent applications to galaxy morphology and

spectral classification, respectively). NNs have also been

applied to planetary studies (Birge & Walberg, 2002;

Lepper & Whitley, 2002); to the study and prediction of

solar activity and phenomena (Borda et al., 2002; Ganguli,

Gavrichtchaka, & Von Steiger, 2002; Lopez Ariste, Rees,

Socas-Navarro, & Lites, 2001; Patrick, Gabriel, Rodgers, &

Clucas, 2002; Rosa et al., 2000; Steinegger, Veronig,

Hanslmeier, Messerotti & Otruba, 2002), to the study of the

interplanetary magnetic field (Veselovskii, Dmitriev, Orlov,

Persiantsev, & Suvorova, 2000), and to stellar astrophysics

(Fuentes, 2001; Torres, Garcı́a-Berro, & Isern, 2001;

Weaver, 2000).

Other fields of application include: time series analysis

(Tagliaferri, Ciaramella, Barone, & Milano, 2001; Taglia-

ferri, Ciaramella, Milano, Barone, & Longo, 1999a), and

the identification and characterization of peculiar objects

such as QSO’s, ultraluminous IR galaxies, and Gamma

Ray Bursters (Balastegui, Ruiz-Lapuente, & Canal, 2001);

the determination of photometric redshifts (Tagliaferri

et al., 2002; Vanzella et al., 2002), the noise removal in

pixel lensing data (Funaro, Oja, & Valpola, 2003), the

decomposition of multi-frequency data simulated for

the Planck mission (Baccigalupi et al., 2000), the search

for galaxy clusters (Murtagh, Donalek, Longo, &

Tagliaferri, 2003).

Still in its infancy, is the use of NNs for the analysis of

the data collected by the new generation of instruments for

high energy astrophysics such as, for instance, the neutrino

telescopes AUGER (Medina, Tanco, & Sciutto, 2001) and

ARGO (Amenomori et al., 2000; Bussino, 1999); the

gamma ray Cherenkhov telescope (Razdan, Haungs, Rebel,

& Bhat, 2002; Schaefer, Hofmann, Lampeitl, & Hemberger,

2001), the VIRGO gravitational waves interferometer

(Acernese et al., 2002; Barone et al., 1999) and even for

the search of the Higgs boson (Smirnov, 2002).

In what follows, we shall concentrate on some appli-

cations which have been addressed by our group in the

framework of the AstroNeural collaboration which was

started in 1999 as a joint project of the Department of

Mathematics and Informatics at the University of Salerno

and of the Department of Physics at the University Federico

II of Napoli.3

The main goal of this collaboration was the implemen-

tation of a set of soft computing tools to be integrated within

the data reduction and data analysis pipelines of the new

generation of telescopes and focal plane instruments which

will soon be producing huge data flows (up to 1 TB per

night). These data will often need to be reduced and

analyzed on a very short time scale (8–12 h). The tools

produced by the AstroNeural collaboration are integrated

within the AstroMining package: a set of modules written in

MatLab and Cþþ .

3. Neural models most commonly adopted in astronomy

3.1. The multi-layer perceptron and the probabilistic

Bayesian learning

A NN is usually structured into an input layer of

neurons, one or more hidden layers and one output layer.

Neurons belonging to adjacent layers are usually fully

connected and the various types and architectures are

identified both by the different topologies adopted for the

connections and by the choice of the activation function.

Such networks are generally called multi-layer perceptron

(MLP; Bishop, 1995) when the activation functions are

sigmoidal or linear. (Fig. 1).

The output of the jth hidden unit is obtained first by

forming a weighted linear combination of the d input values,

and then by adding a bias to give:

zj ¼ f
Xd
i¼0

wð1Þ
j;i xi

 !
ð2Þ

where d is the number of the input, wð1Þ
j;i denotes a weight in

the first layer (from input i to hidden unit j). Note that wð1Þ
j;0

denotes the bias for the hidden unit j; and f is an activation

2 From the fusion of the European AVO and of the American National

Astrophysical Observatory (NVO).

3 Financed through several MURST-COFIN grants, and an ASI (Italian

Space Agency).
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function such as the continuous sigmoidal function:

f ðxÞ ¼
1

1 þ e2x
ð3Þ

The outputs of the network are obtained by transforming the

activation of the hidden units using a second layer of

processing elements.

yk ¼ g
XM
j¼0

wð2Þ
k;j zi

0
@

1
A ð4Þ

where M is the number of hidden unit, wð2Þ
k;j denotes a

weight in the second layer (from hidden unit j to output

unit k). Note that wð2Þ
k;0 denotes the bias for the output unit

k; and g is an activation function of the output units which

does not need to be the same function as for the hidden

units. The learning procedure is the so called ‘back

propagation’ which works as follows: we give to the input

neurons the first pattern and then the net produces an

output. If this is not equal to the desired output, the

difference (error) between these two values is computed

and the weights are changed in order to minimize it.

These operations are repeated for each input pattern until

the mean square error of the system is minimized. Given

the pth pattern in input, a classical error function Ep

(called sum-of-squares) is:

Ep ¼
1

2

X
j

ðt
p
j 2 y

p
j Þ

2 ð5Þ

where t
p
j is the pth desired output value and y

p
i is the

output of the corresponding neuron. Due to its interp-

olation capabilities, the MLP is one of the most widely

used neural architectures. The MLP can be trained also

using probabilistic techniques.

The Bayesian learning framework offers several advan-

tages over classical ones (Bishop, 1995): (i) it cannot overfit

the data; (ii) it is automatically regularized; (iii) the

uncertainty in the prediction can be estimated.

In the conventional maximum likelihood approach to

training, a single weight vector is found which minimizes

the error function; in contrast, the Bayesian scheme

considers a probability distribution over the weights. This

is described by a prior distribution pðwÞ which is modified

when we observe the data D: This process can be expressed

with Bayes’ theorem:

pðwlDÞ ¼
pðDlwÞpðwÞ

pðDÞ
ð6Þ

To evaluate the posterior distribution, we need expressions

for the prior pðwÞ and for the likelihood pðDlwÞ: The prior

over weights should reflect the knowledge, if any, about the

mapping to be built. We can write the prior as an

exponential of the form:

pðwÞ ¼
1

ZW ðaÞ
e2aEW ð7Þ

If the data sðtÞ are locally smooth, we must have that the

network mapping should be smooth, too. This can be easily

obtained if we put (Bishop, 1995):

EW ¼
1

2
wTw ¼

1

2
kwk2 ð8Þ

so that the prior is Nð0; 1=aÞ: In this way, small weights have

higher probability. Note that the prior is parametric, and the

regularization parameter a is called a hyperparameter,

because it controls the distribution of the network

parameters. Note also that Eqs. (7) and (8) can be

specialized for k different sets of weights by using different

regularization parameters ak for each group. Indeed, to

preserve the scaling properties of network mappings, the

prior Eq. (7) must be written as (Neal, 1996):

pðwÞ ¼
1

ZW ð{ak}kÞ
e2
P

k
akEWk ð9Þ

where k runs over the different weight groups. In analogy

with the prior, we can write the likelihood as an exponential

of the form:

pðDlwÞ ¼
1

ZDðbÞ
e2bED ð10Þ

where ED is an error function. Since our problem is a

regression one, we want our network to model the

distribution pðqlxÞ: If we assume Gaussian noise due to

measurement errors, then an appropriate error function is

(Bishop, 1995):

ED ¼
1

2

X
n

{yðxn;wÞ2 qn}2
; ð11Þ

where y is the network output, q the target and n runs over

the patterns. In this way, the likelihood (also termed noise

model) is Nðy; 1=bÞ:

Once the expressions for the prior and the noise model is

given, we can evaluate the posterior:

pðwlD; {ak}k;bÞ ¼
1

Zð{ak}k;bÞ
e2bED2

P
k
akEWk ð12Þ

This distribution is usually very complex and multi-modal,

and the determination of the normalization factor is very

difficult. Also, the hyperparameters must be integrated out,

since they are only used to determine the form of the

distributions.

The approach followed is the one introduced by MacKay

(1993), which integrates the parameters separately from the

hyperparameters by means a Gaussian approximation and

then finds the mode with respect to the hyperparameters.

This procedure gives a good estimation of the probability

mass attached to the posterior, in particular way for

distributions over high-dimensional spaces (MacKay,

1993). Using a Gaussian approximation the following

R. Tagliaferri et al. / Neural Networks 16 (2003) 297–319300



integral is easily evaluated:

pð{ak}k;blDÞ ¼
ð

pð{ak}k;b;wlDÞdw ð13Þ

Then, the mode of the resulting distribution can be

evaluated:

{{âk}k; b̂} ¼ argmax{ak}k ;b
ðpð{ak}k;blDÞÞ ð14Þ

and the hyperparameters thus found can be used to evaluate:

ŵ ¼ argmaxwðbðwl{ak}k;b;DÞÞ ð15Þ

The above outlined scheme must be repeated until a self-

consistent solution ðw; {ak}k;bÞ is found.

3.2. The self-organizing maps

The SOM algorithm (Kohonen, 1995) is based on

unsupervised competitive learning, which means that the

training is entirely data-driven and the neurons of the map

compete with each other (Vesanto, 1997). A SOM allows

the approximation of the probability density function of the

data in the training set (id est prototype vectors best

describing the data), and a highly visualized approach to the

understanding of the statistical characteristics of the data. In

a crude approximation, a SOM is composed by neurons

located on a regular, usually one- or two-dimensional grid

(see Fig. 2 for the two-dimensional case). Each neuron i of

the SOM may be represented as an n-dimensional weight:

mi ¼ ½mi1
;…;min

�T ð16Þ

where n is the dimension of the input vectors. Higher

dimensional grids are not commonly used since in this case

the visualization of the outputs becomes problematic.

In most implementations, SOMs neurons are connected

to the adjacent ones by a neighborhood relation which

dictates the structure of the map. In the two-dimensional

case, the neurons of the map can be arranged either on a

rectangular or a hexagonal lattice and the total number of

neurons determines the granularity of the resulting mapping,

thus affecting the accuracy and the generalization capability

of the SOM.

The use of SOM as data mining tools requires several

logical steps: the construction and the normalization of the

data set (usually to 0 mean and unit variance), the

initialization and the training of the map, the visualization

and the analysis of the results. In the SOMs, the topological

relations and the number of neurons are fixed from the

beginning via a trial and error procedure, with the

neighborhood size controlling the smoothness and general-

ization of the mapping. The initialization consists in

providing the initial weights to the neurons and, even

though the SOM are robust with respect to the initial choice,

a proper initialization usually allows faster convergence.

For instance, the AstroMining package allows three

different types of initialization procedures: random initi-

alization, where the weight vectors are initialized with small

random values; sample initialization, where the weight

vectors are initialized with random samples drawn from the

input data set; linear initialization, where the weight vectors

are initialized in an orderly fashion along the linear

subspace spanned by the two principal eigenvectors of the

input data set. The corresponding eigenvectors are then

calculated using the Gram-Schmidt procedure detailed in

Vesanto (1997). The initialization is followed by the

training phase.

In each training step, one sample vector x from the input

data set is randomly chosen and a similarity measure is

calculated between it and all the weight vectors of the map.

The best-matching unit (BMU), denoted as c; is the unit

whose weight vector has the greatest similarity with the

input sample x: This similarity is usually defined via a

distance (usually Euclidean) and, formally speaking, the

BMU can be defined as the neuron for which:

kx 2 mck ¼ min
i

kx 2 mik ð17Þ

where k·k is the adopted distance measure. After finding the

BMU, the weight vectors of the SOM are updated and the

weight vectors of the BMU and of its topological neighbors

are moved in the direction of the input vector, in the input

space. The SOM updating rule for the weight vector of the

unit i can be written as:

miðt þ 1Þ ¼ miðtÞ þ hciðtÞ½xðtÞ2 miðtÞ� ð18Þ

where t denotes the time, xðtÞ the input vector, and hciðtÞ the

neighborhood kernel around the winner unit, defined as a

non-increasing function of the time and of the distance of

the unit i from the winner unit c which defines the region of

influence that the input sample has on the SOM. This kernel

is composed by two parts: the neighborhood function hðd; tÞ

and the learning rate function aðtÞ :

hciðtÞ ¼ hðkrc 2 rik; tÞaðtÞ ð19Þ

where ri is the location of unit i on the map grid. The

AstroMining package allows the use of several neighbor-

hood functions, among which the most commonly used is

the so called Gaussian neighborhood function:

expð2krc 2 rik
2
=2s2ðtÞÞ ð20Þ

Fig. 2. The architecture of a SOM with a two dimensional grid architecture

and three inputs fed to all the neurons.
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The learning rate aðtÞ is a decreasing function of time

which, always in the AstroMining package, is:

aðtÞ ¼ ðA=t þ BÞ ð21Þ

where A and B are some suitably selected positive constants.

Since also the neighbors radius is decreasing in time, then

the training of the SOM can be seen as performed in two

phases. In the first one, relatively large initial a value and

neighborhood radius are used, and decrease in time. In the

second phase both a value and neighborhood radius are

small constants right from the beginning.

3.3. The generative topographic mapping

Latent variable models (Svensen, 1998) aim to find a

representation for the distribution pðxÞ of data in a D-

dimensional space x ¼ ½x1;…; xD� in terms of a number L of

latent variables z ¼ ½z1;…; zL� (where, in order for the

model to be useful, L p D). This is usually achieved by

means of a non-linear function yðz;WÞ; governed by a set of

parameters W; which maps the latent space points W into

corresponding points yðz;WÞ of the input space. In other

words, yðz;WÞ maps the hidden variable space into a L-

dimensional non-euclidean manifold embedded within the

input space (see Fig. 3 for the three-dimensional input and

two-dimensional latent variable space case).

Therefore, a probability distribution pðzÞ (which is also

known as a prior distribution of z) defined in the latent

variable space, will induce a corresponding distribution

pðylzÞ in the input data space. The AstroMining GTM

routines are largely based on the Matlab GTM Toolbox

(Svensen, 1998) and provide the user with a complete

environment for GTM analysis and visualization. In order to

render more ‘user friendly’ the interpretation of the resulting

maps, the GTM package defines a probability distribution in

the data space conditioned on the latent variables and, using

the Bayes Theorem, the posterior distribution in the latent

space for any given point x in the input data space, is:

pðzklxÞ ¼
pðxlzk;W;bÞpðzkÞP
k0pðxlzk0 ;W;bÞpðzk0 Þ

ð22Þ

provided that the latent space has no more than three

dimensions (L ¼ 3), its visualization becomes trivial.

3.4. Fuzzy similarity

Fuzzy set theory is a generalization of the classical set

theory. Formally introduced by Zadeh (1965), it stresses the

idea of partial truth value between the crisp values 0

(completely false) and 1 (completely true), configured in the

matter of a degree of belonging of an element to a set X: Let

S be an universe of discourse and X be a non-empty subset

of S: It is known that in set theory, a subset X can be

identified with its characteristic function defined for all x [
S; as mXðxÞ ¼ 1 if x [ X; and mXðxÞ ¼ 0 otherwise. A fuzzy

set mX of X is a function from S into the real unit interval

0; 1; representing just the degree mXðxÞ with which an

element x of S belongs to X: In set theory the operation of

conjunction and disjunction between subsets are modeled

from the classical operators ^ (min) and _ (max),

respectively, assuming only the two membership values 0

or 1.

In fuzzy set theory, these operations are generalized to

the concept of triangular norm (for short, t-norm) and

triangular conorm (for short, t-conorm). Since the concept

of conorm is dual of norm, we can restrict ourselves to the

case of t-norms. A t-norm t : ½0; 1�2 ! ½0; 1� is a binary

operation (by setting, as usually, tðx; yÞ ¼ xty for all

x; y [ ½0; 1�) which is commutative, associative, non-

decreasing in each variable coordinate and such that xt0 ¼

0; xt1 ¼ x: We know (Hajek, 1998) that if t is assumed to be

continuous, then there is a unique operation x !t y; called

residuum of t; defined as ðx !t yÞ ¼ max{z [ ½0; 1� :

ðxtzÞ # y} such that ðxtzÞ # y iff z # ðx !t yÞ: In what

follows, we always suppose that t is continuous and use one

of the most famous t-norm used in fuzzy set theory (with its

correspondent residuum), namely the Łukasiewicz t-norm

defined for all x; y [ ½0; 1� as:

xty ¼ max{0; x þ y 2 1}

ðx !t yÞ ¼ min{1; 1 2þy};

ð23Þ

Now we introduce the concept of bi-residuum that offers an

elegant way to interpret the concept of similarity (or

equivalence) in fuzzy set theory. The bi-residuum is defined

as follows:

x $ y ¼ ðx !t yÞ ^ ðy !t xÞ ð24Þ

In the case of Łukasiewicz t-norm, it is easy to see that the

bi-residuum is calculated via

x $ y ¼ 1 2 maxðx; yÞ þ minðx; yÞ ð25Þ

A crisp equivalence relation R on a subset X

has as characteristic function mR : X times X ! {0; 1}

(from now on, for simplicity we put mR ¼ R)

such that R is reflexive (Rðx; xÞ ¼ 1;x [ X),

symmetric (Rðx; yÞ ¼ Rðy; xÞ;x [ X) and transitive

(Rðx; yÞ ¼ Rðy; zÞ ¼ 1 ) Rðx; zÞ ¼ 1;x; y; z [ X). Fuzzify-

ing this concept, a fuzzy similarity relation S on X

with respect to a t-norm is a relation S : X £ X ! ½0; 1�
Fig. 3. The architecture of a GTM with a three-dimensional input space and

a two-dimensional latent variable space.
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such that S is reflexive, symmetric and ‘t-transitive’ (i.e.

Sðx; yÞtSðy; zÞ # Sðx; zÞ;x; y; z [ X). We recall (Hajek,

1998) that any fuzzy set mX generates a fuzzy similarity S

on X; defined for all x; y [ X as

Sðx; yÞ ¼ mXðxÞ $ mXðyÞ ð26Þ

If we consider n fuzzy similarity Si; i ¼ 1;…; n on a set X

with respect to the Łukasiewicz t-norm, then the following

relation defined pointwise as:

Skx; yl ¼
1

n

Xn

i¼1

Siðx; yÞ ð27Þ

is the so-called total fuzzy similarity (TFS) with respect to

the Łukasiewicz t-norm (Turunen, 1999).

So far, in the AstroMining tool, fuzzy similarity has been

implemented to perform only object classification (such as,

for instance, star–galaxy separation). The idea behind this

part of the tool is that a few prototypes for each object class

can be used as reference points for the catalog objects.

The prototypes selection is accomplished by means of a

self-organizing maps (SOM) or Fuzzy C-means. In this way,

using a method to search the prototypes, and the fuzzy

similarities, it is possible to compute for each object of the

catalog, its degree of similarity with respect to the

prototypes.

3.5. Independent component analysis

The independent component analysis (ICA) is used to

reveal underlying factors or components in multi-variate

multi-dimensional statistical data. To do so, the ICA defines

a generative model for the observed multi-variate data. In

the model, the data variables are assumed to be linear

mixtures of some unknown latent variables, which are

assumed to be non-Gaussian and mutually independent.

ICA models consist of estimating both the unknown mixing

system and the latent variables (called independent

components or sources) when we only observe the data

variables. Approaches for ICA estimation are based on

maximization of non-gaussianity (Hyvärinen, Karhunen, &

Oja, 2001), minimization of mutual information (Bell &

Sejnowski, 1995) or maximum likelihood (Amari, Cichoki,

& Yang, 1996; Pham, Garrat, & Jutten, 1992).

The ICA method is related to the method called blind

source separation (BSS) aimed to the extraction of

independent sources from their linear mixtures. Formally,

the mixing model is written as:

x ¼ As þ n ð28Þ

where x is an observed m-dimensional vector, s an n-

dimensional random vector whose components are assumed

to be mutually independent, A a constant m £ n matrix to be

estimated, and n the additive noise. The additive noise term

n is often omitted in Eq. (28) because it can be incorporated

in the sum as one of the source signals. In addition to the

independent assumption, we assume that the number of

available different mixtures m is at least as large as the

number of sources n: Usually, m is assumed to be known in

advance, and often m ¼ n: Only one of the source signals si

is allowed to have a Gaussian distribution, because it is

impossible to separate two or more Gaussian sources

(Hyvärinen et al., 2001). In adaptive source separation an

m £ n separating matrix W is updated so that the vector:

y ¼ Wx ð29Þ

is an estimate y . s of the original independent source

signals. In what follows we will present the fixed-point

algorithm, namely FastICA (Hyvärinen et al., 2001). The

FastICA learning rule finds a direction, i.e. a unit vector w
such that the projection wTx maximizes independence of the

single estimated source y: Independence is here measured

by the approximation of the negentropy given by

JGðwÞ ¼ ½E{GðwTxÞ} 2 E{GðnÞ}�2 ð30Þ

where w is an m-dimensional (weight) vector, x represents

our mixture of signals, and E{ðwTxÞ2} ¼ 1; n a standardized

Gaussian random variable. Maximizing JG allows to find one

independent component, or projection pursuit direction. We

remark that the algorithm requires a preliminary whitening

of the data: the observed variable x is linearly transformed

to a zero-mean variable v ¼ Qx such that E{vvT} ¼ I:

Whitening can always be accomplished by, e.g. principal

component analysis (Hyvärinen et al., 2001).

The one-unit fixed-point algorithm for finding a row

vector w is (Hyvärinen et al., 2001)

wp ¼ E½vgðwT
i vÞ�2 E½g0ðwT

i vÞ�wi wi ¼ wp
i =kwp

i k ð31Þ

where gð·Þ is a suitable non-linearity, in our case

gðyÞ ¼ tanhðyÞ, and g0ðyÞ is its derivative with respect to y:

The algorithm of the previous equations estimates just

one of the independent components. To estimate several

independent components, one needs to run the one-unit

FastICA algorithm using several units (e.g. neurons) with

weight vectors w1;…;wn: To prevent different vectors from

converging to the same maximum, we must decorrelate the

outputs wT
1 x;…;wT

n x after every iteration. In specific

applications it may be desirable to use a symmetric

decorrelation, in which vectors are not privileged over the

others. This can be accomplished by the classical method

involving matrix square roots. By assuming that the data are

whitened, we have that:

W ¼ WðWTWÞ21=2 ð32Þ

where W is the matrix of the vectors ðw1;…;wnÞ; and the

inverse square root is obtained from the eigenvalue

decomposition as:

ðWTWÞ21=2 ¼ ED21=2ET

where E is the eigenvector matrix and D the diagonal

eigenvalue one.
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Recently, ICA have been tested for artefacts detection

and removal on astronomical images originally taken to

study pixel lensing (Funaro et al., 2003). A technique which

consists in monitoring the light variation of individual pixels

(in the place of individual stars as it is the case in normal

light curve analysis). In this case, true pixel variations need

to be disentangled from artifacts (induced by variable

galactic stars accidentally falling on the same pixel, cosmic

ray events, noise peaks, etc.). In this case, the facts that the

independence of the artefacts is often theoretically guaran-

teed, and that the linear model holds exactly, argue in favour

of the use of ICA.

3.6. Time series analysis

The search for periodicities in time or spatial dependent

signals is a topic of the uttermost relevance in many fields of

research, from geology (stratigraphy, seismology, etc.,

Brescia et al., 1996) to astronomy (Tagliaferri et al.,

1999a) where it finds wide application in the study of light

curves of variable stars, AGNs, etc. The more sensitive

instrumentation and observational techniques become, the

more frequently we find variable signals in time domain that

previously were believed to be constant. There are two types

of problems related either to unknown fundamental period

of the data, or to their unknown multiple periodicities;

typical cases being the determination of the fundamental

period of eclipsing binaries both in the light and/or the radial

velocity curves, or the multiple periodicities determination

of light curves of pulsating stars. The general problem is

how to estimate the frequencies of periodic signals which

may be contained in a physical variable x measured at

discrete times ti: In what follows, we shall assume that xðtiÞ

can be written as the sum of the signal xs and a random error

R :

xi ¼ xðtiÞ ¼ xsðtiÞ þ Ri ð33Þ

Many different tools based on different types of Fourier

analysis may be effectively used in the case of even

sampling (Deeming, 1975; Horne & Baliunas, 1986;

Scargle, 1982), but they lead to ambiguous results when

are applied to unevenly sampled data. Possible ways around

such as, for instance, the resampling of the data into an

evenly sampled sequence via interpolation, are not very

useful since they usually introduce a strong amplification of

the noise thus preventing the use of Fourier methods which

are always very sensitive to the noise level (Horowitz,

1974). A commonly used tool is the so called Periodogram,

which is an estimator of the signal energy in the frequency

domain (Deeming, 1975; Oppenheim & Schafer, 1989; Kay,

1988; Lomb, 1976) and has been extensively applied to the

analysis of unevenly sampled stellar light curves. Its use,

however, is undermined by the difficulties encountered in

dealing with the aliasing effects. A variation of the classical

Periodogram (P) was introduced by Lomb (1976) and is

distributed in Numerical Recipes in C: The Art of Scientific

Computing (1992). Let us suppose that the signal consists of

N data points xðnÞ and let �x and s2 be the mean and the

variance:

�x ¼
1

N

XN
n¼1

xðnÞ s2 ¼
1

N 2 1

XN
n¼l

ðxðnÞ2 �xÞ
2 ð34Þ

The normalized Lomb’s Periodogram—id est the power

spectra as function of an angular frequency v ; 2pf . 0—

is defined as:

PNðvÞ
1

2s2

XN21

n¼0

ðxðnÞ2 �xÞcos vðtn 2 tÞ

" #2

XN21

n¼0

cos2 vðtn 2 tÞ

2
666664

3
777775þ

1

2s2




XN21

n¼0

ðxðnÞ2 �xÞsin vðtn 2 tÞ

" #2

XN21

n¼0

sin2 vðtn 2 tÞ

2
666664

3
777775 ð35Þ

where t is an offset defined as:

tanð2vtÞ ;

XN21

n¼0

sin 2vtn

XN21

n¼0

cos 2vtn

ð36Þ

More modern frequency estimators, based on the signal

autocorrelation matrix eigenvectors, have been introduced

to overcome the biases of more traditional Fourier methods.

Another approach was proposed which makes use of the

algorithm STIMA based on the frequency estimator MUlti

SIgnal Classificator—MUSIC (Oppenheim & Schafer,

1989) and of a non-linear NN which extracts the principal

components of the autocorrelation matrix. Let us assume

that the signal is composed by p narrow band sinusoidal

components which can be modeled as stationary ergodic

signals id est, for which it can be assumed that the phases are

independent random variables uniformously distributed in

the interval ½0; 2p� (Kay, 1988). Frequencies may be

estimated from the signal autocorrelation matrix (a.m.)

which is the sum of the signal and noise matrices; the p

principal eigenvectors of the signal matrix are the same of

the total matrix.

The eigenvectors of this matrix may then be extracted

using a non-linear PCANN (Andreon, Gargiulo, Longo,

Tagliaferri, & Capuano, 2000; Karhunen & Joutsensalo,

1994, 1995; Oja, Karhunen, Wang, & Vigario, 1996;

Sanger, 1989; Tagliaferri et al., 1999a, 2001). Before

being fed to the NN, the data need to be corrected for the

average pattern in order to obtain zero mean processes

(Karhunen & Joutsensalo, 1994, 1995; Tagliaferri et al.,

1999a). In this case, the fundamental learning parameters of

the NN are: (i) the initial weight matrix; (ii) the number of
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neurons, id est the number of principal eigenvectors which

need to be estimated or twice the number of periodicities

expected in the signal; (iii) the non-linear learning

parameter a; (iv) the learning rate m:

The weight matrix W is initialized either with small

random values or, only in the case of regular signals and in

order to speed up the convergence of the neural estimator

(NE), with the first pattern of the signal as columns of the

matrix. In order to establish when the NN has converged and

to accomplish the periodicities estimation on unevenly

sampled data (without interpolation) we used the following

modified MUSIC estimator (Tagliaferri et al., 1999a, 2001):

PMUSIC ¼
1

M 2
XM
i¼1

leH
f wðiÞl2

ð37Þ

where wðiÞ is the ith weight vector after learning, and

eH
f ¼ ½1; e

j2pft0
f ;…; e

j2pftðL21Þ

f �H ð38Þ

where {t1;…; tðL21Þ} are the first L components of the

temporal coordinates of the uneven signal. We note that for

interpolated data

eH
f ¼ ½1; e

j2pf
f ;…; e

j2pf ðL21Þ
f �H ð39Þ

The final algorithm is the following:

Step 1. Initialize the weight vectors wðiÞ; ;i ¼ 1;…; p

with small random values, or with orthonormalized

signal patterns. Initialize the learning threshold e ; the

learning rate m: Reset the pattern counter k ¼ 0:

Step 2. Input the kth pattern xk ¼ ½xðkÞ;…; xðk þ N þ 1Þ�;

where N is the number of the input components

Step 3. Calculate the output for each neuron yðjÞ ¼ wTðjÞ

xi ;i ¼ 1;…; p

Step 4. Modify the weights wkþ1ðiÞ ¼ wkðiÞ þ mkgðykðiÞÞ

ekðiÞ ;i ¼ 1;…; p

Step 5. Apply the convergence test. If:

1

M 2
XM
i¼1

leH
f wðiÞl2

. 0 ð40Þ

then go to Step 7

Step 6. k ¼ k þ 1: Go to step 2

Step 7. End

After the learning, the weight matrix columns are fed to

the frequency estimator MUSIC and the estimated signal

frequencies are obtained as the peak locations of the

functions. We note that if f is the frequency of the ith

sinusoidal component f ¼ fi; we shall have e ¼ ei; and

PMUSIC !1: In practice, this means that there will be a

peak in correspondence of the component frequency

PMUSIC:

4. Some applications

4.1. Light curve analysis

A good example of the above outlined time series

analysis method is the application to the light curve of the

Cepheid SU Cygni presented in Tagliaferri et al. (1999a).

The sequences were obtained in the Johnson U, B, V, R, I

photometric bands and covers the period from June to

December 1977. The light curve is composed by 21 samples

in the V band, with a period of 3:8d, as shown in Fig. 4. In

this case, the parameters of the n.e. were: N ¼ 10; p ¼ 2;

a ¼ 20; m ¼ 0:001: The estimate frequency interval is ½0ð1=

JDÞ; 0:5ð1=JDÞ�: The estimated frequency is 0:26ð1=JDÞ in

agreement with the Lomb’s P; but without showing any

spurious peak (Figs. 5 and 6).

Similar experiments were also performed with equally

good results on the stars U Aql (period ¼ 7:01d), and X

Cygni (period ¼ 16:38d), U Peg (two periods of 5.4 and

2:8d) (Tagliaferri et al., 1999a).

4.2. Image segmentation and object detection

In processing an astronomical image, the final goal is

usually the construction of a catalogue containing as many

as possible astrometric, geometric, morphological and

photometric parameters for each individual object present

Fig. 4. Light curve of the Cepheid star SU Cyg.

Fig. 5. n.e. estimate of SU Cygni.
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in the image. The first step is the detection of the objects, a

step which, as soon as the quality of the images increases

(both in depth and in resolution), becomes much less

obvious than it may seem at first glance. The traditional

definition of ‘object’ as a set of connected pixels having

brightness higher than a given threshold has in fact several

well-known pitfalls. For instance, serious problems are

posed by the recognition of low surface brightness galaxies

having a central brightness which is often comparable to, or

fainter, the detection threshold, and a clumpy shape, thus

implying that even though there may be several nearby

pixels above the threshold, they can often be unconnected

and thus escape the assumed definition. Ferguson (1998)

stressed some even stronger limitations of the traditional

approach to object detection: (i) the comparison of

catalogues obtained by different groups from the same

raw material and using the same software shows that, near

the detection limits, the results are strongly dependent on

the assumed definition of ‘object’ (Fig. 7); (ii) the object

detection performed by the different groups is worse than

that attained by even an untrained astronomer by visually

inspecting an image or, in other words, many objects that

are present in the image are lost by the software, while

others that are missing on the image are detected (hereafter

spurious objects). Other problems come from the relevant

feature selection which are generally chosen by the

astronomer’s expertise.

NExt is a NN package implemented by the AstroNeural

group, to perform object detection, deblending and

star/galaxy classification. In the application of NExt we

can identify three main steps: segmentation, feature

extraction and classification.

4.2.1. Segmentation

The first step of the procedure consists in an optimal

compression of the redundant information contained in the

pixels, via a mapping from pixels intensities to a subspace

individuated through Principal Component Analysis

( ¼ PCA, Fig. 8). From a mathematical point of view, in

fact, the segmentation of an image F is equivalent to

splitting it into a set of disconnected homogeneous

(accordingly to an uniformity predicate P) regions

S1; S2;…; Sn in such a way that their union is not

homogeneous:
S

Si ¼ F with Si

T
Sj ¼ 0; i – j; where

PðSiÞ ¼ true;i and PðSi

S
SjÞ ¼ false when Si is adjacent

to Sj:

Since the attribution of a pixel to either the ‘background’

or the object classes depends on both the pixel value and the

values of the adjacent pixels, NExt uses a ðn £ nÞ mask (with

n ¼ 3 or 5) and, in order to lower the dimensionality of the

input pattern, an unsupervised PCA NN is used to identify

the M (with M p n £ n) most significant features.

This M-dimensional projected vector becomes the input

for a second non-linear NN which classifies pixels into

classes. In this respect, we have to stress that non-linear

PCA NNs based on a Sigmoidal function outperform linear

PCA NNs since they achieve a much better separation of

faint objects close to the detection limit of the image (Fig. 9).

Linear PCA, in fact, produce distributions with very dense

cores (i.e. background and faint objects) and only a few

points spread over a wide area (i.e. luminous objects), while

non-linear PCAs, on the opposite, produce better sampled

distributions and a better contrast between faint and bright

objects.

After this step, the principal vectors can be used to

project each pixel in the eigenvector space. An unsupervised

NN is then used to classify pixels into a few classes (on

Fig. 8. The overall scheme of the segmentation strategy adopted in NExt.

Fig. 6. Lomb’s P estimate of SU Cygni.

Fig. 7. The spurious objects (created by the software but not really present

in the original image) are highlighted.
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average 6, since fewer classes produce poor classifications

and more classes produce noisy ones). In all cases, however,

only one class represents the background. The classes

corresponding to the non-background pixels are then

merged together to reproduce the usual object/non-object

dichotomy. In order to select the proper NN architecture, we

tested various Hierarchical and Hybrid unsupervised NNs

and the best performing turned out to be the neural-gas

(NG), the multi-layer neural gas (MLNG), the multi-layer

self-organizing map (ML-SOM) and the GCS þ ML neural

gas (Andreon et al., 2000; Tagliaferri, Capuano, &

Gargiulo, 1999b).

4.2.2. Object detection performances

Once the objects have been detected, NExt measures a

first set of parameters (namely the photometric baricenter,

the peak intensity and the flux integrated over the area

assigned to the object by the mask). These parameters are

needed to recognize partially overlapping objects (from the

presence of multiple intensity peaks) and to split them. In

NExt, multiple peaks are searched at several position angles

after compressing the dynamical range of the data (in order

to reduce the spurious peaks produced by noise fluctuations)

and, once a double peak has been found, objects are split

perpendicularly to the line joining the peaks. A problem

which is often overlooked in most packages is that the

deblending of multiple (more than two components) objects

introduces spurious detections: the search for double peaks

and the subsequent splitting produces in fact in each

segment of the image a spurious peak which is identified as

an additional component in the next iteration (Fig. 10).

In order to correct for this effect, after the decomposition,

NExt runs a re-composition loop based on the assumption

that true celestial objects present a rapidly decreasing

luminosity profile and that, therefore, erroneously split

objects will present a strong difference on the two

corresponding sides of adjacent masks. After deblending,

contour regularization takes place and astrometric and

photometric parameters are measured.

One main problem in testing the performances of an

extraction algorithm is that the comparison of catalogues

obtained by different packages leads often to ambiguous

results: unless obvious biases are at work, in the case of

conflict it is difficult if not impossible, to decide which

algorithm is correct and which is not. We therefore tested

several packages (NExt, S-Extractor and FOCAS) on a

North Galactic Pole field extracted from the Digitized

Palomar Observatory Sky Survey (hereafter DPOSS, Weir,

Fayyad, & Djorgovski, 1995). In this case, a deeper and

accurate catalogue obtained from high resolution and deeper

plates taken at the CFHT telescope was available (Infante &

Pritchet, 1992, hereafter IP92) and allowed to define ‘True’

objects. All packages were run on the same DPOSS region

covered by the IP92 catalogue and results were compared.

We have to stress that, since in using S-Extractor the choice

of the parameters is not critical, we adopted the default

values.

The results are presented in Figs. 11 and 12. In both

figures, the upper part shows the number of objects in the

IP92 catalogue (it is clearly visible that the IP92 catalogue is

complete to almost two magnitudes below the DPOSS

completeness limit). The lower panel of Fig. 11 gives the

fraction (True/Detected) of objects detected by the various

NNs and by S-Extractor and shows that all implementations

are more or less equivalent in detecting True objects (the

best performing being S-Extractor and MLNG5 (where the

5 denotes the 5 £ 5 mask implementation of the MLNG

NN). Very different are, instead, the performances in

detecting ‘false’ or spurious objects, id est objects which

are not in the IP92 catalogue but are detected on the DPOSS

material. In this case, NNs outperform S-Extractor produ-

cing in same cases (i.e. MLNG5) up to 80% less spurious

detections.

Fig. 9. Simplified scheme of the different performances of linear and non-linear NNs in increasing the contrast between background pixels and faint objects

pixels.

Fig. 10. Example of how some packages erroneously split a triple source

into four components.
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4.3. Data mining in the catalogue space

As stressed in Section 1, data mining in the catalogue

space covers an almost unlimited field of applications, from

classification to pattern recognition, to trend analysis, etc. In

what follows we shall focus on a few selected cases which

appear to be most instructive in order to show the

potentialities of NNs.

4.3.1. Star/galaxy classification with NExt

One of the most commonly encountered applications of

NN for astronomical data mining is the problem usually

called ‘star–galaxy’ classification. To be more precise,

given a specific instrumental setup and therefore the

associated Point Spread Function or PSF, the problem

consists in recognizing those objects whose light distri-

bution cannot be distinguished from the PSF (unresolved or

‘stars’) from those whose light distribution appears

extended (resolved or ‘galaxies’).

Human experts can usually classify objects either

directly from the appearance of the objects on an image

(either photographic or digital) or from the value of some

finite set of derived parameters via diagnostic diagrams

(such as magnitude versus area). This approach, however, is

too much time-consuming and much too dependent on the

‘know how’ and personal experience of the observer: (i) the

choice of the most suitable parameters varies greatly from

author to author, making comparisons difficult if not

impossible, and (ii) regardless the complexity of the

problem, owing to the obvious limitations of representing

three or more dimensions in space on a two-dimensional

graph, only two features are often considered.

As stressed above, the star/galaxy problem can be

addressed by a wide variety of neural methods. In what

follows, we shall focus our attention on those tested within

the AstroNeural collaboration. The first step in the NExt

approach consists in identifying among the measured

parameters those which are most significant for the

classification task. In order to select the relevant ones, we

adopted the sequential backward elimination strategy

(Bishop, 1995) which consists in a series of iterations

eliminating at each step the feature which is less significant

for the classification. Extensive testing showed that the best

performances in star/galaxy classification are obtained by

using six features only (two radii, two gradients, the second

total moment and a Miller and Coe ratio). Star/galaxy

classification was performed by means of a MLP. In order to

teach the MLP how to classify galaxies, we divided the data

set into three subsets, namely the training, validation and

test sets. Learning was performed on the training set and the

early stopping technique is used to avoid overfitting

(Bishop, 1995). As a comparison classifier we used S-

Extractor (Bertin & Arnouts, 1996) which also uses a NN (a

MLP) trained on a set of 106 simulated images to attach to

each object a ‘stellarity index’ ranging from 0 (galaxies) to 1

(stars). We wish to stress here that NExt is (to our

knowledge) the only package trained on real, noisy data.

The training was then validated on the validation set and

tested on the test set. Results are shown in Fig. 13 and

confirm that NExt misclassifies less galaxies than S-

Extractor, whose performance were optimized by the use

of the validation set (for a fair comparison).

4.3.2. Star/galaxy classification with fuzzy similarities

The catalogue used in our preliminary experiments

consists of 231.000 labeled Stars/Galaxies (S/G) objects

and each object has 16 features. From the experience we

know that for each object is enough to select the seven most

significant features. In our experiment we choose randomly

only 10.000 objects. It is interesting to compare in Fig. 14(a)

and (b), the distribution of the feature values of the catalog

objects after the preprocessing step described below. Our
Fig. 12. Comparison of the performances of different NNs architectures

plus S-Extractor in detecting False objects.

Fig. 11. Comparison of the performances of different NNs architectures

plus S-Extractor in detecting True objects.
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method is composed of the following steps: (1) normal-

ization of object features (fuzzy sets constructions); (2)

unsupervised prototypes selection from the object catalog

(one for each stars/galaxies class); (3) calculation of the TFS

between the prototypes and each object; (4) S/G classifi-

cation by using the computed TFS. In the first step we apply

a preprocessing to the selected features of the data in order

to obtain a fuzzy set for each feature. In detail, the

normalization of the xth object with respect to ith feature is

accomplished by

mfeaturei
ðxÞ ¼

ðfeatureiðxÞ2 ðlowest featureiÞÞ

ðhighest featureiÞ2 ðlowest featureiÞÞ
ð41Þ

In the second step the selection of two prototypes is realized

by means of the SOM (Kohonen, 1995). In the first level of

the SOM we set the number of the nodes to be the number of

object features. The second level is composed by two nodes,

one for each class (S/G). In this way we obtain two

prototypes corresponding to the SOM weights. In the next

step, we calculate the similarity between the objects of the

catalog and the two prototypes using the TFS described

above. Finally, the object labeling is obtained by assigning

an object to the star or to the galaxy classes on the basis of

the maximum similarity with respect to each prototype. In

order to test our methodology we applied the described

algorithms to the labeled catalogue previously described. In

this preliminary experiment we use the chosen objects for

Fig. 13. Comparison of the performances of MLNG5 and S-Extractor in

classifying stars and galaxies.

Fig. 14. Up down and left right: (a) Stars histogram; (b) Galaxies histogram; (c) Stars TFS; (d) Galaxies TFS.
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both the prototypes selection and the test phases, obtaining a

rate of correct classification of 77.38% which corresponds to

the correct classification of 7738 objects of the catalog. This

results are shown in Table 1 as a confusion matrix. More in

detail, we are able to guess the correct classification of 2867

galaxies and 4871 stars. In Fig. 14(c) and (d) we show the

TFS computed for the Stars prototype and Galaxies

prototype, respectively.

4.3.3. Photometric redshifts of galaxies

The redshift of a galaxy (namely its recession velocity

from the observer) is of paramount relevance in observa-

tional cosmology since it often provides the only way to

estimate its distance. The redshift may be measured either

spectroscopically (but this procedure, even though accurate,

is very time consuming) or photometrically (less accurate

and subject to many systematic errors but easier to apply to

large samples of objects; (Baum, 1962; Pushell, Owen, &

Laing, 1982). The recent availability of large datasets

containing homogeneous and multi-band photometric data

for large samples of objects together with spectroscopic

redshifts for a non-negligible subsample, has opened the

way to the use of supervised NN for redshift evaluation.

In a recent paper (Tagliaferri et al., 2002), we used this

type of approach to study the Sloan Dital Sky Survey Early

Data Release (SDSS-EDR) (Stoughton et al., 2002): a data

set containing photometric data for some 16 million

galaxies and spectroscopic redshift for a subsample of

about 50.000 objects distributed over a relatively large

redshift range. The method can be summarized as follows:

(i) an unsupervised SOM is used to cluster the data in the

training, validation and test set in order to ensure a complete

coverage of the input parameter space; (ii) a MLP in

Bayesian framework is used to estimate the photometric

redshifts; (iii) a labelled SOM is used to derive the

completeness and the contamination of the final catalogues.

In order to build the training, validation and test sets, a

set of parameters (magnitudes in the bands u; g; r; i; z; both

total and petrosian magnitudes, petrosian radii, 50% and 90

petrosian flux levels, surface brightness and extinction

coefficients, (Stoughton et al., 2002) was extracted from the

SDSS-EDR. Due to the highly non-homogeneous distri-

bution of the objects in the redshift space (with a marked

cutoff at z , 0:6), the density of the training points

dramatically decreases for increasing redshifts, and there-

fore, unless special care is paid to the construction of the

training set, all networks will tend to perform much better in

the range where the density of the training points is higher.

Therefore, in order to achieve an optimal training of the

NNs, two different approaches to the construction of

the training, validation and test sets were implemented:

the uniform sampling and the clustered sampling (via K-

means and/or SOM). In both cases the training set data are

first ordered by increasing redshift, then, in the case of

uniform sampling, after fixing the number of training

objects (which needs in any case to be smaller than 1/3 of

the total sample) objects are extracted following a

decimation procedure. This method, however, is under-

mined by the fact that the input parameter space is not

necessarily uniformously sampled, thus causing a loss in the

generalization capabilities of the network. In the clustered

sampling method, objects in each redshift bin are first

passed to a SOM or a K-means algorithm which performs an

unsupervised clustering in the parameter space looking for

the most significant statistical similarities in the data. Then,

in each bin and for each cluster, objects are extracted in

order to have a good sampling of the parameter space. The

experiments were performed using the NNs in the Matlab

and Netlab Toolboxes, with and without the Bayesian

framework. All NNs had only one hidden layer and the

experiments were performed varying the number of the

input parameters and of the hidden units. Extensive

experiments lead us to conclude that the Bayesian frame-

work provides better generalization capabilities with a

lower risk of overfitting, and that an optimal compromise

between speed and accuracy is achieved with a maximum of

22 hidden neurons and 10 Bayesian cycles. In Table 2, we

summarize some of the results obtained from the exper-

iments and, in Fig. 15, we compare the spectroscopic

redshifts versus the photometric redshifts derived for the test

set objects in the best experiment.

In practical applications, one of the most important

problems to solve is the evaluation of the contamination of

the final photometric redshift catalogues or, in other words,

the evaluation of the number of objects which are

erroneously attributed a zphot significantly (accordingly to

some arbitrarily defined treshold) different from the

unknown zspec: This problem is usually approached by

means of extensive simulations. The problem of contami-

nation is even more relevant in the case of NNs based

methods, since NNs are necessarily trained only in a limited

range of redshifts and, when applied to the real data, they

will produce misleading results for most (if not all) objects

which ‘in the real word’ have redshifts falling outside the

training range. This behavior of the NNs is once more due to

the fact that while being good interpolation tools, they have

very little, if any, extrapolation capabilities. Furthermore, in

mixed surveys, the selection criteria for the spectroscopic

sample tend to favour the brightest (and, on average, the

closer) galaxies with respect to the fainter and more distant

ones and, therefore, the amount of contamination encoun-

tered, for instance, in the test set sets only a lower limit to

the percentage of spurious redshifts in the final catalogue.

Table 1

Confusion matrix of the experimental results of S=G separation

G S

G 2867 590

S 1672 4871
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To be more specific: in the SDSS-EDR spectroscopic

sample, over a total of 54,008 objects having z . 0; only 88,

91 and 93% had redshift z lower than, respectively, than 0.3,

0.5 and 0.7. To train the network on objects falling in the

above ranges implies, respectively, a minimum fraction of

12, 9 and 7% of objects in the photometric data set having

wrong estimates of the photometric redshift. On the other

hand, as we have shown, the higher is the cut in redshifts,

Fig. 15. Photometric versus spectroscopic redshifts obtained with a Bayesian MLP with 2 optimization cycles, 50 learning epochs of quasi-Newton algorithm

and 5 inner epochs for hyperparameter optimization. Hyperparameters were initialized at a ¼ 0.001 and b ¼ 50:

Table 2

Column 1: higher accepted spectroscopic redshift for objects in the training set; column 2: input (hence number of input neurons) parameters used in the

experiment; column 3: number of neurons in the hidden layer; column 4: interquartile errors evaluated on the test set; column 5: number of objects used in each

of the training, validation and test set

Range Parameters Neu. Error Objects

z , 0:3 r, u-g, g-r, r-i, i-z 18 0.029 12000

z , 0:5 r, u-g, g-r, r-i, i-z 18 0.031 12430

z , 0:7 r, u-g, g-r, r-i, i-z 18 0.033 12687

z , 0:3 r, u-g, g-r, r-i, i-z, radius 18 0.025 12022

z , 0:5 r, u-g, g-r, r-i, i-z, radius 18 0.026 12581

z , 0:7 r, u-g, g-r, r-i, i-z, radius 18 0.031 12689

z , 0:3 r, u-g, g-r, r-i, i-z, radius, petrosian fluxes, surf. br. 22 0.020 12015

z , 0:5 r, u-g, g-r, r-i, i-z, radius, petrosian fluxes, surf. br. 22 0.022 12536

z , 0:7 r, u-g, g-r, r-i, i-z, radius, petrosian fluxes, surf. br. 22 0.025 12680
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the lower is the accuracy and a compromise between these

two factors needs to be found on objective grounds.

An accurate estimate of the contamination may be

obtained using unsupervised SOM clustering techniques

over the training set.

Fig. 16 show the position of the BMU as a function of the

redshift bin. Each exagon represents a neuron and it is

clearly visible that low redshift (z , 0:5) tend to activate

neurons in the lower right part of the map, intermediate

redshift ones (0:5 , z , 0:7) neurons in the lower left part

and, finally, objects with redshift higher than 0.7 activate

only the neurons in the upper left corner. The labeling of the

neurons (shown in the upper left map) was done using the

training and validation data sets in order to avoid overfitting,

while the confidence regions were evaluated on the test set.

Therefore, test set data may be used to map the neurons

in the equivalent of confidence regions and to evaluate the

degree of contamination to be expected in any given redshift

bin. Conversely, when the network is applied to real data,

the same confidence regions may be used to evaluate

whether a photometric redshift correspondent to a given

input vector may be trusted upon or not.

The above derived topology of the network is also

crucial since it allows to derive the amount of

contamination. In order to understand how this may be

achieved, consider the case of objects which are

attributed a redshift zphot , 0:5: This prediction has a

high degree of reliability only if the input vector

activates a node in the central or right portions of the

map. Vector producing a redshift zphot , 0:5 but activat-

ing a node falling in the upper left corner of the map are

likely to be misclassified. In Fig. 17, we plot the

photometric versus spectroscopic redhift for all test set

objects having zphot , 0:5 and activating nodes in the

correct region of the map.

As it can be seen, out of 9270 objects with zphot , 0:5; only

39 (id est, 0.4% of the sample) have discordant spectroscopic

redshift. A confusion matrix helps in better quantifying the

quality of the results. In Table 3, we give the confusion (or, in

this case, ‘contamination’) matrix obtained dividing the data in

three classes accordingly to their spectroscopic redshifts,

namely class I: 0 , z , 0:3; class II: 0:3 , z , 0:5; class III:

z . 0:5: The elements on the diagonal are the correct

classification rates, while the other elements give the fraction

of objects belonging to a given class which have been

erroneously classified into an other class.

As it can be seen, in the redshift range (0,0.3), 95.4% of

the objects are correctly identified and only 4.6% is

attributed a wrong redshift estimate. In total, 94.2% are

correctly classified. By taking into account only the redshift

range 0 , z , 0:5; this percentage becomes 97.3%. From

the confusion matrix, we can therefore derive a complete-

ness of 97.8% and a contamination of about 0.5%.

A simple step filter applied to the accepted BMU’s

allows therefore to optimise the filter performances. For

instance, it allows to choose whether to minimize the

number of misclassified objects (thus reducing the com-

pleteness) or to minimize the classification error in a given

redshift bin more than in another one.

Summarizing: on the SDSS-EDR data set, the best result

(robust error ¼ 0.21) was obtained by a MLP with 1 hidden

layer of 22 neurons, after five Bayesian cycles. Once they

are trained, NNs are extremely effective in terms of

computational costs.

4.4. Noise identification and removal in gravitational waves

detectors

One of the most common problems in applied science

is the extraction of faint signals from noisy backgrounds.

This is especially true in analyzing the data which will be

produced by the planned gravitational waves (GW)

detectors such as VIRGO (Bradaschia et al., (1989,

1992, 1995) and LIGO (Vogt, Drever, Raab, & Thorne,

1989) which have noise broadband colored with the

contribution of some spectral peaks, but can also be not

stationary in time and not Gaussian. Furthermore, if we

take into account the extremely high sensitivities required

(about 10219 Hz21=2 in a band of about 1 kHz) and the fact

that the signal is limited at very low frequency by seismic

noise and at high frequencies by shot noise, we have a

rather complete picture of the complexity of the problem

posed by the analysis of GW data. NNs have recently

been applied to the whitening of the main known sources

of noise present at the interferometer output, such as

violin resonances of the mirror suspensions, main power

harmonics, ring down noises from servo control systems,

electronic noise and environmental noise (such as

electromagnetic, acoustic and seismic noise). The test

data were collected in 1994 with the IFO-DMRO

(interferometer differential mode readout) at the 40 m

prototype Caltech interferometer.

First, by using a two sided surrogates time series and a

reversal symmetry third order statistics (based on the

TISEAN software package4 (Hegger, Kantz, & Schreiber,

1999) we found that the null hypothesis test of a rescaled

linear Gaussian random process had to be rejected at the

95% level of significance (in conflict with the usual

assumption that GW data may be dealt with standard linear

modeling techniques).

The system identification consists in finding the input-

output mapping of a dynamic system. A discrete-time multi-

input multi-output (MIMO) non-linear system (or a

continuous-time sampled-data system) can be described

by a set of non-linear difference equations of the form

(input–output representation):

yðnÞ ¼ F½yðn 2 1Þ; yðn 2 2Þ;…; yðn 2 nyÞ; uðn

2 ndÞ;…;uðn 2 nu 2 nd þ 1Þ� ð42Þ

4 Available free of charge at the site: http://www.physik3.gwdg.de/tstool
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Fig. 16. Maps of the neurons activated by the input data set. Exagons represent the NNnodes. In the map in the upper left corner, for a given node, the notation

nðmÞ must be read as follows: n is the class (n ¼ 1 meaning z , 0:5 and n ¼ 2 meaning z . 0:5) and m is the number of input vectors of the correspondent class

which have activated that node. This map was produced using the training and validation data sets. The other maps, produced each in a different redshift bin,

indicate how many input vectors from the test data set activated a given node.
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where u [ RM is the input vector and y [ RN is the output

vector; nu and ny the maximum lags of the input and output

vectors, respectively, and nd the pure time-delay (or dead-

time) in the system. This is called a NARX model (non-

linear autoregressive with exogenous input) and it can be

shown that a wide class of discrete-time systems can be put

in this form (Chen & Billings, 1989). From this starting

point, we further analyzed the problem by searching for a

structure allowing the creation of a non-linear model. Every

discrete-time (or continuous sampled-data, as in our case)

dynamical system can be described by a set of difference

equations which describe the evolution of the system state:

xðt þ 1Þ ¼ F½xðtÞ� ð43Þ

In general, the form of the functional Fð·Þ is not known but

given some measurements of the state variables xðtÞ; it is

possible to build a fair approximation.

The process which generates the observed data sðtÞ can

be described by its state vector xðtÞ; which usually cannot be

observed. It turns out, however (Takens, 1981) that a space

formally equivalent to the original state space can be

reconstructed using the data sequence sðtÞ: This phase space

reconstruction provides components of the original space

starting from elements of sðtÞ :

xðtÞ ¼ ½sðtÞ; sðt 2 tkÞ; sðt 2 2tkÞ;…� ð44Þ

where the delay tk can be computed as an integer multiple of

the sampling time ts of the system:

tk ¼ kts: ð45Þ

k can, at least in principle, be derived from the autocorrela-

tion function, as it is done when building linear models. A

theoretical information measure of correlation, which does

not depend on the properties of the (unknown) equations

describing the dynamics of the system, is the average

mutual information:

IðkÞ ¼
XN
t¼1

PðsðtÞ; sðt 2 ktsÞÞlog
PðsðtÞ; sðt 2 ktsÞÞ

PðsðtÞÞPðsðt 2 ktsÞÞ

� �
ð46Þ

which gives the amount of information in bits learned about

sðt 2 ktsÞ from the knowledge of sðtÞ: P is the empirical

distribution of the data. What value of k should be chosen?

In Abarbanel (1996) it is suggested, as a prescription, the

value km (the ‘time lag’ os system) where the first minimum

of IðkÞ occurs.

How many delays are necessary to completely describe

(unfold) the phase space of the system? We must determine

a dimension for the space in which neighbor states xðtÞ are

near because of dynamics and not because we observe them

in a low dimensional space. The observed data can be seen

as a projection of the state space onto a lower dimensional

space (in our case, the output of the interferometer is a scalar

sequence); the effect is that there is an ambiguity because

the orbits of the system will intersect. The dimension in

which all the orbits of the system unfold is the embedding

dimension. To evaluate the embedding dimension we use

the Cao’s (1997) method implemented in the TSTOOL

Toolbox for Matlabq. Knowing the time lag km and the

embedding dimension d; we can describe the state of the

system, as:

xðtÞ ¼ ½sðtÞ; sðt 2 tmÞ; sðt 2 2tmÞ;…; sðt 2 ðd 2 1ÞtmÞ�: ð47Þ

Note that strictly speaking these results assume a noiseless

and infinite-length sequence. Nonetheless, they can be used

in practice since the effects of noise and finiteness are

mainly an overestimate of the lag and the embedding

dimension, leading to an unnecessarily complex description

of the dynamics. The last step is then the setup of a non-

linear, NN-based model.

We used several criteria to evaluate the goodness of noise

identification and the whitening procedure according to the

following performance index:

† The spectral flatness measure of a power spectral density

(PSD) can be defined as (Kay, 1988):

j ¼

exp
1

fs

Ð
lnðSðf ÞÞdf

� �
1

fs

Ð
Sðf Þdf

ð48Þ

The integrals extend over the Nyquist frequency

bandwidth i.e. 2fs=2 4 fs=2; where fs is the sampling

frequency. The j parameter varies between 0 and 1

according to the flatness of the spectrum. If Sðf Þ is very

Fig. 17. Spectroscopic versus photometric redshifts for objects belonging to

Class I and Class II. Outliers are misclassified galaxies.

Table 3

Confusion matrix for the three classes described in the text

Objects Class I (%) Class II (%) Class II (%)

Class I 9017 95.4 2.96 1.6

Class II 419 6.4 76.6 16.9

Class III 823 3.8 2.1 94.2
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peaked j is nearly 0 whilst if the spectrum is flat j . 1: It

is possible to show that the ratio of j indexes before and

after the whitening process equals the ratio of the

respective autocorrelation functions for zero lags.

† The x2 test at 95% of significativity.

† Prediction residual analysis.

† The Kolmogorov–Smirnov test (KStest, Chakravart,

1997) to evaluate if a sample of data comes from a

specific distribution or if two data set are sampled from

the same distribution.

In order to whiten the Caltech data, we implemented a

MLP which defines a model of the dynamics of the

interferometer by using only its output. In Fig. 18 is

shown one of the data frame used in the training step.

The procedure was the following: first, the data were

pre-processed using statistical analysis tools to have

an insight on their gaussianity and stationarity; then

Fig. 18. The time plot (top fig.) and the Power Spectrum (bottom fig.) of a

10 s sample of the data frame used in the training stage before the

preprocessing.

Fig. 19. Segments of LIGO test sequences with 3s error bars.

Fig. 20. Normality plot of input data frame used for the training step (top) and normality plot of NNs prediction (bottom).
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a pre-processing using non-linear analysis techniques to

extract information on the underlying data-generating

process was performed; then a probabilistic Bayesian

approach was used to create the model thus allowing the

exploration of a model space, rather than the use of a single

‘optimal’ model as it usually happens with linear modeling

techniques.

The data used to train the model were a sequence of six

seconds and the original sampling rate was downsampled

to 2500 Hz and the model was tested on a different

sequence of about 1 min. Before feeding the data to the

network, they were pre-processed to find a suitable time lag

and the embedding dimension. The results of the analysis

were the following: the first minimum of AMI is 2ts and

the embedding dimension is chosen as the first point in

which the Cao’s (1997) function reaches the plateau at

d ¼ 20:

The adopted trained MLP consisted in: 20 input units,

one output unit with linear activation function, 20 hidden

units with hyperbolic tangent activation function. Further-

more, 25 regularization parameters were used: one for every

group of connections from each input unit (20), one for each

bias connection for input and hidden units (2), one for the

group of connections to the output unit.

As it can be seen from Fig. 18, even in presence of a

system with a rather complex evolution, our simple network

was rather successful in predicting the system dynamics. In

Fig. 19 two chunk of data used in the testing step are shown.

As it can be seen the prediction is bracketed between the 3s

error bars and so the network exhibits good generalization

properties.

Furthermore, as it can be seen in Fig. 20 the normality

plot of the data frame used in the training step (up) and the

normality plot of the NNs prediction (bottom) turned out to

be very similar. In other words, with our approach we do not

introduce higher order cumulants in the output statistic of

the data as it is possible to see from residuals and from the

KStest we performed.

Finally, the KS test shows that there is not a statistically

significative difference (at a 95% level) between them (see

Table 4) even if we use several chunks of data. Only in one

case (file 11-27-48) the hypothesis can be accepted at 93%

of significant level. We performed also a x2 test and we

obtained that the null hypothesis on the two probability

distributions can be accepted at 95% level of significance.

Note that the model could be made more reliable by using

more neurons and/or by training the NNs for more epochs

(without the risk of overfitting owing to the Bayesian

learning procedure we adopted).

The whitening spectrum is nearly flat (Fig. 21), in fact the

spectral flatness measure is j ¼ 0:7: We performed a x2 test

at 95% of significance to verify the hypothesis that the

whitening sequence is a Gaussian distribution. In our case the

x2
crit: ¼ 9:49 with four degrees of freedom and we obtained

x2
rid ¼ 1:47 , x2

crit: and so we can accept the null hypothesis.

Furthermore we performed a robust non-parametric KS test

using the Kuiper statistic at 95% level of significance and

obtained that the null hypothesis on the whitening sequence

extracted from Gaussian distribution can be accepted.

Table 4

Results of the K–S test on some chunks of data

Data file Test output

11_22_24 0.998

11_27_48 0.932

11_3-_3- 0.997

11_33_12 0.997

11_35_54 0.963

Fig. 21. The spectra of output and target sequences (file 11-30-30) are shown for DMRO Caltech 40 m interferometer(sx). The whitening spectrum (dx)

exhibits j ¼ 0:7:
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5. Conclusions

In this paper we summarized the most relevant properties

of the main types of NN used for astronomical applications

focusing our attention to those models which are most

commonly encountered. We also outlined some applications

studied by the AstroNeural collaboration in the context of

various problems. The above paragraphs should have

convinced the general reader of the enormous potentialities

which NN have in the most disparate fields of astronomical

data reduction analysis and mining. It should also have

become evident that neural tools, in order to be truly

effective, need to be specifically tailored to any specific

application and that, therefore, they need extensive testing

aimed to define the most apt architecture and the optimal

choice of the training, validation and test sets (for the

supervised methods).

It is therefore highly realistic to conclude that the use of

NN and other soft computing tools will become much more

common once the Astrophysical Virtual Observatory

(AVO) will become fully operational, thus bringing to the

community an unprecedented wealth of high quality and

heterogeneous data.
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