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Abstract
Collisions of solitons for two coupled and N-coupled NLS equation are
investigated from various viewpoints. By suitably employing Manakov’s
well-known formulae for the polarization shift of interacting vector solitons,
it is shown that the multisoliton interaction process is pairwise and the net
result of the interaction is independent of the order in which such collisions
occur. Further, this is shown to be related to the fact that the map determining
the interaction of two solitons with nontrivial internal degrees of freedom
(e.g. vector solitons) satisfies the Yang–Baxter relation. The associated matrix
factorization problem is discussed in detail. Soliton interactions are also
described in terms of linear fractional transformations, and the problem of
existence of a solution for a basic three-collision gate, which has recently been
introduced, is analysed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The nonlinear Schrödinger (NLS) equation

iqt = qxx + 2|q|2q
is a well-known physically and mathematically significant nonlinear evolution equation. For
example, it has been derived in such diverse fields as deep water waves, plasma physics
and nonlinear fibre optics. In optics, NLS models wave propagation in Kerr media, where
the nonlinearity is proportional to the intensity of the field. Mathematically speaking, NLS
has been of great interest as a nonlinear evolution equation that is solvable via the inverse
scattering transform (IST). Moreover, as is typical of such equations, the NLS has infinitely
many conserved quantities, a Hamiltonian structure and soliton solutions.

The vector generalization

iqt = qxx + 2‖q‖2q (1)
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where q = (q1, . . . , qN) is an N-component vector and ‖·‖ is the standard Euclidean norm,
which we refer to as vector NLS (VNLS), arises, physically, under conditions similar to those
described by the NLS when there are multiple wave-trains moving with nearly the same group
velocity. Moreover, VNLS models physical systems in which the field has more than one
component; for example, in optical fibres and waveguides, the propagating electric field has
two components transverse to the direction of propagation. Manakov [1] first examined this
equation, in the two-component case, as an asymptotic model for the propagation of the electric
field in a waveguide. Subsequently, this system was derived as a key model for lightwave
propagation in optical fibres [2–4]. Also, the matrix generalization of the Manakov system
was derived as a model for spin systems [5]. Temporal VNLS solitons have recently been
observed in optical fibres [26, 27]. In the spatial domain, VNLS solitons have been detected
in AlGaAs planar waveguides [6].

It is well known that interacting scalar solitons affect each other only by a phase shift
that depends only on the solitons’ amplitudes and velocities, which are conserved quantities.
Thus, when two soliton collisions occur sequentially, the outcome of the first collision does
not affect the second collision as the phase shifts induced by the collisions are additive. On
the other hand, the collision of solitons with internal degrees of freedom (e.g. vector or matrix
solitons) is not so simple. Although such collisions are elastic, in the sense that the total
energy of each soliton is conserved, there can be a significant redistribution of energy among
the components. This redistribution of the soliton’s energy follows directly from Manakov’s
formulae describing the effects of vector soliton collisions [1] (see also [7, 13]) and has been
measured in experiments [8].

In this paper, we analyse various features of collisions of generic N-component VNLS
solitons, including changes in energy distribution, phase and relative separation distance.
Suitably employing Manakov’s well-known formulae for the polarization shift of interacting
vector solitons, we show that the multisoliton interaction process is pairwise and the net result
of the interaction is independent of the order in which such collisions occur (see also [13]).
We then show explicitly that this is related to the fact that the map determining the interaction
of two solitons satisfies the Yang–Baxter relation.

The nontrivial interaction of vector solitons provides a mechanism for computation with
solitons [9, 25]. Jakubowsky et al [9] expressed the energy redistributions as linear fractional
transformations and described how vector-soliton logic gates could be developed. Later,
Steiglitz [10] explicitly constructed such logic gates based on the shape changing collision
properties and hence pointed out the possibility of designing an all optical computer equivalent
to a Turing machine, at least in a mathematical sense. We consider the basic three-collision
gate introduced in [10] and prove that there are parameter regimes for which a unique solution
exists.

2. Multisoliton interactions

A pure one-soliton solution of (1),

q(x, t) = −2iη e−2iξx+4i(ξ 2−η2)tsech(2ηx − 8ξηt − 2d)p (2)

where

e2d = ‖C‖
2η

≡
[ ∑N

j=1 |γ (j)|2]1/2

2η
p = CH

‖C‖ (3)
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is characterized by N + 1 complex parameters, namely the discrete eigenvalue k = ξ + iη
(where η > 0) and the corresponding norming constant C = (γ (1), . . . , γ (N))T . The norm 1
vector p is referred to as the polarization (vector) of the soliton, while the quantity

x0 = d

η
= 1

2η
log

‖C‖
2η

(4)

denotes the position of the soliton envelope peak at t = 0. The inverse scattering theory for this
equation in the two-component case was first studied by Manakov [1]. The generalization of
the inverse scattering from the two-component case to the N-component case is straightforward
[13].

From the inverse scattering transform, Manakov [1] also derived the general formula for a
J -soliton interaction in the two-component VNLS. The generalization to the N-component case
is written below (see also [13] for a detailed derivation). Assuming the discrete eigenvalues
are such that Re k1 < Re k2 < · · · < Re kJ (equivalently, the soliton velocities are ordered
as v1 < v2 < · · · < vJ ) and the polarization vectors (normalized N-component row vectors)
before/after the interaction are given by

p∓
j =

(
s∓
j

)H∥∥s∓
j

∥∥ j = 1, 2, . . . , J (5)

an asymptotic analysis yields

s+
J =

J−1∏
l=1

1

al(kJ )

J−1∏
l=1
right

(cl (kJ , s−
l ))−1s−

J (6)

and, for j = 1, . . . , J − 1,

s+
j =

j−1∏
l=1

1

al(kj )

J∏
l=j+1

al(kj )

J∏
l=j+1
right

cl

(
kj , s+

l

) j−1∏
l=1
right

(cl (kj , s−
l ))−1s−

j (7)

where the notation ‘right’ indicates that the matrix with index l is to the right of the matrix
with index l −1 (i.e. the order is increasing from left to right) and the transmission coefficients
are given by

aj (k) = k − kj

k − k∗
j

(8)

cj (k, sj ) = IN − kj − k∗
j

k − k∗
j

1

‖sj‖2
sH
j sj (9)

(cj (k, sj ))
−1 = IN +

kj − k∗
j

k − kj

1

‖sj‖2
sH
j sj . (10)

Above, IN is the N × N identity matrix and, in (7), we define
∏0

1 ≡ 1 for j = 1.
The analysis of relations (6) and (7) solves the problem of a J -soliton collision. Given s−

l

for l = 1, . . . , J , (6) allows one to find s+
J . Because expression (7) for s+

j with j < J depends,
through the c, on s+

l for l > j , one can find s+
j iteratively for any j by first obtaining s+

J−1, then
s+
J−2 and so on. The polarization vectors p±

j are then obtained from (5).
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2.1. Two-soliton collision

Let us consider the interaction of two solitons in detail. Assuming that v1 < v2, i.e. Re k1 <

Re k2, we obtain, from (6) and (7), the relations

s+
2 = 1

a1(k2)
(c1(k2, s−

1 ))−1s−
2 (11)

s+
1 = a2(k1)c2

(
k1, s+

2

)
s−

1 . (12)

Note that formulae (11) and (12) are not symmetric with respect to the exchange of the
subscripts 1 and 2. Taking into account the explicit expressions for aj and cj , given by
(8)–(10), one can solve (11) for s+

2 , compute c2
(
k1, s+

2

)
from (9) and then substitute it into the

right-hand side of (12) in order to get s+
1 . It is convenient to define

χ2 =
∥∥s+

2

∥∥2

‖s−
2 ‖2

≡ 1∥∥s+
2

∥∥2 (s−
2 )H s+

2 (13)

which, according to (8), (10) and (11), is given by

χ2 =
∣∣∣∣k1 − k∗

2

k1 − k2

∣∣∣∣
2 [

1 +
(k∗

1 − k1)(k2 − k∗
2)

|k1 − k2|2 |p−∗
1 · p−

2 |2
]

. (14)

One can also check that∥∥s+
1

∥∥2

‖s−
1 ‖2

= 1

χ2
. (15)

From (11) and (12) it then follows that

p+
2 = 1

χ

k1 − k∗
2

k∗
1 − k∗

2

[
p−

2 +
k∗

1 − k1

k∗
2 − k∗

1

(p−∗
1 · p−

2 )p−
1

]
(16)

p+
1 = 1

χ

k1 − k∗
2

k1 − k2

[
p−

1 +
k∗

2 − k2

k2 − k1

(p−∗
2 · p−

1 )p−
2

]
(17)

with χ given by (14).
Due to the interaction, the components of the polarization vectors of each soliton change

from p
−(l)
j to p

+(l)
j , j = 1, 2, l = 1, . . . , N. However, the total energy of each of the solitons

is conserved: that is
∑N

l=1

∣∣p±(l)
1

∣∣2 = ∑N
l=1

∣∣p±(l)
2

∣∣2 = 1. (This is a consequence of the
conservation of the L2-norm for the solutions of the VNLS equation.)

Note that when either p−
2 = eiθ p−

1 or p−∗
1 · p−

2 = 0, i.e. when the soliton polarizations
are either parallel or orthogonal, the only change in the polarization vectors is an overall
phase factor. For all other choices of the parameters, shape changing (intensity redistribution)
collisions occur.

As in the collision of scalar solitons, the collision of vector solitons induces phase shifts, in
addition to the shape changing that is the distinctive characteristic of vector-soliton collisions.
The phase shifts depend both on k1, k2 and on the polarization vectors p−

1 , p−
2 . If we denote by

d±
1 , d±

2 the phases of the two solitons before/after the interaction, from (2) and (3) it follows
that

e2d±
1 =

∥∥s±
1

∥∥
2η1

e2d±
2 =

∥∥s±
2

∥∥
2η2

(18)
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then, according to (14)–(17)

e2(d+
2 −d−

2 ) =
∥∥s+

2

∥∥
‖s−

2 ‖ ≡ χ e2(d+
1 −d−

1 ) =
∥∥s+

1

∥∥
‖s−

1 ‖ ≡ 1

χ
(19)

i.e. the phase shifts which are opposite to one another. The absolute value of the phase shift is

� = |log χ | =
∣∣∣∣∣log

[∣∣∣∣k1 − k∗
2

k1 − k2

∣∣∣∣
[

1 +
(k∗

1 − k1)(k2 − k∗
2)

|k1 − k2|2
|p−∗

1 · p−
2 |2

]1/2
]∣∣∣∣∣ . (20)

For parallel modes one has � = 2
∣∣log

∣∣ k1−k∗
2

k1−k2

∣∣∣∣, for orthogonal modes � = ∣∣log
∣∣ k1−k∗

2
k1−k2

∣∣∣∣, with
intermediate values for other choices of the soliton polarizations.

Ultimately, the above phase shifts mean that the relative separation distance x±
1,2 between

the solitons (i.e. the ‘centre’ or the position of soliton 2 at t → ±∞ minus the position of
soliton 1 at t → ±∞) also change due to collision. More precisely

x−
1,2 = d−

2

η2
− d−

1

η1
≡ 2d−

2

i(k2 − k∗
2)

− 2d−
1

i(k1 − k∗
1)

(21)

x+
1,2 = d+

2

η2
− d+

1

η1
≡ 2d+

2

i(k2 − k∗
2)

− 2d+
1

i(k1 − k∗
1)

(22)

hence

�x = x+
1,2 − x−

1,2 = 2
(
d+

2 − d−
2

)
i(k2 − k∗

2)
− 2

(
d+

1 − d−
1

)
i(k1 − k∗

1)
= η1 + η2

2η1η2
log χ (23)

with χ given by (14) and kj = ξj + iηj for j = 1, 2.

We remark that the intensity profiles, the phases and the relative separation distance of the
two interacting vector solitons are all shifted by the soliton collision. Moreover, these shifts
depend on relative polarization of the two solitons before the collision.

Note that equations (16) and (17) are not symmetric with the exchange of 1 → 2. However,
such a notation expresses the invariance of the system under the substitution t → −t, q → q∗

(here a ‘fast soliton’ becomes a ‘slow’ soliton and vice versa) and this is exactly how the
problem appears in physical situations, when one is interested in fixing the initial polarizations
of the solitons and finding the polarizations of the solitons after their interaction.

It is convenient to denote the polarization of soliton j after interaction with soliton � by

p{j,�} ≡ s{j,�}
‖s{j,�}‖ . (24)

According to this notation, equations (16) and (17) are written as

p{2,1} = 1

χ

k1 − k∗
2

k∗
1 − k∗

2

[
p2 +

k∗
1 − k1

k∗
2 − k∗

1

(p∗
1 · p2)p1

]
(25)

p{1,2} = 1

χ

k1 − k∗
2

k1 − k2

[
p1 +

k∗
2 − k2

k2 − k1

(p∗
2 · p1)p2

]
. (26)
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Figure 1. Three-soliton interaction.

2.2. Multiple soliton collisions and order independence

Take J = 3 solitons and assume v1 < v2 < v3 so that the solitons are distributed along the
x-axis according to 3 − 2 − 1 as t → −∞ and 1 − 2 − 3 as t → ∞. According to
equations (11) and (12) for a pairwise interaction between soliton j and soliton � with vj > v�

s+
j = 1

a�(kj )
(c�(kj , s−

� ))−1s−
j (27)

s+
� = aj (k�)cj

(
k�, s+

j

)
s−
� . (28)

From (6) and (7) for J = 3 one has

s+
3 = 1

a1(k3)a2(k3)
(c1(k3, s−

1 ))−1(c2(k3, s−
2 ))−1s−

3 (29)

s+
2 = 1

a1(k2)
a3(k2)c3

(
k2, s+

3

)
(c1(k2, s−

1 ))−1s−
2 (30)

s+
1 = a2(k1)a3(k1)c2

(
k1, s+

2

)
c3

(
k1, s+

3

)
s−

1 . (31)

At first it might appear that if we try to diagram these events in terms of the composition of
pairwise interactions, we encounter a contradiction. It is true that, in general, the ‘c’ matrices
do not commute with an arbitrary choice of arguments. However, using (9) and (25), (26),
one can check that

c2(k3, p2)c1(k3, p1) = c1(k3, p{1,2})c2(k3, p{2,1}). (32)

Thus, no contradiction arises from Manakov’s formulae. We remark that equation (32) is
exactly Veselov’s matrix factorization relation [23], which we discuss in section 3.2.

Indeed, let us start by considering (29). It can be viewed in terms of a composition of
pairwise interactions

s+
3 ≡ s{{3,2},1} = 1

a1(k3)
(c1(k3, s1))

−1s{3,2} (33)

corresponding to 3 interacting first with 2 (3 ↔ 2) and then with 1 (3 ↔ 1). The interaction
2 ↔ 1 then follows, as schematically illustrated by the left branch in figure 1.

On the other hand, depending on the initial positions and relative velocities of the solitons,
the sequence of soliton interactions might be different, i.e. corresponding to the right branch
in figure 1. Note that we are not taking into account the case when more than two solitons
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interact simultaneously. Namely, one might have 2 ↔ 1 requiring the consideration of the
terms s{2,1} and s{1,2}, then 3 ↔ 1, resulting in s{3,{1,2}} and s{{1,2},3} and finally 3 ↔ 2, the
outgoing polarization of soliton 3 being

s{{3,{1,2}},{2,1}} = 1

a1(k3)a2(k3)
(c2(k3, s{2,1}))−1(c1(k3, s{1,2}))−1s−

3 . (34)

However, taking into account (32), from (33), (34) it follows that

s{{3,2},1} = s{{3,{1,2}},{2,1}} (35)

which means that the polarization shift of soliton 3 is obtained via pairwise interactions with
the remaining two and the result is independent of the order in which such interactions occur.

In the same way, one can check that the result also holds for solitons 2 and 1. For instance,
from (30) one has

s+
2 ≡ a3(k2)c3

(
k2, s+

3

) [
1

a1(k2)
(c1(k2, s−

1 )−1s−
2

]
≡ a3(k2)c3

(
k2, s+

3

)
s{2,1}. (36)

That is, the total shift induced in the second soliton is the net effect of the composition of
pairwise interactions of the form (27) and (28), corresponding to the order 1 ↔ 2, then 1 ↔ 3
and finally 2 ↔ 3. The composition of pairwise interactions in a different order, i.e. 2 ↔ 3,
then 1 ↔ 3 and finally 2 ↔ 1, would give

s{2,{1,{3,2}}} = 1

a1(k2)
(c1(k2, s{1,{3,2}})−1s{2,3}. (37)

Again, the two expressions (36) and (37) coincide provided

c1(k2, s{1,{3,2}})c3
(
k2, s+

3

) = c3(k2, s{3,2})c1(k2, s−
1 )

i.e.

c1(k2, s{1,{3,2}})c3(k2, s{{3,{1,2}},{2,1}}) = c3(k2, s{3,2})c1(k2, s−
1 ).

Taking into account (35), this last identity is reduced to

c1(k2, s{1,{3,2}})c3(k2, s{{3,2},1}) = c3(k2, s{3,2})c1(k2, s−
1 )

which is exactly of the form (32).
In the same way one can show the result for soliton 1 starting from equation (31).
The fact that a J -soliton collision is equivalent to the composition of J (J −1)/2 pairwise

interactions taking place in an arbitrary order (compatible with the choice for the soliton can be
proved by an inductive argument that is anchored by the preceding analysis of the three-soliton
interaction. To illustrate the induction, we first consider the four-soliton interaction in detail.
Then, we generalize to the J-soliton case.

We denote the slowest soliton as 1, the next slowest soliton as 2, etc. In the case of four
solitons, the fastest soliton is denoted as 4 and, in the limit t → −∞, the solitons are arranged
in the order 4321 from left to right. As time evolves, faster solitons overtake slower solitons
and shift their order through several intermediate steps (transpositions). In the limit t → +∞
the solitons are arranged in the order 1234. Prior to achieving this ultimate arrangement,
the solitons can be in one of three possible arrangements, namely 1243, 2134 or 1324. By
pairwise comparison of these three arrangements, we show that the phase shifts of the solitons
in the limit t → +∞ (i.e the solitons in the arrangement 1234) are independent of the
penultimate order. This is also illustrated in figure 2.

In both the arrangements 2134 and 1324 the fastest soliton is the rightmost soliton.
Thus, in the evolution to the limit as t → +∞, this fastest soliton does not interact with the
other three. We therefore can consider the arrangements 2134 and 1324 to be penultimate
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Figure 2. Four-soliton interaction.

intermediate steps in the evolution of the solitons from the arrangement 3214 to the arrangement
1234 in the long-time limit. The only way for the solitons to evolve to the arrangement
3214 from the arrangement 4321 (the order in the limit as t → −∞) is the following:
4321 → 3421 → 3241 → 3214. Hence, the phase shifts of the solitons in the arrangement
3214 are unique. In the evolution of the solitons from the order 3214 to 1234, soliton 4
(the fastest soliton) is always rightmost. In effect, the evolution from the arrangement 3214
to the long-time limit 1234 is a three-soliton interaction. In particular, this three-soliton
interaction includes evolution of both the arrangement 2134 and the arrangement 1324 to the
long-time limit 1234. As shown above, for any three-soliton interaction, the phase shifts in
the limit t → ∞ are independent of the order of the transpositions. Therefore, the phase
shifts in the long-time limit are the same whether the solitons evolve through the penultimate
arrangement 2134 or 1324.

The arrangements 1243 and 2134 are both obtained from the arrangement 2143 by a single
transposition: in the evolution 2143 → 1243 the two leftmost solitons interact; in the evolution
2143 → 2134 the two rightmost solitons interact. Similarly both these arrangements evolve
to the arrangement 1234 as a result of a single transposition. Thus, the arrangements 1243
and 2134 are both intermediate steps in the evolution of the solitons from the arrangement
2143 to the arrangement 1234. The key fact is that the evolution from 2143 to 1234 is the
result of two isolated transpositions: (i) the interchange of the two leftmost solitons and (ii)
the interchange of the two rightmost solitons. Due to this isolation, the temporal order of these
two interchanges must be irrelevant to the phase shifts of the solitons in the long-time limit.
To see that the shifts of the solitons are unique when they are in the order 2143, we repeat the
preceding argument. The evolution of the solitons from the arrangement 4321 (in the limit
as t → −∞) to the order 2143 proceeds as follows: 4321 → 4231 → 4213 2413 → 2143
or 4321 → 4231 → 2431 2413 → 2143. Again, the solitons evolve from the arrangement
4231 to the arrangement 2413 by a pair of isolated two-soliton interactions. Hence, in
the arrangement 2413 and in the uniquely following arrangement 2143, the phase shifts of
the individual solitons are uniquely determined. This implies that the evolution from the
penultimate arrangements 1243 and 2134 to the long-time limit 1234 results in the same
ultimate phase shifts. Having shown that evolution from the penultimate arrangements 2134
and 1324 results in the same phase shifts in the limit as t → ∞, we conclude that all three
penultimate arrangements 1243, 2134 or 1324 result in the same phase shifts in the evolution
of the solitons to the arrangement 1234 in the limit as t → +∞.

To generalize to the J -soliton case, we observe that the previous examples in fact include
all possible cases. Consider any two arrangements of J solitons, denoted as B1 and B2

respectively, such that, for each of these arrangements, a single transposition of solitons
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(i.e. a faster soliton overtakes a slower soliton) results in a common arrangement, denoted as
C. There are two possibilities: the respective transpositions by which arrangements B1 and B2

evolve to arrangement C involve either (i) two distinct pairs of solitons or (ii) two pairs that
include a common soliton. Case (i) corresponds to the second case above. In this case, the
soliton interactions consist of two distinct transpositions that occur in an isolated manner and
are therefore insensitive to the temporal order in which they occur. Case (ii) is essentially a
three-soliton interaction in which B1 and B2 are the two possible penultimate arrangements in
the evolution to the arrangement C. As shown above, the shifts in this three-soliton interaction
are independent of the order of interaction. In particular, the shifts in arrangement C are the
same whether the penultimate arrangement is B1 or B2. In general, for J solitons there can
be up to J − 1 arrangements of solitons that evolve, each via the transposition of a single
pair of solitons, to a common arrangement, C. However, when compared pairwise, these
reduce to the two cases given above. Hence, each pair of arrangements can be seen as the
penultimate step in the evolution from a common preceding arrangement, denoted as A, to
the arrangement C. Therefore, in particular, the phases of the soliton in arrangement C are
independent of whether the immediately preceding arrangement was B1 or B2. Because this
holds for all pairwise comparisons, we conclude that the phases of the solitons in arrangement
C are independent of the immediately preceding arrangement, regardless of the number of such
possible arrangements. To see that the phase shifts of the soliton induced by the evolution of
the system from the arrangement in the limit as t → −∞ to the arrangement A are independent
of the order of interactions, one uses the immediately preceding argument recursively, through
a finite number of transpositions, to the arrangement in which the solitons are ordered from
fastest to slowest (which is achieved as t → −∞). We conclude that, in the J -soliton case,
the phase shifts between the limits as t → ±∞, including the shifts in polarization, are
independent of the order in which the solitons interact (see also [13]). We note that this result
is obtained in [18] by a completely different argument and was also partially addressed in
[15, 19, 20].

3. Soliton interactions as Yang–Baxter maps

Vector-soliton interactions can also be analysed in terms of Yang–Baxter maps. This alternate
approach puts the symmetries that underlie the order-invariance of multiple vector-soliton
collisions into a broader context.

The quantum Yang–Baxter equation is the following relation on a linear operator
R : V ⊗ V → V ⊗ V

R12R13R23 = R23R13R12

where Rij acts on the ith and j th components of the tensor product V ⊗ V ⊗ V (see below).
Following Drinfeld [21], we consider the set-theoretical version of the quantum Yang–Baxter
equation. Let X be any set, R : X × X → X × X a map from the Cartesian product of X
into itself. Let Rij : Xn → Xn, Xn = X × · · · × X be the maps which act as R on the ith
and j th factors and identically on the others (i.e. leaves the other variables unchanged). More
precisely, if R(x, y) = (f (x, y), g(x, y)) , x, y ∈ X, then

i < j Rij (x1, x2, . . . , xn) = (x1, x2, . . . , xi−1, f (xi, xj ), xi+1, · · · xj−1,

g(xi, xj ), xj+1, . . . , xn)

i > j Rij (x1, x2, . . . , xn) = (x1, x2, . . . , xj−1, g(xi, xj ), xj+1, · · · xi−1,

f (xi, xj ), xi+1, . . . , xn).
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In particular, for n = 2 the operators

R12 : X × X → X × X R21 : X × X → X × X

are such that

R12 ≡ R R21 = PRP

where P : X × X → X × X is the permutation of x and y, i.e. P(x, y) = (y, x).
Following [22], we say R is a Yang–Baxter map if it satisfies the Yang–Baxter relation

R12R13R23 = R23R13R12 (38)

considered as the equality of the maps of X × X × X into itself.
If, additionally, R satisfies the relation

R21R = I (39)

it is called a reversible Yang–Baxter map (this condition means that the map R is reversible
with respect to the permutation P).

On the linear space V = C
X spanned by the set X, then any Yang–Baxter map R induces a

linear operator in V ⊗V which satisfies the quantum Yang–Baxter equation in the usual sense.
Therefore, we have indeed a very special class of solutions to this equation. Here, the term
Yang–Baxter maps is used as opposed to ‘set-theoretical solutions to quantum Yang–Baxter
equation’.

One can introduce a more general parameter-dependent Yang–Baxter equation as the
relation

R12(λ1, λ2)R13(λ1, λ3)R23(λ2, λ3) = R23(λ2, λ3)R13(λ1, λ3)R12(λ1, λ2) (40)

and the corresponding reversibility condition as

R21(µ, λ)R(λ, µ) = I. (41)

Veselov [22] also introduces the monodromy maps T
(n)
i , i = 1, . . . , n as the maps of Xn

into itself defined by the following formulae:

T
(n)
i = Ri,i+n−1Ri,i+n−2 · · · Ri,i+1 (42)

where the indices are considered modulo n with the agreement to use n instead of 0. These
matrices also play the role of the transfer matrices in the theory of quantum Yang–Baxter
equation.

In [22] the following theorem is stated:

Theorem 1. For any reversible Yang–Baxter map R, the monodromy maps T
(n)
i , i = 1, . . . , n

commute with each other

T
(n)
i T

(n)
j = T

(n)
j T

(n)
i (43)

and satisfy the property

T
(n)

1 T
(n)

2 · · · T (n)
n = I. (44)

Conversely, if the maps defined by formula (42) commute and satisfy relation (44) for any
n � 2, then R is a reversible Yang–Baxter map.

Note that, for parameter-dependent Yang–Baxter maps, the dependence on the parameter
in Ri,j with i > j in the definition of the monodromy maps is fixed according to (41).
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3.1. Yang–Baxter maps in relation to the theory of solitons

In the case when the solitons have the internal degrees of freedom (see [16]) described by some
manifold X (solitons with nontrivial internal parameters, e.g. matrix solitons), their pairwise
interaction gives a map from X × X into itself which satisfies the Yang–Baxter relation. In
principle, this indicates that the final result of multi-particle interaction is independent of the
order of collisions. In [22–24] the matrix KdV equation is considered. Here we address the
same problem for the VNLS equation.

In the case of VNLS, X is the complex vector space of dimension N and the change of
polarizations of two solitons is described by the following map:

R(k1, k2) : (p1, p2) → (p{1,2}, p{2,1})

defined by (25) and (26), i.e.

p{2,1} = 1

χ

k1 − k∗
2

k∗
1 − k∗

2

[
p2 +

k∗
1 − k1

k∗
2 − k∗

1

(p∗
1 · p2)p1

]
(45)

p{1,2} = 1

χ

k1 − k∗
2

k1 − k2

[
p1 +

k∗
2 − k2

k2 − k1

(p∗
2 · p1)p2

]
. (46)

One can show directly that equations (45), (46) define a reversible parameter-dependent Yang–
Baxter map, but the calculations are quite long. A better alternative is to make use of matrix
factorizations.

3.2. Matrix factorizations

Suppose we have a matrix A(x, λ; ζ ) depending on the point x ∈ X, and two parameters
λ, ζ ∈ C; the parameter ζ ∈ C is called a spectral parameter. We assume that A depends on
ζ polynomially or rationally.

Consider the product L = A(y,µ; ζ )A(x, λ; ζ ), then change the order of the factors
L → L̃ = A(x, λ; ζ )A(y, µ; ζ ) and re-factorize it as L̃ = A(ỹ, µ; ζ )A(x̃, λ; ζ ). Suppose
that this re-factorization relation

A(x, λ; ζ )A(y, µ; ζ ) = A(ỹ, µ; ζ )A(x̃, λ; ζ ) (47)

uniquely determines x̃ and ỹ, i.e. uniquely defines a map

R(λ,µ)(x, y) = (x̃, ỹ).

Then one can show that such a map determined by (47) satisfies the Yang–Baxter relation.
For the case of VNLS equation, given the map (45) and (46), in [13] it is shown

(cf section 2.2) that the matrix in (10), i.e. the transmission coefficient, with the substitutions

λ → k1 µ → k2 ζ → k

x → p1 y → p2 x̃ → p{1,2} ỹ → p{2,1} (48)

A(x, λ, ζ ) → cj (k, pj )

satisfies

c1(k, p1)c2(k, p2) = c2(k, p{2,1})c1(k, p{1,2}) (49)

which is exactly the re-factorization relation in [22], where A is identified with the transmission
coefficient as prescribed by (48). Relation (49) then proves that the map is indeed a Yang–
Baxter map and, consequently, that the soliton interactions are pairwise and independent of
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the order in which the collisions take place. In other words, this is equivalent to saying the
diagram in figure 1 is commutative.

In order to extend this result to the general case of J solitons, J � 4, we first note the
following relation satisfied by any Yang–Baxter map:

RijRkl = RklRij (50)

for any i, j, k, l with i 
= k, l, j 
= k, l. In terms of soliton collisions, as we specified in
section 2.2 (cf also figure 2), this essentially means that it is irrelevant which of the two
collisions takes place first whenever they involve separate pairs of solitons. Then one can
either use the inductive argument illustrated at the end of section 2.2 (note that this argument,
although involved, does not require the reversibility of the Yang–Baxter map, even though one
can check directly that such a reversibility condition indeed holds for (25) and (26)), or one
can use theorem 1, which, for n = J, i = 1, . . . , J , together with (50), in principle, provides
the required identities.

We remark that the matrix KdV case considered in [22–24] has

A(ξ, η, λ; ζ ) = I +
2λ

ζ − λ

ξηT

(ξ · η)

while for VNLS from (9) with the prescriptions (48) one has

A(x, kj ; k) = I − kj − k∗
j

k − k∗
j

xH x

‖x‖2

where x is an N-component row vector. One can check directly that the re-factorization relation
for these matrices leads to the map for the polarization. In the next section we show that this
can be done in a more general setting, in analogy with [23].

3.3. More general Yang–Baxter maps

Let V be an N-dimensional complex vector space, P : V → V be a projector of rank m
(m = 1, . . . , N − 1): P 2 = P . Any such projector is uniquely determined by its kernel
K = ker P and image L = imP , which are two subspaces of V of dimensions m and N − m,
respectively, complementary to each other: K ⊕ L = V . The space of all projectors X of
rank m is an open set in the product of two Grassmannians G(m, n) × G(n − m, n), where,
as usual, the Grassmannian G(k, n) is the set of k-dimensional subspaces in an n-dimensional
vector space. Consider the following matrix:

A(Pj , kj ; k) = I − kj − k∗
j

k − k∗
j

Pj

and the related re-factorization relation(
I − k1 − k∗

1

k − k∗
1

P1

) (
I − k2 − k∗

2

k − k∗
2

P2

)
=

(
I − k2 − k∗

2

k − k∗
2

P̃ 2

)(
I − k1 − k∗

1

k − k∗
1

P̃ 1

)
(51)

which we can rewrite in polynomial form as

((k − k∗
1)I + (k∗

1 − k1)P1)((k − k∗
2)I + (k∗

2 − k2)P2)

= ((k − k∗
2)I + (k∗

2 − k2)P̃ 2)((k − k∗
1)I + (k∗

1 − k1)P̃ 1). (52)

The claim is that if k1 
= k2 it has a unique solution for P̃ 1 and P̃ 2. Indeed, this follows from
the general theory of matrix polynomials but we can see it directly.
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Indeed, let us compare the kernels of both sides of relation (52) when the spectral parameter
is k = k∗

1 . On the right-hand side we have K̃1 while the left-hand side gives

((k∗
1 − k∗

2)I + (k∗
2 − k2)P2)

−1K1 =
(

I +
k∗

2 − k2

k∗
1 − k∗

2

P2

)−1

K1

so that

K̃1 =
(

I +
k2 − k∗

2

k∗
1 − k2

P2

)
K1.

Similarly, taking the image of both sides of (52) at k = k∗
2 we will have

L̃2 =
(

I +
k∗

1 − k1

k∗
2 − k∗

1

P1

)
L2

and one can find K̃2 and L̃1 by inverting (51) and then repeating the procedure, first by
evaluating it at k = k2 and then at k = k1, getting, respectively

K̃2 =
(

I +
k1 − k∗

1

k∗
1 − k2

P1

)
K2 L̃1 =

(
I +

k2 − k∗
2

k1 − k2
P1

)
L1.

The formulae obtained in this way determine a parameter-dependent Yang–Baxter map
on the set of projectors. One can check that for m = 1 one has the formulae for two vector
soliton interaction.

4. Generalized linear fractional transformations

In this section we investigate soliton interactions using linear fractional transformations (LFT).
Equations (16) and (17) for the ‘intensity redistribution’ among the modes of the two

solitons can be viewed as a generalized linear fractional transformation [15]. For any
j = 1, . . . , N , the j th component of the polarization vectors p+

1, p+
2 can be written as

p
+(j)

2 = 1

χ

k1 − k∗
2

k∗
1 − k∗

2

[
p

−(j)

2 +
k∗

1 − k1

k∗
2 − k∗

1

N∑
l=1

(
p

−(l)
1

)∗
p

−(l)
2 p

−(j)

1

]

p
+(j)

1 = 1

χ

k1 − k∗
2

k1 − k2

[
p

−(j)

1 +
k∗

2 − k2

k2 − k1

N∑
l=1

(
p

−(l)
2

)∗
p

−(l)
1 p

−(j)

2

]

i.e.,

p
+(j)

2 = 1

χ

k1 − k∗
2

k∗
1 − k∗

2

N∑
l=1

C
(1)
j,l p

−(l)
2 C

(1)
j,l = δjl +

k∗
1 − k1

k∗
2 − k∗

1

(
p

−(l)
1

)∗
p

−(j)

1 (53)

p
+(j)

1 = 1

χ

k1 − k∗
2

k1 − k2

N∑
l=1

C
(2)
j,l p

−(l)
1 C

(2)
j,l = δjl +

k∗
2 − k2

k2 − k1

(
p

−(l)
2

)∗
p

−(j)

2 (54)

where the coefficients C
(1)
i,j are independent of the polarization of the second soliton and C

(2)
i,j

are independent of the polarization of the first. Then, for j = 1, . . . , N − 1, we define

ρ2±
j,N = p

±(j)

2

p
±(N)
2

ρ1±
j,N = p

±(j)

1

p
±(N)
1
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where ρ
1,±
N,N = ρ

2,±
N,N = 1. The formulae for the transformation of the polarization yield the

generalized LFTs:

ρ1+
j,N =

∑N
l=1 C

(2)
j,l ρ

1,−
l,N∑N

l=1 C
(2)
N,lρ

1,−
l,N

ρ2+
j,N =

∑N
l=1 C

(1)
j,l ρ

2,−
l,N∑N

l=1 C
(1)
N,lρ

2,−
l,N

(55)

where

C
(1)
j,l = δj,l +

k∗
1 − k1

k∗
2 − k∗

1

(
N∑

i=1

∣∣ρ1,−
i,N

∣∣2

)−1

ρ
1,−
j,N

(
ρ

1,−
l,N

)∗
(56)

C
(2)
j,l = δj,l +

k∗
2 − k2

k2 − k1

(
N∑

i=1

∣∣ρ2,−
i,N

∣∣2

)−1

ρ
2,−
j,N

(
ρ

2,−
l,N

)∗
. (57)

Such transformations were suggested in [15] but the coefficients were not given explicitly
for general N. Moreover, the expressions in [15] for N = 2 are very complicated
and do not reveal the physical collision properties in a clear way. In contrast,
with the use of Manakov’s formulae the extension to any number of components is
straightforward.

We note that, as was observed in [25], two-soliton collisions in the higher component
systems can be reduced to two-soliton collisions in the two-component system by using
the invariance of solutions of VNLS under unitary transformations. The previous formulae
(55), however, are explicit and can be used directly (i.e., without rotating the coordinate
system).

We can think of a soliton in a state ρ−
1 as an operator Lρ−

1
that transforms the state of any

other soliton by colliding with it. In particular, one can show that: (i) every such operator
has a simply determined inverse; (ii) the only fixed points of such an operator are ρ−

1 and its
inverse; (iii) no such operator effects a pure rotation of the complex state for all operands;
(iv) by concatenating such operators a pure rotation can be achieved [9]. The application
of these ideas to implementing all-optical digital computation without employing physically
discrete components is also discussed in [9]. Such a computational machine would be based on
the propagation and collisions of solitons and would use conservative logic operations, since
the soliton collisions preserve the total energy and number of solitons.

Three complex numbers k, γ (1), γ (2) fully characterize the bright soliton in the Manakov
(N = 2) system. Since k (the ‘eigenvalue’) is unchanged by collisions, two degrees of freedom
can be removed immediately from the state characterization. Manakov removed an additional
degree of freedom by normalizing the polarization vector γ. Therefore, single complex-valued
polarization state ρ = γ (1)/γ (2), with only two degrees of freedom, suffices to characterize
two-soliton collisions when the constants k of both solitons are given. We will use the pair
(ρ, k) to refer to a soliton with variable state ρ = q1(x,t)

q2(x,t)
= γ (1)/γ (2), where q1 and q2 are the

components of the vector q, and (constant) parameter k.
For concreteness, we give the linear fractional transformations that describe soliton

interactions in the two-component case. Let k1 and k2 represent the constant soliton parameters,
ρ−

1 and ρ−
2 the respective soliton states before the impact and suppose the collision transforms

ρ−
1 into ρ+

1 and ρ−
2 into ρ+

2 , i.e.

Lρ−
1 ,k1

(ρ−
2 , k2) = ρ+

2 , Rρ−
2 ,k2

(ρ−
1 , k1) = ρ+

1 . (58)

Then, it follows from (55)–(57) that the state transformation for soliton 2 is given by

ρ+
2 = a1ρ

−
2 + b1

c1ρ
−
2 + d1

(59)
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where the coefficients are given by

a1 = 1 +
k∗

2 − k1

k∗
2 − k∗

1

|ρ−
1 |2 (60)

b1 = k∗
1 − k1

k∗
2 − k∗

1

ρ−
1 (61)

c1 = k∗
1 − k1

k∗
2 − k∗

1

(ρ−
1 )∗ (62)

d1 = k∗
2 − k1

k∗
2 − k∗

1

+ |ρ−
1 |2 (63)

and depend only on the particle in the state ρ−
1 , while the state transformation for soliton 1 is

given by

ρ+
1 = a2ρ

−
1 + b2

c2ρ
−
1 + d2

(64)

where the coefficients are functions of the particle in state ρ−
2

a2 = 1 +
k∗

2 − k1

k2 − k1
|ρ−

2 |2 (65)

b2 = k∗
2 − k2

k2 − k1
ρ−

2 (66)

c2 = k∗
2 − k2

k2 − k1
(ρ−

2 )∗ (67)

d2 = k∗
2 − k1

k2 − k1
+ |ρ−

2 |2. (68)

We remark that a straightforward calculation shows that for every operator, Lρ , there
is a unique inverse, Lσ , where σ = −1/ρ∗. We refer to a particle ρ followed by its
inverse −1/ρ∗ as an inverse pair. Collision with an inverse pair leaves any sequence of
particles unchanged. This property is especially useful in designing logic operators because
data encoded as inverse particle pairs leave operators unchanged. Hence the unaltered
logic operators can be used for subsequent logic operations on new data. Moreover, every
operator Lρ has exactly two distinct fixed points, ρ and −1/ρ∗. It follows that a particle
is transparent to itself and to the particle corresponding to its inverse operator, and to no
others.

In [9] it is shown that there is no single collision operator that is a pure rotation or a
multiplication by a scalar. However, a simple nontrivial operator which is pure rotation by
π/2 or multiplication by i is achieved by composing R0,1−i (ρ, 1 + i) and R∞,5−i (ρ, 1 + i).
The composition of two i operators results in the −1 operator, which, with appropriate
encoding of information, can be used as a logical NOT processor. More generally, in
[11] NOT, COPY, FANOUT and NAND gates are obtained with sequences of basic three-
soliton collision gates, with the proviso that it is possible to time-gate the beam input
into the medium. Therefore, time-gated Manakov spatial solitons are computationally
universal.
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4.1. Three-collision gate

Let us consider the three-collision gate

(k2, z) (k1, y) (kin, in)

garbage • • • actuator (k0, 0)

(k2, out) garbage garbage
� � �

�

The actuator is a left-moving soliton in the state 0, hence it is characterized by ρ−
1 = 0, k0 =

ξ0 + iη0 with ξ0 < 0. All the other solitons are right-moving and soliton parameters for
in, y, z will be denoted, respectively, by kin, k1, k2, which are chosen so that they do not interact
with each other, but only with the ‘actuator’ (for instance, Re kin � Re k1 � Re k2 > 0, but
also other arrangements are possible).

Let us introduce the following notation:

ρ+
2 = R(ρ−

1 , ρ−
2 ) ρ+

1 = L(ρ−
1 , ρ−

2 ) (69)

where R and L are defined by means of (59) and (64). The successive left-moving products
are L(0, in) and L[L(0, in), y], namely one has first the actuator interacting with the soliton
labelled in, which gives for the actuator the outgoing state L(0, in); subsequently, the actuator
in the state L(0, in) interacts with the soliton in the state y, which will leave the actuator in the
state L[L(0, in), y]. Finally, the actuator interacts with z, so that the output state out, which is
the state of z after this last interaction, is given by R{L[L(0, in), y], z}.

A COPY gate, for instance, is such that out = in and this corresponds to requiring that
0 maps to 0 and 1 maps to 1. Thus, a COPY gate is obtained by the solution of the two
simultaneous complex equations in two complex unknowns:

R{L[L(0, j), y], z} = j j = 0, 1. (70)

Taking into account the explicit expression of the coefficients of the linear fractional
transformations (60)–(63) and (65)–(68), one gets

L(0, 0) = b2(0)

d2(0)
= 0 L(0, 1) = b2(1)

d2(1)
= k∗

in − kin

k∗
in − 2k0 + kin

, (71)

and analogously

L[L(0, 1), y]

= (k1 − k0)(k
∗
in − kin) + (k∗

1 − k0)(k
∗
in − kin)|y|2 + (k∗

in − 2k0 + kin)(k
∗
1 − k1)y

(k∗
1 − k1)(k

∗
in − kin)y∗ + (k∗

in − 2k0 + kin)(k
∗
1 − k0) + (k1 − k0)(k

∗
in − 2k0 + kin)|y|2

(72)

L[L(0, 0), y] = (k∗
1 − k1)y

(k∗
1 − k0) + (k1 − k0)|y|2 (73)

and the conditions (70) become
Ajz + Bj

Cjz + Dj

= j j = 0, 1 (74)

where

Aj = 1 +
k∗

2 − k0

k∗
2 − k∗

0

|L[L(0, j), y]|2 Bj = k∗
0 − k0

k∗
2 − k∗

0

L[L(0, j), y] (75)

Cj = k∗
0 − k0

k∗
2 − k∗

0

(L[L(0, j), y])∗ Dj = k∗
2 − k0

k∗
2 − k∗

0

+ |L [L(0, j), y] |2. (76)
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Equations (74) yield

(C1 − A1)B0 = (D1 − B1)A0 (77)

which is a complex equation for y and

z = −B0

A0
(78)

which determines z in terms of y.
If we denote by L0(y) = L[L(0, 0), y] and L1(y) = L[L(0, 1), y] in (72) and (73), (77)

can be written as

(k∗
0 − k0)L0(y)[k∗

2 − k∗
0 + (k∗

2 − k0)L1(y)L1(y)∗ + (k0 − k∗
0)L1(y)∗]

= [k0 − k∗
2 + (k∗

0 − k0)L1(y) + (k∗
0 − k∗

2)L1(y)L∗
1(y)]

× [k∗
2 − k∗

0 + (k∗
2 − k0)L0(y)L0(y)∗]. (79)

It is not known whether, in general (i.e., for any choice of soliton parameters), equation (79)
has a unique solution or even if a solution exists. Below, we show that a unique solution exists
in certain parameter regimes.

Let us write kj = ξj + iηj for j = 0, 1, 2 and kin = ξin + iηin and choose, according to the
sequences of soliton interactions in a three-collision gate,

ξ0 < 0 < ξ2 < ξ1 < ξin

and ηj , ηin > 0 for all j = 0, 1, 2. The issue of finding solutions for the algebraic equation
can be investigated asymptotically. Choosing, for instance, η0 = η1 = ηin, one has

L(0, 1) = η0

η0 + i(ξin − ξ0)

and

L0(y) = y

1 + i(2η0)−1(1 + |y|2)(ξ1 − ξ0)
(80)

L1(y) = {y(1 + y∗) + i(2η0)
−1[(ξ1 − ξ0)(1 + |y|2) + 2(ξin − ξ0)y]}/{(1 + y∗)

+ i(2η0)
−1[(ξ1 − ξ0)(1 + |y|2) + 2(ξin − ξ0)]

− 2(2η0)
−2(ξin − ξ0)(ξ1 − ξ0)(1 + |y|2)}. (81)

If we also take η2 = η0, the algebraic equation (79) for y becomes

L0(y)(1 − L1(y))(L0(y) − L1(y))∗

+
i

2η0
(ξ2 − ξ0)[L0(y)(1 + |L1(y)|2)(1 + L0(y))∗ + (1 − L1(y))(1 + |L0(y)|2)]

− 1

(2η0)2
(ξ2 − ξ0)

2(1 + |L0(y)|2)(1 + |L1(y)|2) = 0. (82)
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Since from (80) and (81)

L0(y) = y

1 + i
2η0

Y0
, L1(y) =

yY1 + i
2η0

(Y0 + yX1)

Y1 + i
2η0

(Y0 + X1) − 1
(2η0)2 Y0X1

(83)

where

Y0 = (ξ1 − ξ0)(1 + |y|2) Y1 = 1 + y∗ X1 = 2(ξin − ξ0) (84)

we can write

L0(y) = y + L
(1)
0,rem(y) L

(1)
0,rem(y) = − i

2η0

yY0

1 + i
2η0

Y0
(85)

L
(1)
0,rem(y) = − i

2η0
yY0 + L

(2)
0,rem(y) L

(2)
0,rem(y) = − 1

(2η0)2

yY 2
0

1 + i
2η0

Y0
(86)

and analogously

L1(y) = y + L
(1)
1,rem(y) L

(1)
1,rem(y) = i

2η0
Y0

1 − y − i
2η0

yX1

Y1 + i
2η0

(Y0 + X1) − 1
(2η0)2 Y0X1

(87)

L
(1)
1,rem(y) = i

2η0

(1 − y)Y0

Y1
+ L

(2)
1,rem(y) (88)

L
(2)
1,rem(y) = 1

(2η0)2

(1 − y)Y0

Y1

(Y0 + X1) + y

1−y
Y1X1 − i

2η0
Y0X1

Y1 − i
2η0

(Y0 + X1) − 1
(2η0)2 Y0X1

. (89)

Note that L
(1)
j,rem(y) for both j = 1, 2 is of order O

(
η−1

0

)
and L

(2)
j,rem(y) is of order O

(
η−2

0

)
for large η0. This suggests one could look for order 1 asymptotic solutions in y of this equation
corresponding to η0 � 1 and finite ξ . Substituting into (82), the leading order terms in η0

yield

Red E(y) ≡ − i

2η0

(1 + |y|2)2

1 + y
[(ξ1 − ξ0)y(1 − y) + (ξ2 − ξ0)(1 + y)] = 0

and this equation admits exactly two solutions, say y(1) and y(2). Moreover, these solutions
are distinct and real if, as we assumed, (ξ1 − ξ0)(ξ2 − ξ0) > 0. Precisely, one can write
equation (82) in the form

Red E(y) = −Erem(y) (90)

where

Erem(y) = i

2η0
(ξ1 − ξ0)

(1 + |y|2)2

1 + y

[
(1 − y)L

(1)
0,rem(y) − yL

(1)
1,rem(y) − L

(1)
0,rem(y)L

(1)
1,rem(y)

]
+ L0(y)(1 − L1(y))

(
L

(2)
1,rem(y) − L

(2)
0,rem(y)

)∗

+
i

2η0
(ξ2 − ξ0)

[
L0(y)(1 + |L1(y)|2)(L(1)

0,rem(y)
)∗ − L

(1)
1,rem(y)(1 + |L0(y)|2)

+ L0(y)(1 + L0(y))∗
(∣∣L(1)

1,rem(y)
∣∣2

+ 2 Re
(
y∗L(1)

1,rem(y)
))

+ L
(1)
0,rem(y)(1 + |L1(y)|2)(1 + L0(y))∗

+ (1 − L1(y))
(∣∣L(1)

0,rem(y)
∣∣2

+ 2 Re
(
y∗L(1)

0,rem(y)
))]

− (ξ2 − ξ0)
2

(2η0)2
(1 + |L0(y)|2)(1 + |L1(y)|2) (91)

and all the terms in the ‘remainder’ Erem(y) are at least proportional to η−2
0 .
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In a neighbourhood of one of the roots of the ‘reduced’ equation Red E(y) = 0, say
y = y(1), equation (90) can be written as

y − y(1) = − 2iη0

ξ1 − ξ0

1 + y

(1 + |y|2)2(y − y(2))
Erem(y). (92)

The last one can be written as a fixed point system of equations (note that in (92) y is complex)

x1 = F(x1, x2) x2 = G(x1, x2) (93)

and if {x̃1, x̃2} is a solution of the equation and
{
x

(0)
1 , x

(0)
2

}
is an approximation to {x̃1, x̃2}, the

successive approximations can be generated by

x
(j+1)

1 = F
(
x

(j)

1 , x
(j)

2

)
x

(j+1)

2 = G
(
x

(j)

1 , x
(j)

2

)
.

This iteration will converge if

(i) F,G and their partial derivatives are continuous in a neighbourhood I of the root {x̃1, x̃2},
where I consists of all {x1, x2} with |x1 − x̃1| < ε, |x2 − x̃2| < ε, for some positive ε;

(ii) the following inequalities are satisfied∣∣∂x1F
∣∣ +

∣∣∂x2F
∣∣ � K

∣∣∂x1G
∣∣ +

∣∣∂x2G
∣∣ � K

for all points {x1, x2} in I and some K < 1;
(iii) the initial approximation

{
x

(0)
1 , x

(0)
2

}
is chosen in I.

In the case of equation (92), since F = 1
2η0

F̃ ,G = 1
2η0

G̃ where F̃ , G̃ are rational functions of
x1, x2, it follows that it is always possible to choose η0 large enough so that conditions (i)–(iii)
are satisfied and, consequently, the fixed point iteration procedure converges to a solution.

In [10] a similar nonlinear algebraic system was obtained and analysed numerically.
However, to our knowledge, no proof for the existence of a solution has been given. Here we
have shown that, in fact, there are parameter regimes for which a unique solution for this basic
three-collision gate is guaranted to exist.

Using the same basic three-soliton collisions, one can also implement the NOT gate, i.e.
a gate such that out = 0 when in = 1 and vice versa. The NOT gate is obtained by the solution
of the following two simultaneous complex equations in two complex unknowns:

R{L[L(0, j), y], z} = 1 − j j = 0, 1. (94)

Other logical operations are implemented similarly.

4.2. Order invariance of three-soliton collisions via LFT

It is known that the composition of two linear fractional transformations

f (z) = f1(f2(z))

where

f1(z) = a1z + b1

c1z + d1
f2(z) = a2z + b2

c2z + d2

is still a linear fractional transformation with coefficients

a3 = a1a2 + b1c2, b3 = a1b2 + b1d2

c3 = c1a2 + d1c2, d3 = c1b2 + d1d2.
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Hence, if we introduce for j = 1, 2

aj3 = 1 +
k∗

3 − kj

k∗
3 − k∗

j

|ρ−
j |2 bj3 = k∗

j − kj

k∗
3 − k∗

j

ρ−
j (95)

cj3 = k∗
j − kj

k∗
3 − k∗

j

(ρ−
j )∗ dj3 = k∗

3 − kj

k∗
3 − k∗

j

+ |ρ−
j |2 (96)

the state of soliton 3 after the subsequent interactions with solitons 2 and 1 is characterized by

ρ+
3 = Aρ−

3 + B

Cρ−
3 + D

(97)

where

A = a13a23 + b13c23 B = a13b23 + b13d23 (98)

C = c13a23 + d13c23 D = c13b23 + d23d13. (99)

On the the other hand, if the order of the soliton interaction is 2 ↔ 1, 3 ↔ 1 and finally
3 ↔ 2, the composition of the corresponding linear fractional transformations yields for
soliton 3

ρ̃+
3 = Ãρ−

3 + B̃

C̃ρ−
3 + D̃

(100)

where

Ã = ã13ã23 + b̃23c̃13 B̃ = ã23b̃13 + b̃23d̃13 (101)

C̃ = c̃23ã13 + d̃23c̃13 D̃ = c̃23b̃13 + d̃13d̃23. (102)

with

ãj3 = 1 +
k∗

3 − kj

k∗
3 − k∗

j

∣∣ρ+
j

∣∣2
b̃j3 = k∗

j − kj

k∗
3 − k∗

j

ρ+
j (103)

c̃j3 = k∗
j − kj

k∗
3 − k∗

j

(
ρ+

j

)∗
d̃j3 = k∗

3 − kj

k∗
3 − k∗

j

+
∣∣ρ+

j

∣∣2
(104)

and ρ+
j for j = 1, 2 are given by (59)–(68).

Choosing, without loss of generality, ρ−
1 = 0 and arbitrary ρ−

2 , from (59)–(68) it follows
that

ρ+
1 = (k∗

2 − k2)ρ
−
2

(k2 − k1)|ρ−
2 |2 + k∗

2 − k1
ρ+

2 = k∗
2 − k∗

1

k∗
2 − k1

ρ−
2

and substituting into (101) and (102), one can check that

Ã = cA B̃ = cB C̃ = cC D̃ = cD

where the common multiplier is given by

c = |k2 − k1|2|ρ−
2 |4 + 2|k∗

2 − k1|2|ρ−
2 |2 + |k∗

2 − k1|4||k2 − k1|−2

|k∗
2 − k1|2[|ρ−

2 |2 + (k∗
2 − k1)(k2 − k1)−1][|ρ−

2 |2 + (k2 − k∗
1)(k

∗
2 − k∗

1)
−1]

.

This is yet another proof that the net shift in a soliton polarization state is independent of
the order of soliton interaction in a two-component, three-soliton collision. The inductive
argument given previously allows one to extend this result to the collision of an arbitrary
number of solitons.
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[25] Soljac̆ić M, Steiglitz K, Sears S M, Segev M, Jakubowski M H and Squier R 2003 Collisions of two solitons in

an arbitrary number of coupled nonlinear Schrödinger equations Phys. Rev. Lett. 90 254102
[26] Barad Y and Silberberg Y 1997 Phys. Rev. Lett. 78 3290
[27] Cundiff S T et al 1999 Phys. Rev. Lett. 82 3988


