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Abstract
The inverse scattering transform for an integrable discretization of the
defocusing nonlinear Schrodinger equation with nonvanishing boundary values
at infinity is constructed. This problem had been previously studied, and
many key results had been established. Here, a suitable transformation
of the scattering problem is introduced in order to address the open issue
of analyticity of eigenfunctions and scattering data. Moreover, the inverse
problem is formulated as a Riemann–Hilbert problem on the unit circle, and
a modification of the standard procedure is required in order to deal with the
dependence of asymptotics of the eigenfunctions on the potentials. The discrete
analog of Gel’fand–Levitan–Marchenko equations is also derived. Finally,
soliton solutions and solutions in the small-amplitude limit are obtained and
the continuum limit is discussed.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The nonlinear Schrödinger (NLS) equation

iqt = qxx − 2σ |q|2q (1.1)

is a universal model for weakly nonlinear dispersive waves, and as such it appears in many
different physical contexts. It is well known that the initial-value problem for equation (1.1)
on the infinite line (−∞ < x < ∞) can be solved via the inverse scattering transform (IST)
[1], and the properties of IST for (1.1) have been extensively investigated in the literature, both
in the focusing (σ = −1) and in the defocusing (σ = 1) cases. In particular, the defocusing
case with nonvanishing boundary conditions was first studied in 1973 [2]; the problem was
subsequently clarified and generalized in various works [3–9]. A detailed study can be found
in the monograph [10]. In particular, it is well known that equation (1.1) with σ = 1 admits
soliton solutions with nontrivial boundary conditions, the so-called dark/gray solitons, which
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have the form

q(x, t) = q0 e2iq2
0 t [cos α + i sin α tanh[sin αq0(x − 2q0 cos αt − x0)]] (1.2)

with q0, α and x0 being arbitrary real parameters. Such solutions satisfy the boundary
conditions

q(x, t) → q±(t) = q0 e2iq2
0 t±iα as x → ±∞

and appear as localized dips of intensity q2
0 sin2 α on the background field q0. The properties

of dark solitons have been extensively discussed in the review article [11]. It is interesting to
note, however, that while the IST for the scalar NLS equation was developed many years ago,
the formulation of IST for the vector nonlinear Schrödinger (VNLS) equation has been only
recently completed [12]. The IST for certain matrix NLS systems has been studied in [13].

In this paper, we study the IST for a semi-discrete (discrete in space, continuous in
time) version of the NLS equation (1.1). In general, a discretization of an integrable partial
differential equation (PDE) is likely to be non-integrable. That is, even though the integrable
PDE is the compatibility condition of a linear operator pair, one is not guaranteed to have a
pair of linear equations corresponding to a generic discretization of the PDE. On the other
hand, for the differential-difference equation

i
d

dt
qn = 1

h2
(qn+1 − 2qn + qn−1) − σ |qn|2(qn+1 + qn−1), (1.3)

which is referred to here as the integrable discrete NLS (IDNLS) equation, and which is a
O(h2) finite-difference approximation of (1.1), there is such an associated operator pair (cf
section 2). The corresponding scattering problem is usually referred to as the Ablowitz–Ladik
scattering problem (cf [14, 15] and the monograph [16]). Besides being used as a basis for
numerical schemes for its continuous counterpart, the IDNLS equation has also numerous
physical applications, related to the dynamics of anharmonic lattices [17], self-trapping on a
dimer [18], Heisenberg spin chains [19, 20] etc.

The purpose of this work is to develop the IST under nonvanishing boundary conditions
for the following system of differential-difference equations on the doubly infinite lattice:

i
d

dτ
Qn = Qn+1 − 2Qn + Qn−1 − QnRn(Qn+1 + Qn−1), (1.4a)

−i
d

dτ
Rn = Rn+1 − 2Rn + Rn−1 − QnRn(Rn+1 + Rn−1), (1.4b)

with n ∈ Z. Equations (1.4) include the IDNLS equations (1.3) via the reductions4 Rn = σQ∗
n,

with Qn = hqn and τ = t/h2. The IST for equations (1.4) with vanishing boundary
conditions was studied in [15]. The case of interest here, namely equations (1.4) with
Rn = Q∗

n and nonvanishing boundaries, was also studied in [21], and we often refer to some
key results already established there. In some important respects, however, we part from the
approach in [21], and we solve the problem differently, most notably by relaxing the implicit
requirement in [21] that the eigenfunctions be entire functions of the scattering parameter
(which otherwise precludes the possibility of studying non-soliton solutions). We establish
the analyticity properties of eigenfunctions and scattering data from the direct scattering
problem for potentials in a suitable function class; we formulate the inverse problem as a
Riemann–Hilbert problem which also takes into account the asymptotic dependence (at large

4 Throughout this work, the conjugate of a complex number will be denoted by an asterisk ∗. Accordingly, overbars,
which (following standard notations) will be used extensively, do not mean complex conjugate.
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and small values of the scattering parameter) of the eigenfunctions on the potentials, and we
discuss the small-amplitude and continuum limits of the problem.

The paper is organized as follows. In section 2, we discuss the direct scattering problem.
As in the continuous case, the spectral parameter of the associated scattering problem for
the IDNLS equation is an element of a two-sheeted Riemann surface. Unlike the continuous
system, however, for the discrete problem the Riemann surface has four branch points, located
on the unit circle. The Riemann surface in the discrete case is genus 1, that is, topologically
equivalent to a torus. In spite of this, due to the symmetries in the location of the branch
points, the elliptic Riemann surface admits an involutive automorphism and can therefore
be uniformized in algebraic form. Following [21], in section 2.2 we therefore introduce an
algebraic parametrization for the uniformization coordinate. Sections 2.3 and 2.4 are devoted
to the study of the analyticity of the scattering eigenfunctions. In [21], the eigenfunctions are
assumed to be entire, and the equations of the inverse problem derived accordingly, which
imposes strong restrictions on the class of admissible potentials. We show that in general
the eigenfunctions are analytic inside or outside the unit circle of the uniform variable when∑n

j=∓∞ |Qj −Q∓| < ∞ for any finite n, where Q± = limn±∞ Qn. In section 2.5, we study the
asymptotic behavior of the eigenfunctions for relevant values of the scattering parameter and
show this behavior explicitly depends on the potentials. In section 2.6, we study the properties
of the scattering coefficients and their symmetries and we discuss the discrete spectrum. The
inverse problem is formulated in section 3 as a Riemann–Hilbert (RH) problem associated with
analytic eigenfunctions. The formulation must be modified with respect to the standard case
in order to take into account that the asymptotic behavior of the eigenfunctions for relevant
values of the scattering parameter explicitly depends on the potentials, which are unknown
in the inverse problem. The RH problem is then transformed into a closed linear system of
algebraic-integral equations. In section 4, the Gel’fand–Levitan–Marchenko (GLM) equations
are derived, which are usually key for studying issues of existence and uniqueness of solutions
of the inverse problem. The time evolution of the scattering data is discussed in section 5,
where an infinite set of conserved quantities is also obtained. Explicit solutions are given in
section 6, where the one-soliton solution is derived. In section 7, the linearized solution of the
IDNLS equation is obtained and found to be consistent with that of the small-amplitude limit
obtained from the RH formulation. Also, in section 8 the continuum limit is explicitly carried
out. Finally, the proof of various statements in the text is given in the appendix.

2. Direct scattering problem

The Lax pair for system (1.4) is given by [14, 15]

vn+1 =
(

z Qn

Rn 1/z

)
vn, (2.1a)

∂vn

∂τ
=
(

iQnRn−1 − i
2 (z − 1/z)2 −izQn + iQn−1/z

iRn/z − izRn−1 −iQn−1Rn + i
2 (z − 1/z)2

)
vn, (2.1b)

where vn is a two-component vector, z ∈ C is the scattering parameter and Qn(τ), Rn(τ )

are the potentials. That is, the compatibility condition between (2.1a) and (2.1b) (namely,
∂vn+1/∂τ = (∂vm/∂τ)m=n+1) is equivalent to the evolution equations (1.4) for Qn(τ) and
Rn(τ). It is also convenient to write (2.1) as

vn+1 = Lnvn, (2.2a)

∂vn

∂τ
= Mnvn, (2.2b)
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where Mnvn denotes the right-hand side of (2.1b), and where

Ln = Z + Qn, Z =
(

z 0
0 1/z

)
Qn =

(
0 Qn

Rn 0

)
. (2.3)

Throughout this work, we will use boldface fonts to denote 2 × 2 matrices.

2.1. Eigenfunctions

The direct scattering problem requires characterizing the spectrum of (2.2a) and the
corresponding eigenfunctions in terms of the potentials Qn and Rn. As customary, when
discussing the direct and inverse problems we will omit the dependence on τ of the potentials
and eigenfunctions, since τ only plays the role of a constant parameter in these contexts.

We seek solutions of the scattering problem (2.2a) with Rn = Q∗
n and with the potentials

satisfying the following boundary conditions:

lim
n→±∞ Qn = Q± ≡ Qo eiθ± , lim

n→±∞ Rn = R± ≡ Qo e−iθ± , (2.4)

where Qo is a real and positive constant. The solutions of (2.2a) then satisfy asymptotically
as n → ±∞,

vn+1 ∼
(

z Qo eiθ±

Qo e−iθ± 1/z

)
vn. (2.5)

Denoting by v
(j)
n (for j = 1, 2) the j th component of the vector vn, (2.5) yields

v
(j)

n+2 = (z + 1/z)v
(j)

n+1 +
(
Q2

o − 1
)
v(j)

n j = 1, 2. (2.6)

Looking for solutions of (2.6) in the form v
(j)
n ∼ αn we get α + r2/α = z + 1/z, with

r =
√

1 − Q2
o. (2.7)

Throughout this work, we assume 0 < Qo < 1. As a consequence, 0 < r < 1. Introducing
λ = α/r , a solution of (2.6) is given by v

(j)
n ∼ λnrn, with λ such that

r(λ + 1/λ) = z + 1/z. (2.8)

Similarly, looking for solutions in the form v
(j)
n ∼ 1/βn, we get 1/β + r2β = z + 1/z.

Introducing λ = βr , it follows that λ satisfies the same equation (2.8). We conclude that two
independent solutions of (2.6) are given by

v(j)
n ∼ λnrn, j = 1, 2, n → ±∞,

v(j)
n ∼ rn/λn, j = 1, 2, n → ±∞,

where λ as a function of z is defined by (2.8). Therefore one can uniquely define solutions of the
scattering problem (2.1a) by their asymptotic behavior at large n. We therefore introduce the
eigenfunctions φn(z), φ̄n(z), ψn(z) and ψ̄n(z) which are the analogs of the Jost eigenfunctions
in the case of vanishing boundary conditions, and are defined by

ψ̄n(z) ∼ λnrn

(
Q+

λr − z

)
n → +∞ (2.9a)

φn(z) ∼ λnrn

(
Q−

λr − z

)
n → −∞ (2.9b)

ψn(z) ∼ λ−nrn

(
λr − z

−R+

)
n → +∞ (2.9c)
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Figure 1. Left: the choice of branch cut in the complex ξ -plane. Right: the two-sheeted covering
of the complex ξ -plane defined by λ = ξ + (ξ2 − 1)1/2.

φ̄n(z) ∼ λ−nrn

(
λr − z

−R−

)
n → −∞. (2.9d)

It is convenient to introduce the variable ξ(z) = (z + 1/z)/2r , such that (2.8) yields

λ(z) = ξ ±
√

ξ 2 − 1, 1/λ(z) = ξ ∓
√

ξ 2 − 1. (2.10)

From definition (2.10) it then follows that for each z ∈ C there are two possible values of λ,
and the branch points of λ(z) are located at ξ 2 = 1. Namely, from (2.10), the branch points
are given by the solutions of (z + 1/z)2 = 4r2, that is z2 ∓ 2rz + 1 = 0. Therefore, in terms
of the variable z the eigenfunctions have four branch points located on the unit circle, which
we denote by ±z0 and ±z∗

0, with

z0 = r + iQo. (2.11)

It is therefore natural to define the Riemann surface of equation (λ − ξ)2 = ξ 2 − 1 obtained
by gluing together two copies of the extended complex ξ -plane, which we will call I and II,
cut along the segment (−1, 1). One can introduce the local polar coordinates

ξ − 1 = r1 eiθ1 , ξ + 1 = r2 eiθ2 , ξ = r eiθ , 0 � θ1, θ2, θ < 2π, (2.12)

with the magnitudes r1, r2 and r uniquely fixed by the location of the point ξ : r1 = |ξ−1|, r2 =
|ξ + 1| and r = |ξ | (cf figure 1(a)). Then on the sheet I one can define

λ(ξ) = r eiθ + (r1r2)
1/2 ei(θ1+θ2)/2. (2.13)

If we let � = (θ1 + θ2)/2, then � is discontinuous along the segment (−1, 1); indeed, one has
λ = ±r + i

√
r1r2 on aI and λ = ±r − i

√
r1r2 on bI (cf figure 1(b)). Conversely, on sheet II

one defines

λ(ξ) = r eiθ − (r1r2)
1/2 ei(θ1+θ2)/2, (2.14)

again with a cut along the segment (−1, 1). The lower branch of the cut on sheet I, denoted
by aI, is then glued with the upper branch on sheet II, called aII, while bI is glued with bII
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(cf figure 1(b)). Points on this Riemann surface are uniquely identified by a pair (z, λ). When
there is no ambiguity as to the location of the point on a sheet, however, we will omit the
explicit dependence on λ = λ(z).

In the following, we will show that the eigenfunctions φn(z) and ψn(z) are analytic on sheet
I, while φ̄n(z) and ψ̄n(z) are analytic on sheet II. This is related to the fact that one can prove
that |λ| > 1 on sheet I and |λ| < 1 on sheet II. Along the cuts, λ is clearly discontinuous, but
|λ| = 1 on each side (see the appendix for details). (Note that, alternatively, one could consider
a two-sheeted Riemann surface with a cut along the semi-infinite lines (−∞,−1) ∪ (1,∞).
With this choice, however, |λ| − 1 does not have definite sign on either sheet, therefore in the
following we will take the cut to be on the segment.)

The Wronskian of two solutions of the scattering problem (2.1a) is defined as usual as

Wr(vn, wn) = det(vn, wn),

and it satisfies the recursion relation

Wr(vn+1, wn+1) = (1 − QnRn) Wr(vn, wn).

Then, since Wr(r−nφ̄n, r
−nφn) ∼ (λr − z)2 + Q2

o as n → −∞ and Wr(r−nψn, r
−nψ̄n) ∼

(λr − z)2 + Q2
o as n → +∞ by virtue of (2.9), one has

Wr(φn(z), φ̄n(z)) = −[(λr − z)2 + Q2
o

]
r2n

n−1∏
k=−∞

1 − QkRk

1 − Q2
o

(2.15a)

Wr(ψ̄n(z), ψn(z)) = −[(λr − z)2 + Q2
o

]
r2n

+∞∏
k=n

1 − Q2
o

1 − QkRk

. (2.15b)

That is, φn(z) and φ̄n(z) are linearly independent (see remark 1), and so are ψn(z) and ψ̄n(z).
Therefore, introducing the 2 × 2 matrices

Φn(z) = (φn(z) φ̄n(z)), Ψn(z) = (ψ̄n(z) ψn(z)), (2.16)

we conclude that both Φn(z) and Ψn(z) are fundamental solutions of (2.1a).

Remark 1. The multiplicative factors depending on the potentials in (2.15) are also present
in the decaying case, and one must require that they never vanish. (This is obvious in the
focusing case, Rn = −Q∗

n, but must be imposed as a ‘small norm’ condition in the defocusing
regime, that is, when Rn = Q∗

n.) Moreover, we show in the appendix that (λr − z)2 + Q2
o = 0

iff z = ±z0 or z = ±z∗
0, with z0 defined in (2.11). We conclude that the eigenfunctions

φn(z), φ̄n(z) are linearly independent for all z except at the branch points of λ(z), and so are
ψn(z), ψ̄n(z). In this respect, the situation is analogous to what happens in the continuum
limit, where the Wronskian of the eigenfunctions is proportional to λ =

√
k2 − q2

0 , and hence
different from zero except, possibly, at the branch points k = ±q0.

Since the Φn(z) and Ψn(z) are both fundamental solutions of (2.1a), they are related to an
n-independent invertible transformation. Namely, we can introduce the scattering matrix T(z)

such that

Φn(z) = Ψn(z)T(z). (2.17)

Explicitly,

φn(z) = b(z)ψn(z) + a(z)ψ̄n(z), φ̄n(z) = ā(z)ψn(z) + b̄(z)ψ̄n(z),
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where

T(z) =
(
a(z) b̄(z)

b(z) ā(z)

)
. (2.18)

Then (2.15) implies

det T(z) = det Φn(z)

det Ψn(z)
= Wr(φn(z), φ̄n(z))

Wr(ψ̄n(z), ψn(z))
=

∞∏
k=−∞

1 − QkRk

1 − Q2
o

≡ c∞. (2.19)

The scattering coefficients can also be written as

a(z) = Wr(φn(z), ψn(z))

Wr(ψ̄n(z), ψn(z))
, ā(z) = − Wr(φ̄n(z), ψ̄n(z))

Wr(ψ̄n(z), ψn(z))
(2.20a)

b(z) = − Wr(φn(z), ψ̄n(z))

Wr(ψ̄n(z), ψn(z))
, b̄(z) = Wr(φ̄n(z), ψn(z))

Wr(ψ̄n(z), ψn(z))
. (2.20b)

Note that if zk is a zero of a(z), then from (2.20) it follows that Wr(φn(zk), ψn(zk)) = 0, that
is,

φn(zk) = bkψn(zk) (2.21a)

for some complex constant bk . Similarly, at a zero z̄k of ā(z) there exists a complex constant
b̄k such that

φ̄n(z̄k) = b̄kψ̄n(z̄k). (2.21b)

Because the asymptotic behavior of the eigenfunctions depends on rn and 0 < r < 1, we
define the continuous spectrum of the scattering problem (2.1a) as any value of z for which
modified eigenfunctions r−nvn(z) are bounded for all n ∈ Z. This corresponds to values z

such that |λ(z)| = 1, with λ given by (2.8). Such continuous spectrum is then found to be the
union of two arcs of the unit circle |z| = 1 given by |Re z| < r (see the appendix for details).
Namely,

C = {z ∈ C : |z| = 1 and |Re z| < r}. (2.22a)

On the other hand, the discrete spectrum (if there is any) consists of values zk such that the
problem possess modified eigenfunctions r−nvn(zk) which vanish as n → ±∞. Following
[21], it can be shown that, if Qo < 1, the discrete eigenvalues lie on the unit circle and, for
the sake of simplicity, we exclude the possibility of discrete eigenvalues embedded in the
continuous spectrum. We will therefore take the discrete eigenvalues (if any) to be located in
the complement of the unit circle with respect to continuous spectrum. Namely,

D = {z1, . . . , zJ ∈ C : |zk| = 1 and |Re zk| > r ∀k = 1, . . . , J }. (2.22b)

The proof that for Qo < 1, necessarily |zk| = 1 mirrors the one in [21] and it is given, for
completeness, in the appendix.

2.2. Uniformization

The eigenfunctions and the scattering data are not single-valued functions of z. Indeed, as
follows from (2.8), the function λ(z) is double-valued, and has four branch points located at
±z0 and ±z∗

0. Hence, the scattering problem is defined on the two-sheeted Riemann surface for
λ(z). In principle, this problem can be eliminated by introducing a uniformization coordinate.
A two-sheeted Riemann surface with four branch points is equivalent to a torus (genus 1),
and in general is uniformized by means of elliptic functions. Due to the symmetries of the
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scattering problem, however, it is possible to find an algebraic parametrization. In [21], such
a uniformization variable is introduced by means of the conformal mapping

ζ(z) = λ(z)/z, (2.23)

which implies the following relations:

z2 = ζ − r

ζ(rζ − 1)
, λ2 = ζ

ζ − r

rζ − 1
, zλ = ζ − r

rζ − 1
. (2.24)

Hence all these quantities, as well as all quantities which are even functions of λ and z, are
meromorphic functions of ζ .

The function ζ(z) maps the arcs of the unit circle (z0,−z∗
0) and (z∗

0,−z0) onto the unit
circle in the ζ -plane. The edges of the continuous spectrum, ±z0 and ±z∗

0, are such that
λ(±z0) ≡ λ(±z∗

0) = ±1. Therefore, since |z0| = 1, from (2.23) it follows that they are
transformed into the points ζ0 and ζ ∗

0 , where ζ(±z0) = ζ ∗
0 = z∗

0 and ζ(±z∗
0) = ζ0 = z0. Note

also that as ζ → r one has (z, λ) → 0 and ζ → 1/r corresponds to (z, λ) → ∞. Therefore,
the points r and 1/r in the complex ζ -plane play the same role as the points 0 and ∞.

Remark 2. In the appendix we show that

|λ| � 1 iff |ζ | � 1, (2.25a)

|z| � 1 iff (|ζ |2 − 1)[|ζ − 1/r|2 − Qo/r] � 0. (2.25b)

The values of ζ corresponding to the distinguished points of the unit circle in the z-plane
are tabulated in the appendix. Equations (2.25) and the correspondences in table 1 yield the
mapping z → ζ shown in figure 2. Note that the mapping is not 1-to-1, but rather 2-to-1. That
is, two different values of z (both in the same sheet) correspond to any single value of ζ . This
however does pose obstacles in the analysis.

Because the asymptotic behavior of the eigenfunctions as |n| → ∞ contains the terms
rnλ±n, in order to more effectively study analyticity properties we now introduce the 2 × 2
matrix

Λ =
(

λ 0
0 1/λ

)
. (2.26)

Using Λ, we can define modified eigenfunctions whose asymptotic behavior as n → ±∞ is
independent of λ, as in [21]. Indeed, note that if Φn(z) and Ψn(z) are defined by (2.16), then
from (2.9) one has

r−nΦn(z)Λ−n ∼
(

Q− λr − z

λr − z −R−

)
n → −∞, (2.27a)

r−nΨn(z)Λ−n ∼
(

Q+ λr − z

λr − z −R+

)
n → +∞. (2.27b)

The asymptotics of the matrices r−nΦn(z)Λ−n and r−nΨn(z)Λ−n show that the diagonal parts
are meromorphic functions of ζ , while the off-diagonal parts contain terms like rλ − z, which
are not even functions of λ or z. The scattering matrix T(z) shares the same property. (This
follows from (2.27) in the asymptotics at large n, but in fact holds true for all integers n, and
it is proven from the scattering problem [21].) We can obtain meromorphic functions of ζ ,
however, by performing a further transformation on the eigenfunctions. That is, we introduce
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Figure 2. The mapping z → ζ . The exterior of the unit disk in sheets I and II is mapped
respectively onto the interior of the disks |ζ | < 1 and |ζ − 1/r| < Qo/r minus their intersection
(regions B and D). The interior of the unit disk in sheet I is mapped onto the region outside both
disks in the ζ -plane (region A). Finally, the interior of the unit disk in sheet II is mapped onto the
intersections of the two disks in the ζ -plane (region C).

(This figure is in colour only in the electronic version)

the modified eigenfunctions

(Mn(ζ )M̄n(ζ )) = r−nA(λ)Φn(z)A−1(λ)Λ−n, (2.28a)

(N̄n(ζ )Nn(ζ )) = r−nA(λ)Ψn(z)A−1(λ)Λ−n, (2.28b)

where

A(λ) =
(

1 0
0 λ

)
. (2.29)

Note that the choice of A is obviously not unique. This choice however will also be
convenient when studying the analyticity properties of the eigenfunctions (cf section 2.4).
Componentwise, (2.28) is

Mn(ζ ) = λ−nr−n

(
φ(1)

n (ζ )

λ(ζ )φ(2)
n (ζ )

)
, M̄n(ζ ) = λnr−n

(
φ̄(1)

n (ζ )/λ(ζ )

φ̄(2)
n (ζ )

)
, (2.30a)

Nn(ζ ) = λnr−n

(
ψ(1)

n (ζ )/λ(ζ )

ψ(2)
n (ζ )

)
, N̄n(ζ ) = λ−nr−n

(
ψ̄(1)

n (ζ )

λ(ζ )ψ̄(2)
n (ζ )

)
. (2.30b)
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These modified eigenfunctions satisfy the difference equations (modified scattering problems)

rMn+1(ζ ) =
(

z/λ Qn/λ
2

Rn 1/(λz)

)
Mn(ζ ), rN̄n+1(ζ ) =

(
z/λ Qn/λ

2

Rn 1/(λz)

)
N̄n(ζ ), (2.31a)

rM̄n+1(ζ ) =
(

λz Qn

λ2Rn λ/z

)
M̄n(ζ ), rNn+1(ζ ) =

(
λz Qn

λ2Rn λ/z

)
Nn(ζ ). (2.31b)

Note that the combinations of scattering parameters in (2.31) can all be expressed as uniquely
terms of ζ via (2.23) and (2.24).

The asymptotic behavior of these modified eigenfunctions at large n, which follows from
(2.28) and (2.9), is independent of n, as desired. Indeed, since (λr − z)λ = λ2r −λz = ζ − r ,
and (λr − z)/λ = r − 1/ζ , one has

Mn(ζ ) ∼
(

Q−
ζ − r

)
, M̄n(ζ ) ∼

(
r − 1/ζ

−R−

)
n → −∞, (2.32a)

N̄n(ζ ) ∼
(

Q+

ζ − r

)
, Nn(ζ ) ∼

(
r − 1/ζ

−R+

)
n → +∞. (2.32b)

After transformation by means of the matrix A(λ), relation (2.17) becomes

(Mn(ζ )M̄n(ζ )) = (N̄n(ζ )Nn(ζ ))ΛnS(ζ )Λ−n,

where the modified scattering matrix S(ζ ) is given by

S(ζ ) = A(λ)T(z)A−1(λ) ≡
(

a(ζ ) b̄(ζ )/λ(ζ )

λ(ζ )b(ζ ) ā(ζ )

)
. (2.33)

Note that both S(ζ ) and the product ΛnS(ζ )Λ−n for integer n are meromorphic functions of
ζ . Explicitly, we have

Mn(ζ ) = N̄n(ζ )a(ζ ) + λ(ζ )−2nNn(ζ )β(ζ ), (2.34a)

M̄n(ζ ) = Nn(ζ )ā(ζ ) + λ(ζ )2nN̄n(ζ )β̄(ζ ), (2.34b)

where β(ζ ) = λ(ζ )b(ζ ), β̄(ζ ) = b̄(ζ )/λ(ζ ). We note that equations (2.34) are key to the
formulation of the inverse problem.

Taking into account (2.20) and (2.30), we then have the following Wronskian
representations for the scattering coefficients:

a(ζ ) = Wr(Mn(ζ ),Nn(ζ ))

Wr(N̄n(ζ ),Nn(ζ ))
, ā(ζ ) = −Wr(M̄n(ζ ), N̄n(ζ ))

Wr(N̄n(ζ ),Nn(ζ ))
, (2.35)

β(ζ ) = −λ2n(ζ )
Wr(Mn(ζ ), N̄n(ζ ))

Wr(N̄n(ζ ),Nn(ζ ))
, β̄(ζ ) = λ−2n(ζ )

Wr(M̄n(ζ ),Nn(ζ ))

Wr(N̄n(ζ ),Nn(ζ ))
. (2.36)

Note that Wr(N̄n, Nn) = r−2n Wr(ψ̄n, ψn) and (λr −z)2 = (ζ − r)(r −1/ζ ) so that (cf (2.15)
and (A.2))

Wr(Nn(ζ ), N̄n(ζ )) = r(ζ + 1/ζ − 2r)/�n, (2.37)

where �n is defined by

�n =
∞∏

k=n

1 − QkRk

1 − Q2
o

. (2.38)
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Therefore,

a(ζ ) = −�n

Wr(Mn(ζ ),Nn(ζ ))

r(ζ + 1/ζ − 2r)
, ā(ζ ) = �n

Wr(M̄n(ζ ), N̄n(ζ ))

r(ζ + 1/ζ − 2r)
, (2.39a)

β(ζ ) = �n

[
ζ

ζ − r

rζ − 1

]n Wr(Mn(ζ ), N̄n(ζ ))

r(ζ + 1/ζ − 2r)
,

β̄(ζ ) = −�n

[
ζ

ζ − r

rζ − 1

]−n Wr(M̄n(ζ ),Nn(ζ ))

r(ζ + 1/ζ − 2r)
.

(2.39b)

Note also that from (2.21) and (2.30) it follows that at zeros ζk of a(ζ ) the following relation
holds:

Mn(ζk) = bk(λ(ζk))
1−2nNn(ζk). (2.40a)

Similarly, at zeros ζ̄k of ā(ζ ),

M̄n(ζ̄k) = b̄k(λ(ζ̄k))
2n−1N̄n(ζ̄k). (2.40b)

2.3. Green’s functions

The analyticity properties of the modified eigenfunctions satisfying the difference
equations (2.31) can be studied effectively using Green’s functions. Both Mn(ζ ) and N̄n(ζ )

satisfy the same equation, which can be written as

vn+1(ζ ) = 1

r

(
z/λ Q∓/λ2

R∓ 1/(zλ)

)
vn(ζ ) +

1

r

(
1/λ2 0

0 1

)
(Qn − Q∓)vn(ζ ), (2.41)

where Qn is defined by (2.3) and

Q± = lim
n→±∞ Qn ≡

(
0 Q±

R± 0

)
.

Solutions of (2.41) can be written in the form of a ‘summation’ equation (discrete version of
an integral equation)

vn(ζ ) = w∓ +
+∞∑

k=−∞
G∓

n−k(ζ )(Qk − Q∓)vk(ζ ), (2.42)

where the inhomogeneous term w± is such that[
I − 1

r

(
z/λ Q∓/λ2

R∓ 1/(zλ)

)]
w∓ = 0. (2.43)

Here I is the 2×2 identity matrix, and Green’s functions G±
n (ζ ) satisfy the difference equations

G±
n+1(ζ ) − 1

r

(
z/λ Q±/λ2

R± 1/(zλ)

)
G±

n (ζ ) = 1

r

(
1/λ2 0

0 1

)
δn,0, (2.44)

with δn,0 being the Kronecker delta. Note that all the combinations of z and λ that appear
above can be written in terms of ζ according to (2.24), but for brevity it is convenient to leave
them and only make the substitution at the end. Note that Green’s function is not unique, and
indeed it is the choice of Green’s function and the choice of the inhomogeneous term that
together determine the eigenfunctions and their analyticity properties. First of all, note that
both of the vectors w± = (Q±, ζ − r)T satisfy (2.43). (The superscript T denotes matrix
transpose.) Then, using Fourier transforms, we obtain for Green’s functions the following
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expressions (see the appendix for details):

Gout
n (ζ ) = θ(n − 1)

1/λ2

r2(1 − 1/λ2)

{(
Q2

o

ζ−r
Q−

R− ζ − r

)
− λ−2(n−1)

(
− rζ−1

ζ
Q−

R− −Q2
o

ζ

rζ−1

)}
,

(2.45a)

Gin
n (ζ ) = −θ(−n)

1/λ2

r2(1 − 1/λ2)

{(
Q2

o

ζ−r
Q+

R+ ζ − r

)
− λ−2(n−1)

(
− rζ−1

ζ
Q+

R+ −Q2
o

ζ

rζ−1

)}
,

(2.45b)

where θn is the Heaviside unit step function. The term 1−1/λ2 gives singularities for λ = ±1,
i.e. at the branch points ζ0 and ζ ∗

0 . One can take a ‘formal’ limit of (2.45) as ζ → ζ0 = r + iQo

or ζ → ζ ∗
0 = r − iQo, however. For example, as ζ → r ± iQo, one obtains

Gout
n (ζ ) ∼ θ(n − 1)

n − 1

r2

(∓iQo Q−
R− ±iQo

)
, (2.46)

which shows that this Green’s function is well defined at the branch points, though linearly
growing in n. Therefore, the associated eigenfunctions are also well defined at the branch
points, provided that the potentials Qn − Q± decay fast enough as n → ±∞ to take care of
the growth of Green’s functions. Due to the θ -functions, Gout

n (ζ ) admits an analytic extension
for |λ| > 1, hence for |ζ | > 1, while Gin

n (ζ ) is analytic for |λ| < 1, hence for |ζ | < 1. On
the other hand, taking into account the difference equations (2.42), we see that Gout

n (ζ ) (with
the − signs on the right-hand side (RHS) for R±,Q±) is Green’s function associated with the
eigenfunction Mn(ζ ), which then is also expected to admit analytic extension outside the unit
circle |ζ | = 1, while Gin

n (ζ ) (with the + signs on the RHS R±,Q±) is associated with N̄n,
which therefore can be analytically continued inside the unit circle.

To be precise, the Green’s functions are meromorphic either inside or outside the unit
circle, since they exhibit poles at points ζ = 0,∞, r and 1/r . However, it turns out that in
the integral equations the terms combine in such a way that the eigenfunctions do not have
singularities at these points. This problem is addressed in section 2.4, using an approach
analogous to the one introduced in [4, 5].

In a similar way, one can show that solutions of the difference equations (2.31b) can be
written as

vn(ζ ) = w̃∓ +
+∞∑

k=−∞
G̃∓

n−k(ζ )(Qk − Q∓)vk(ζ ), (2.47)

with inhomogeneous terms w̃± = (r − 1/ζ,−R±)T and Green’s functions

G̃out
n (ζ ) = θ(n − 1)

λ2

r2(1 − λ2)


(− rζ−1

ζ
Q±

R± −Q2
o

ζ

rζ−1

)
− λ2(n−1)

− Q2
o

ζ−r
Q±

R± ζ − r

 ,

G̃in
n (ζ ) = −θ(−n)

λ2

r2(1 − λ2)

{(− rζ−1
ζ

Q±

R± −Q2
o

ζ

rζ−1

)
− λ2(n−1)

(
− Q2

o

ζ−r
Q±

R± ζ − r

)}
.

Clearly, G̃out
n (ζ ) is meromorphic inside the circle |ζ | = 1, and G̃in

n (ζ ) is meromorphic outside
the circle |ζ | = 1. By looking at the ‘summation’ equations (2.47), and taking into account the
θ -functions, G̃out

n (ζ ) → G̃−
n (ζ ) and G̃in

n (ζ ) → G̃+
n(ζ ). This indicates that M̄n(ζ ) is analytic

inside the unit circle |ζ | = 1, and Nn(ζ ) is analytic outside, as we show next.
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2.4. Analyticity

To study analyticity of the eigenfunctions, it is convenient to use the approach of [4] and
introduce a modified scattering problem, related to (2.1a), but with potentials that decay as
|n| → ∞. Recall that the discrete spectral problem (2.1a) can be written as vn+1 = Lnvn,
where Ln was defined in (2.3). As n → ±∞, one has Ln ∼ L±, where

L± ≡
(

z Q±
R± 1/z

)
,

and where Q± = Qo eiθ± , R± = Qo e−iθ± (cf (2.4)). The eigenvalues and eigenvectors of the
matrix L± are given by L±U± = U±D with D = diag(λr, r/λ) and

U± =
(

Q± λr − z

λr − z −R±

)
.

As in section 2.2, if vn is a 2 × 2 matrix solution of (2.2a), we introduce

v̂n = AvnA−1, (2.48)

with A(λ) defined by (2.29). The 2 × 2 matrix v̂n then solves the scattering problem

v̂n+1 = L̂nv̂n, (2.49)

where

L̂n = ALnA−1 ≡
(

z Qn/λ

λRn 1/z

)
.

Note that

lim
n→±∞ L̂n = L̂± =

(
z Q±/λ

λR± 1/z

)
.

Since L̂± is similar to L±, it has the same eigenvalues, namely {λr, r/λ}. The eigenvectors
of L± are given by the matrix U±, and therefore a matrix of eigenvectors of L̂± is given by
AU±. Since eigenvectors are defined up to a multiplicative factor, however, it is convenient to
multiply the second column of AU± so that Û± is an even function of λ, z. For instance, we
can take the matrix of eigenvectors of L̂± to be

Û± =
(

Q± (λr − z)/λ

λ(λr − z) −R±

)
= AU±A−1.

Now, in analogy with [4], we introduce

Ûn =
(

Q̃n (λr − z)/λ

λ(λr − z) −R̃n

)
, (2.50)

where the modified potentials Q̃n and R̃n are such that

Q̃n → Q±, R̃n → R± as n → ±∞, (2.51a)

and they satisfy the constraint

Q̃nR̃n = Q2
o ∀n ∈ Z. (2.51b)

We then define

ṽn = Û−1
n v̂n, (2.52)

so that ṽn → I as n → ±∞ and observe that ṽn+1 = (
Û−1

n+1 − Û−1
n

)
v̂n+1 + Û−1

n v̂n+1. Thus, ṽn

satisfies the modified scattering problem

ṽn+1 = L̃nṽn, (2.53a)
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where

L̃n = (
Û−1

n+1 − Û−1
n

)
L̂nÛn + Û−1

n L̂nÛn. (2.53b)

Note that from (2.50) it follows that

Û−1
n = 1

Q2
o + (λr − z)2

(
R̃n (λr − z)/λ

λ(λr − z) −Q̃n

)
. (2.54)

Note also that the first term in L̃n in (2.53b) decays asymptotically as n → ±∞ since Û−1
n and

Û−1
n+1 have the same limit (cf (2.51a)). On the other hand, the second term in (2.53b) can be

decomposed into the sum of two pieces: one which is diagonal and contains the eigenvalues
(this is because asymptotically Ûn diagonalizes L̂n) and a second term which again decays
due to (2.51). In fact, one has

Û−1
n L̂nÛn =

(
λr 0
0 r/λ

)
+

1

Q2
o + (λr − z)2(

(λr − z)
(
QnR̃n + RnQ̃n − 2Q2

o

) {
R̃n

(
Q2

o − QnR̃n

)
+ (λr − z)2(Rn − R̃n)

}
/λ

λ
{
Q̃n

(
Q2

o − Q̃nRn

)
+ (λr − z)2(Qn − Q̃n)

} −(λr − z)
(
QnR̃n + RnQ̃n − 2Q2

o

) )
and(
Û−1

n+1 − Û−1
n

)
L̂nÛn = 1

Q2
o + (λr − z)2(

(R̃n+1 − R̃n)[λrQn + z(Q̃n − Qn)] (R̃n+1 − R̃n)[z(λ − rz) − QnR̃n]/λ
−λ(Q̃n+1 − Q̃n)[(λ − rz)/z + Q̃nRn] (Q̃n+1 − Q̃n)[rRn/λ + (R̃n − Rn)/z]

)
,

and therefore it follows that

L̃n =
(

λr 0
0 r/λ

)
+ Ṽn(ζ ), (2.55)

where Ṽn(ζ ) decays as n → ±∞. What is relevant here is that all terms depending on
potentials are decaying at both space infinities, and that all entries (including the eigenvalues)
are odd functions of λ and z. Therefore, if we define modified eigenfunctions to eliminate the
factors λnrn or λ−nrn, we obtain a scattering problem which contains rational functions of the
uniformization variable ζ only. This is important since it considerably simplifies the study of
analyticity through a Neumann series approach.

For instance, let us introduce a modified eigenfunction

M̃n(z, λ) = λ−nr−nṽn(z, λ), (2.56)

where the column vector ṽn(z, λ) is a solution of (2.53a). Note that M̃n(z, λ) has asymptotic
behavior

M̃n(z, λ) ∼
(

1
0

)
n → −∞.

Moreover, M̃n satisfies the difference equation

M̃n+1(ζ ) =
(

1 0
0 1/λ2(ζ )

)
M̃n(ζ ) + Wn(ζ )M̃n(ζ ), (2.57)

where Wn(ζ ) is an energy-dependent matrix potential of the form

Wn(ζ ) = 1

r(ζ + 1/ζ − 2r)
W̃n(ζ ), (2.58)
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and the matrix W̃n has entries

(W̃n)11 = {(rζ − 1)[fn + f ∗
n ] + h∗

n[Qn − gn]}/(rζ ), (2.59a)

(W̃n)12 = {[(λr − z)2g∗
n − R̃nf

∗
n ] + h∗

n[z(λr − z) − QnR̃n]}/(λ2r), (2.59b)

(W̃n)21 = {−fnQ̃n + gn(λr − z)2 − hn[rζ − 1 + Q̃nRn]}/r, (2.59c)

(W̃n)22 = −(rζ − 1)(fn + f ∗
n )/(rζ ) + hn[Rn/λ

2 − g∗
n/(rλz)], (2.59d)

where we introduced the short-hand notations

fn = Q̃nRn − Q2
o, gn = Qn − Q̃n, hn = Q̃n+1 − Q̃n. (2.60)

The potentials fn, gn and hn are all decaying as n → ±∞. Therefore Wn(ζ ) → 0 as
n → ±∞. Also, note that all the coefficients in (2.59) can be explicitly expressed in terms
of the uniformization variable ζ . Using (2.24), one can show that all entries of Wn(ζ ) are
bounded functions of ζ , except possibly at the points where the overall factor 1/(ζ + 1/ζ −2r)

in (2.58) diverges, i.e. at the branch points. Therefore, we can introduce a ζ -independent
matrix Wn such that for all ζ �= ζ0, ζ

∗
0 , one has ‖Wn(ζ )‖ � ‖Wn‖, where ‖ · ‖ is any matrix

norm, which is used to prove convergence of the Neumann series (see the appendix).
The relation between the eigenfunction Mn(ζ ) and M̃n(ζ ) is given by the transformation

(2.52):

M̃n(ζ ) = Û−1
n (ζ )Mn(ζ ), Mn(ζ ) = Ûn(ζ )M̃n(ζ ),

or, componentwise,

M(1)
n (ζ ) = Q̃nM̃

(1)
n (ζ ) + (r − 1/ζ )M̃(2)

n (ζ ), (2.61a)

M(2)
n (ζ ) = (ζ − r)M̃(1)

n (ζ ) − R̃nM̃
(2)
n (ζ ). (2.61b)

Therefore, if, as we prove below, M̃n(ζ ) is analytic outside the unit circle, then Mn(ζ ) is, with
at most a pole at ζ = ∞ if M̃n(ζ ) = O(1) as ζ → ∞.

We now write a summation equation for M̃n(ζ ) from the difference equation (2.57):

M̃n(ζ ) =
(

1
0

)
+

+∞∑
j=−∞

G̃n−j (ζ )Wj (ζ )M̃j (ζ ),

where Green’s function G̃n satisfies the difference equation

G̃n+1 −
(

1 0
0 1/λ2(ζ )

)
G̃n = δn,0I.

A solution to this equation can be found in terms of a discrete Fourier transform

G̃n(ζ ) = 1

2π i

∫
|p|=1

pn−1

(
1/(p − 1) 0

0 1/(p − 1/λ2(ζ ))

)
dp.

Perturbing the contour of integration away from the unit circle so that the points p = 0, 1, 1/λ2

are all inside the contour yields obtain for Green’s function the simple expression

G̃n(ζ ) = θ(n − 1)

(
1 0
0 (λ2(ζ ))1−n

)
and therefore the discrete integral equation for M̃n(ζ ) becomes

M̃n(ζ ) =
(

1
0

)
+

n−1∑
j=−∞

(
1 0
0 (λ2(ζ ))j+1−n

)
Wj (ζ )M̃j (ζ ). (2.62)



1726 M J Ablowitz et al

In the appendix, we use a Neumann series solution to (2.62) to prove that M̃n(ζ ) is an analytic
function of ζ outside the unit circle, if the potentials fn, gn, hn in Wn(ζ ) are summable, i.e.∑+∞

n=−∞ |fn| < ∞ etc. Correspondingly, from (2.60) this requires Qn,Rn ∈ �1,0, where we
define

�1,0 =
fn :

n∑
j=∓∞

|fj − lim
k→∓∞

fk| < ∞ ∀n ∈ Z

 .

Since M̃n(ζ ) is analytic for |ζ | > 1, then (2.61) yield analyticity for Mn(ζ ) in the same
region, apart from a pole at ∞. In a similar way one can prove analyticity for the other
eigenfunctions. In conclusion, for potentials Qn,Rn ∈ �1,0,Mn(ζ ) and Nn(ζ ) are analytic
functions of ζ outside the unit circle |ζ | = 1, and M̄n(ζ ) and N̄n(ζ ) inside and continuous
on the circle, excluding, possibly, the branch points ζ0 and ζ ∗

0 . In this respect, note that
Wn(ζ ) has an overall factor 1/(ζ + 1/ζ − 2r) which vanishes precisely at the points ζ0 and
ζ ∗

0 that correspond to the four branch points ±z0 and ±z∗
0 of the function λ(z). However, the

behavior of the eigenfunctions Mn(ζ ), M̄n(ζ ),Nn(ζ ) and N̄n(ζ ) at the branch points can be
studied directly in terms of the original scattering problem (cf (2.46)), to conclude that all
eigenfunctions are also well defined at the branch points.

Note that in [21] the eigenfunctions are implicitly assumed to be entire, and the equations
of the inverse problem are derived accordingly. We stress that, in order for the eigenfunctions
to be entire functions of ζ , strong assumptions on the decay of Qn − Q± as n → ±∞ are
required. Here we find that under more general summability conditions on the potentials,
Mn(ζ ),Nn(ζ ) and a(ζ ) are analytic in the ζ -plane outside the circle |ζ | = 1 (apart from a
pole at ∞ for Mn(ζ )), while M̄n(ζ ), N̄n(ζ ) and ā(ζ ) are analytic in the ζ -plane for |ζ | < 1
(apart from a pole at ζ = 0 for M̄n(ζ )). The other scattering coefficients b(ζ ) and b̄(ζ ) are in
general only defined on the circle |ζ | = 1.

2.5. Asymptotics of eigenfunctions and scattering coefficients in the uniformization variable

First of all, note that from (2.23)–(2.24) we have the following:

z2 ∼


r/ζ ζ → 0
1/(rζ ) ζ → ∞
−(ζ − r)/

(
rQ2

o

)
ζ → r

Q2
o

/
(rζ − 1) ζ → 1/r,

λ2 ∼


rζ ζ → 0
ζ/r ζ → ∞
−(ζ − r)r

/
Q2

o ζ → r

Q2
or

−2
/
(rζ − 1) ζ → 1/r

λz ∼


r ζ → 0
1/r ζ → ∞
−(ζ − r)

/
Q2

o ζ → r

Q2
or

−2
/
(rζ − 1) ζ → 1/r.

Then, performing a WKB expansion on the modified scattering problem (2.31), we obtain (see
the appendix for details)

Mn(ζ ) ∼
(

Qn−1

ζ

)
, Nn(ζ ) ∼ 1

�n

(
r

−Rn

)
ζ → ∞, (2.63a)

N̄n(ζ ) ∼ 1

�n

(
Qn

−r

)
, M̄n(ζ ) ∼

( −1/ζ

−Rn−1

)
ζ → 0, (2.63b)

where �n is defined by (2.38). Now observe also that ζ → r corresponds to λ → zr and
from (2.8), since r2 �= 1 (i.e. Qo �= 0), this means z → 0 and λ → 0. Similarly, ζ = 1/r
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corresponds to z, λ → ∞. This suggests that the values ζ = r, 1/r play a special role and
should be treated on the same footing as ζ = 0,∞, respectively. A WKB expansion about
these points yields

M̄n(ζ ) ∼ −R−

(
Qn−1/r

1

)
, N̄n(ζ ) ∼ Q+

�n

(
1

(ζ − r)Rn

/
Q2

o

)
ζ → r, (2.64a)

and

Mn(ζ ) ∼ Q−

(
1

Rn−1/r

)
, Nn(ζ ) ∼ −R+

�n

(−Qnr
2(ζ − 1/r)

/
Q2

o

1

)
ζ → 1/r.

(2.64b)

Finally, recalling (2.39a), from the above expansions we obtain

a(ζ ) = −�n

W(Mn(ζ ),Nn(ζ ))

r(ζ + 1/ζ − 2r)
∼ 1 ζ → ∞, (2.65a)

ā(ζ ) = �n

W(M̄n(ζ ), N̄n(ζ ))

r(ζ + 1/ζ − 2r)
∼ 1 ζ → 0, (2.65b)

and

ā(ζ ) ∼ R−Q+

1 − r2
≡ ei(θ+−θ−) ζ → r, (2.66a)

a(ζ ) ∼ Q−R+

1 − r2
≡ e−i(θ+−θ−) ζ → 1/r. (2.66b)

The asymptotic behavior of the eigenfunctions and scattering coefficients will be key to
properly formulate the inverse problem.

2.6. Symmetries and properties of the scattering data

From the scattering problem (2.1a), one can see that the matrix Ln = Z + Qn obeys the
involution

Ln(z) = σ1L∗
n(1/z∗)σ1,

where, as usual, σ1 is the Pauli matrix

σ1 =
(

0 1
1 0

)
.

Note also that the involution z → 1/z∗ corresponds to ζ → 1/ζ ∗. Comparing the boundary
conditions (2.9) and recalling that λ → 1/λ∗, and r/λ − 1/z = z − λr , one can check that

ψ∗
n (1/z∗, 1/λ∗) = −σ1ψ̄n(z, λ) φ∗

n(1/z∗, 1/λ∗) = −σ1φ̄n(z, λ). (2.67)

Or, in a matrix form (cf (2.17)),

Ψ∗
n(1/z∗, 1/λ∗) = −σ1Ψn(z, λ)σ1 Φ∗

n(1/z∗, 1/λ∗) = −σ1Φn(z, λ)σ1. (2.68)

From (2.21) it then follows that the complex constants bk and b̄k relating the values of the
eigenfunctions at discrete eigenvalues satisfy the symmetry relation

b̄k = b∗
k k = 1, . . . , J. (2.69)

Substituting (2.68) into (2.17) yields

T∗(1/z∗, 1/λ∗) = σ1T(z, λ)σ1. (2.70)
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There is a second involution that relates the values of the eigenfunctions on two different sheets
in the z-plane and in particular across the cuts (cf figure 1). In fact, the scattering problem
(2.1a) is independent of λ, and comparing the asymptotic values of the eigenfunctions as
n → ±∞ yields

φn(z, 1/λ) = z − r/λ

R−
φ̄n(z, λ), ψn(z, 1/λ) = r/λ − z

Q+
ψ̄n(z, λ). (2.71)

Combining (2.67) and (2.71) one obtains

φn(z, 1/λ) = r/λ − z

R−
σ1φ

∗
n(1/z∗, 1/λ∗), φ̄n(z, 1/λ) = z − r/λ

Q−
σ1φ̄

∗
n(1/z∗, 1/λ∗)

(2.72a)

ψn(z, 1/λ) = z − r/λ

Q+
σ1ψ

∗
n (1/z∗, 1/λ∗), ψ̄n(z, 1/λ) = r/λ − z

R+
σ1ψ̄

∗
n(1/z∗, 1/λ∗).

(2.72b)

Note, in particular, that for the points that correspond to the continuous spectrum one has
1/z∗ = z and 1/λ∗ = λ. Therefore, from the definitions (2.17) it follows

b∗(z, λ) = −R−
Q+

b(z, 1/λ), a∗(z, λ) = R−
R+

a(z, 1/λ) (2.73a)

b̄∗(z, λ) = −Q−
R+

b̄(z, 1/λ), ā∗(z, λ) = Q−
Q+

ā(z, 1/λ). (2.73b)

Hence, the reflection coefficients ρ(z, λ) = λ(z)b(z, λ)/a(z, λ) and ρ̄(z, λ) =
b̄(z, λ)/(λ(z)ā(z, λ)) satisfy the symmetry relations

ρ∗(z, λ) = − R+

Q+
ρ(z, 1/λ), ρ̄∗(z, λ) = −Q+

R+
ρ̄(z, 1/λ). (2.73c)

Since z → 1/z∗ corresponds to ζ → 1/ζ ∗, in terms of the variable ζ the scattering matrix
(2.33) also satisfies the same involution

S∗(1/ζ ∗) = σ1S(ζ )σ1, (2.74)

as follows by noting that (2.29) yields A∗(1/λ∗) = A−1(λ) and A(λ(ζ ))σ1A(λ(ζ )) = λσ1.
Explicitly, we can write the following symmetry relations among the scattering coefficients:

ā(ζ ) = a∗(1/ζ ∗), b̄(ζ ) = b∗(1/ζ ∗). (2.75)

In particular, this implies that ζk is a zero of a(ζ ) outside the unit circle iff ζ̄k = 1/ζ ∗
k is a zero

of ā(ζ ) inside the unit circle. As a consequence, the discrete eigenvalues, i.e., the zeros of
a(ζ ) outside the unit circle and of ā(ζ ) inside, are paired.

Remark 3. In the appendix we show that

(a) The continuous spectrum (2.22a) in the z-plane is mapped onto the unit circle of the
ζ -plane (that is, |ζ | = 1) excluding the points ζ0 and ζ ∗

0 .
(b) The discrete spectrum (2.22b) in the z-plane is mapped onto a set of points {ζ1, . . . , ζJ }

which lie on the circle of center 1/r and radius Qo/r in the ζ -plane; that is, on the circle
|ζ − 1/r|2 = Q2

o

/
r2.

We conclude that, in terms of ζ , the discrete spectrum is a set of zeros ζ̄k of ā(ζ ):

ā(ζ̄k) = 0, |ζ̄k| < 1, k = 1, 2, . . . , J,
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Figure 3. The uniformization variable ζ ; continuous spectrum |ζ | = 1, discrete spectrum
|ζ − 1/r| = Qo/r .

located on the arc of circle centered at ζ = 1/r and radius Qo/r , lying inside the unit circle
(cf [21], and see also figure 3 and remark 3), and the corresponding zeros ζk = 1/ζ̄ ∗

k of a(z)

(cf (2.75)) outside the unit circle. Given their location, the discrete eigenvalues lying inside
the circle |ζ | = 1 can be naturally parametrized by means of the angles ψk , cf figure 3, defined
by

ζ̄k = (1 + Qo eiψk )/r, |π − ψk| < arctan(r/Qo). (2.76)

Note that from (2.75) one can also obtain a symmetry relation for the derivatives of the
scattering coefficients ā(ζ ) and a(ζ ). In fact, one has

ā′(ζ ) = −(a′(1/ζ ∗))∗/ζ 2. (2.77)

In particular, at a discrete eigenvalue (2.77) becomes

(a′(ζk))
∗ = −ζ̄ 2

k ā′(ζ̄k). (2.78)

Noting that det S = det T, from (2.19) and (2.75) we get the discrete analog of unitarity for
points on the continuous spectrum (|ζ | = 1, ζ �= ζ0, ζ

∗
0 ):

|ā(ζ )|2 − |b̄(ζ )|2 =
∞∏

n=−∞
(1 − QnRn)/r2.

Using (2.17) and taking into account that the diagonal elements of the scattering matrix are
not modified by the transformation (2.28), equations (2.20) can be written as

ā(ζ ) = [
Ψ−1

n (ζ )Φn(ζ )
]

22, a(ζ ) = [
Ψ−1

n (ζ )Φn(ζ )
]

11, (2.79)

where the lower indices denote the corresponding entries in the 2×2 matrices. Differentiating
the above relations with respect to the scattering parameter yields

ā′(ζ ) =
[
−Ψ−1

n (ζ )
dΨn(ζ )

dζ
T(ζ ) + T(ζ )Φ−1

n (ζ )
dΦn(ζ )

dζ

]
22

, (2.80a)

a′(ζ ) =
[
−Ψ−1

n (ζ )
dΨn(ζ )

dζ
T(ζ ) + T(ζ )Φ−1

n (ζ )
dΦn(ζ )

dζ

]
11

. (2.80b)
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From the scattering problem (2.1a) one can check that dΨn/dζ and dΦn/dζ both satisfy the
same difference equation

v−1
n+1

dvn+1

dζ
− v−1

n

dvn

dζ
= 1

z

dz

dζ
v−1

n+1Zσ3vn.

Therefore, one can formally write

Φ−1
n (ζ )

dΦn(ζ )

dζ
= 1

z

dz

dζ

n−1∑
j=−∞

Φ−1
j+1(ζ )Zσ3Φj (ζ ),

Ψ−1
n (ζ )

dΨn(ζ )

dζ
= −1

z

dz

dζ

∞∑
j=n

Ψ−1
j+1(ζ )Zσ3Ψj (ζ ),

using the decay of the corresponding eigenfunctions Φn and Ψn as n → ∓∞ when evaluated
at a discrete eigenvalue in the proper region of analyticity. Substituting into (2.80) yields

ā′(ζ̄k) =
1

z

dz

dζ

∞∑
j=−∞

Ψ−1
j+1Zσ3Ψj T


22

(ζ̄k), (2.81a)

a′(ζk) =
1

z

dz

dζ

∞∑
j=−∞

Ψ−1
j+1Zσ3Ψj T


11

(ζk). (2.81b)

The previous relations can be further simplified into (see the appendix):

ā′(ζ̄k)

b̄(ζ̄k)
= − z(ζ̄k)

(ζ̄k − r)

1

R+
Re

z(ζ̄k)

∞∑
j=−∞

r−2j�j ψ̄
(1)
j−1(ζ̄k)

(
ψ̄

(1)
j (ζ̄k)

)∗ , (2.82a)

a′(ζk)

b(ζk)
= − z(ζk)

(ζk − r)

1

Q+
Re

z(ζk)

∞∑
j=−∞

r−2j�j

(
ψ

(1)
j (ζk)

)∗
ψ

(1)
j−1(ζk)

 . (2.82b)

Equations (2.82) will be used in the following to obtain symmetry relations for the norming
constants. Moreover, the above relations also imply that the zeros of a(ζ ) and ā(ζ ) are simple
(see [21] for details).

A trace formula for the scattering coefficients a(ζ ) and ā(ζ ) can be derived from the
knowledge of their analyticity properties and asymptotic behaviors. Namely, if ā(ζ ) has J

simple zeros at points ζ̄k , for any ζ such that |ζ | < 1 one obtains [21]

ā(ζ ) =
J∏

k=1

ζ̄ ∗
k

ζ − ζ̄k

ζ ζ̄ ∗
k − 1

exp

[
1

2π i

∮
|w|=1

log|ā(w)|2
w − ζ

dw

]
. (2.83)

Condition (2.66a) then gives the analog of the θ -condition introduced by Faddeev and
Takhtajan for the continuous NLS equation, i.e.

ei(θ+−θ−) =
J∏

k=1

ζ̄ ∗
k

r − ζ̄k

rζ̄ ∗
k − 1

exp

[
1

2π i

∮
|w|=1

log|ā(w)|2
w − r

dw

]
. (2.84)

As observed in [21, 23], the peculiarity of this problem, compared to the case of vanishing
boundaries, is that eigenfunctions and scattering data possess singularities at the edges of the
continuous spectrum. The existence of the above mentioned singularities is formally a result
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of nontrivial dependence on the spectral parameter of the limiting values of the eigenfunctions,
which in turn are determined by the behavior at infinity of the scattering potential.

Finally, let us briefly discuss the behavior of the scattering coefficients at the branch
points. In section 2.3, it was shown that the eigenfunctions are well defined at the branch
points ζ0 and ζ ∗

0 . From (2.37) it then follows that

Wr(N̄n(ζ0), Nn(ζ0)) = Wr(N̄n(ζ
∗
0 ), Nn(ζ

∗
0 )) = 0.

Therefore, at these values of ζ the eigenfunctions are proportional to each other; namely,
N̄n(ζ0) = γNn(ζ0) and N̄n(ζ

∗
0 ) = γ̄ Nn(ζ

∗
0 ). Comparing the behavior at large n of both

eigenfunctions, one gets γ = −i eiθ+ and γ̄ = i eiθ+ . Then from (2.39) it follows that the
scattering coefficients have poles at points ζ0 and ζ ∗

0 . Namely,

a(ζ ∼ ζ0) = α+

ζ − ζ0
+ O(1), b(ζ ∼ ζ0) = β+

ζ − ζ0
+ O(1)

as ζ → ζ0, while

a(ζ ∼ ζ ∗
0 ) = α−

ζ − ζ ∗
0

+ O(1), a(ζ ∼ ζ ∗
0 ) = β−

ζ − ζ ∗
0

+ O(1)

as ζ → ζ ∗
0 . Finally, note that λ2(ζ0) = λ2(ζ ∗

0 ) = 1. Therefore from (2.39) it also follows that
β± = i e±iθ+α±. The special case when either α+ or α− vanish gives rise to what in scattering
theory is referred to as a virtual level (cf [10]).

3. Inverse problem

The inverse problem consists in reconstructing the potentials from the scattering data. We
accomplish this by defining and solving a suitable Riemann–Hilbert (RH) problem. To this
end, we write the ‘jump’ conditions (2.34) in terms of the uniform variable ζ as

Mn(ζ )

a(ζ )
= N̄n(ζ ) + λ(ζ )−2nNn(ζ )ρ(ζ ), (3.1a)

M̄n(ζ )

ā(ζ )
= Nn(ζ ) + λ(ζ )2nN̄n(ζ )ρ̄(ζ ), (3.1b)

where we have introduced the reflection coefficients

ρ(ζ ) = β(ζ )/a(ζ ), ρ̄(ζ ) = β̄(ζ )/ā(ζ ). (3.2)

The functions Mn(ζ )/a(ζ ) and Nn(ζ ) are analytic outside the unit circle |ζ | > 1, while
M̄n(ζ )/ā(ζ ) and N̄n(ζ ) are analytic for |ζ | < 1, with singularities (poles) at ζ = 0, at ζ = ∞
and at the zeros of a(ζ ) and ā(ζ ) respectively. To obtain an appropriate RH problem from
(3.1), one must take into account the asymptotic behavior of the eigenfunctions as well as the
poles, which we do next.

The results in section 2.5 imply that the asymptotic behavior of the quantities in (3.1) is
given by

• As ζ → ∞:

µn(ζ ) ≡ Mn(ζ )

a(ζ )
∼
(

Qn−1 + o(1)

ζ + O(1)

)
, Nn(ζ ) ∼ 1

�n

(
r

−Rn

)
+ O(1/ζ ). (3.3a)

• As ζ → 0:

µ̄n(ζ ) ≡ M̄n(ζ )

ā(ζ )
∼ −

(
1/ζ + O(1)

Rn−1 + o(1)

)
, N̄n(ζ ) ∼ 1

�n

(
Qn

−r

)
+ O(ζ). (3.3b)
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• As ζ → r:

M̄n(ζ ) ∼ −R−

(
Qn−1/r

1

)
+ O(ζ − r), N̄n(ζ ) ∼

(
Q+/�n

0

)
+ O(ζ − r), (3.3c)

ā(ζ ) ∼ ei(θ+−θ−) + O(ζ − r). (3.3d)

• As ζ → 1/r:

Mn(ζ )∼ Q−

(
1

Rn−1/r

)
+ O(ζ − 1/r), Nn(ζ )∼

(
0

−R+/�n

)
+ O(ζ − 1/r),

(3.3e)

a(ζ ) ∼ e−i(θ+−θ−) + O(ζ − 1/r). (3.3f )

Note further that the points z = 0 and z = ∞ on sheet I are mapped onto the points ζ = ∞
and ζ = 1/r respectively. The points z = 0 and z = ∞ on sheet II, instead, are mapped onto
the points ζ = r and ζ = 0. Therefore, in terms of the uniformization variable ζ , the points
ζ = r and ζ = 1/r play the same role as the points 0 and ∞.

As for the behavior at the zeros of a(ζ ) and ā(ζ ), recall that, from the symmetry (2.75) it
follows that a(ζ ) has simple zeros at points ζ = ζk (|ζk| > 1) if and only if ā(ζ ) has zeros at
the corresponding points ζ = ζ̄k ≡ 1/ζ ∗

k . Also, from (2.40), one has

Res

(
M̄n(ζ )

ā(ζ )
; ζ = ζ̄k

)
= C̄k[λ(ζ̄k)]

2nN̄n(ζ̄k), C̄k = b̄k

λ(ζ̄k)ā′(ζ̄k)
, (3.4a)

Res

(
Mn(ζ )

a(ζ )
; ζ = ζk

)
= Ck[λ(ζk)]

−2nNn(ζk), Ck = bkλ(ζk)

a′(ζk)
. (3.4b)

If the potentials Qn − Q± decay rapidly enough as n → ±∞, such that β(ζ ), β̄(ζ ) can be
extended off the unit circle in correspondence of the discrete eigenvalues, then the norming
constants can be written as C̄k = β̄(ζ̄k)/ā

′(ζ̄k) and Ck = β(ζk)/a
′(ζk). Note also that recalling

(2.39b) and (2.78), and noting that λ∗(z) = 1/λ(1/z∗), from (3.4) it follows

C̄k = −ζ̄ 2
k C∗

k . (3.5)

Moreover, since C̄k = β̄(ζ̄k)/ā
′(ζ̄k) ≡ b̄(ζ̄k)/(ā

′(ζ̄k)λ(ζ̄k))

C̄k = R+(rζ̄k − 1)
1

Re
{
z(ζ̄k)

∑∞
n=−∞ r−2n�nψ̄

(1)
n−1(ζ̄k)

(
ψ̄

(1)
j (ζ̄k)

)∗} . (3.6)

Recalling that the discrete eigenvalues are parametrized by the angles ψk according to (2.76),
from (3.6) it then follows that

C̄k = ±|C̄k| e−iθ++iψk . (3.7)

Equation (3.5) then fixes the argument of Ck accordingly.
Now consider (3.1a). Since Mn(ζ )/a(ζ ) grows linearly as ζ → ∞, we divide it by ζ − r ,

obtaining

Mn(ζ )

(ζ − r)a(ζ )
= N̄n(ζ )

ζ − r
+

λ(ζ )−2n

ζ − r
Nn(ζ )ρ(ζ ). (3.8)

The function on the left-hand side (LHS) is still analytic outside the unit circle (since r < 1).
Now, however, it goes to a constant as ζ → ∞ (cf (3.3a)). On the other hand, the function
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N̄n(ζ )/(ζ − r) on the right-hand side (RHS) now has a pole at ζ = r inside the unit circle,
whose residue however is known. We thus subtract from both sides of (3.8) the behavior of
the left-hand side at ∞, and the pole contributions at the zeros of a(ζ ):

Mn(ζ )

(ζ − r)a(ζ )
−
(

0
1

)
−

J∑
k=1

Res(Mn/a; ζk)

(ζk − r)(ζ − ζk)

= N̄n(ζ )

ζ − r
−
(

0
1

)
−

J∑
k=1

Res(Mn/a; ζk)

(ζk − r)(ζ − ζk)
+

λ(ζ )−2n

ζ − r
Nn(ζ )ρ(ζ ). (3.9)

We now introduce the ‘inside’ and ‘outside’ projectors

P̄ [f ](ζ ) = 1

2π i
lim
ζ ′→ζ
|ζ ′|<1

∫
|w|=1

f (w)

w − ζ ′ dw |ζ | < 1

P [f ](ζ ) = 1

2π i
lim
ζ ′→ζ
|ζ ′|>1

∫
|w|=1

f (w)

w − ζ ′ dw |ζ | > 1,

(3.10)

which are the projection operators for functions analytic inside and outside the unit circle,
respectively. We then apply the ‘inside’ projector P̄ [·] to both sides of (3.9). Since the LHS is
analytic outside the circle, and decaying as ζ → ∞, its P̄ projection will be identically zero.
Hence for any ζ inside the unit circle (|ζ | < 1) the RHS yields

1

2π i

∫
|w|=1

[
N̄n(w)

w − r
−
(

0
1

)
−

J∑
k=1

Res(Mn/a; ζk)

(ζk − r)(w − ζk)
+

λ(w)−2n

w − r
Nn(w)ρ(w)

]
dw

w − ζ
= 0.

That is (since ζ is inside the unit circle, and so is r)

N̄n(ζ ) = N̄n(r) +

(
0

ζ − r

)
+

J∑
k=1

(ζ − r) Res(Mn/a; ζk)

(ζk − r)(ζ − ζk)

− 1

2π i

∫
|w|=1

(ζ − r)

w − ζ

λ(w)−2n

w − r
Nn(w)ρ(w) dw.

Then, taking into account that N̄n(r) is given by (3.3c) and that

Res(Mn/a; ζk) = Ckλ(ζk)
−2nNn(ζk),

we obtain, according to (3.4a), for any ζ with |ζ | < 1

N̄n(ζ ) =
(

Q+/�n

ζ − r

)
+

J∑
k=1

(ζ − r)Ckλ(ζk)
−2n

(ζk − r)(ζ − ζk)
Nn(ζk)

− 1

2π i

∫
|w|=1

(ζ − r)

w − ζ

λ(w)−2n

w − r
Nn(w)ρ(w) dw. (3.11a)

Equation (3.11a) is the first part of the equations that will provide the solution of the inverse
problem. Similarly, we consider (3.1b), and we divide it by ζ −1/r . After subtracting the pole
at ζ = 0 due to M̄n(ζ ) and the pole contributions at the zeros of ā(ζ ), we apply the ‘outside’
projector P [·] introduced in (3.10) for any ζ outside the unit circle (|ζ | > 1). This yields

1

2π i

∫
|w|=1

[
Nn(w)

w − 1/r
− r

w

(
1
0

)
−

J∑
k=1

Res(M̄n/ā; ζ̄k)

(ζ̄k − 1/r)(w − ζ̄k)

+
λ(w)2n

w − 1/r
N̄n(w)ρ̄(w)

]
dw

w − ζ
= 0.
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Now recall that Nn(ζ ) is analytic outside the unit circle, and that is goes to a constant as
ζ → ∞ and therefore the residue of Nn(w)/[(w − ζ )(w − 1/r)] as w → ∞ is zero and the
integral on the unit circle can be evaluated in terms of the residues at the points ζ and 1/r , both
outside the unit circle. Taking into account (3.3e) and (3.4b) one finally obtains for |ζ | > 1:

Nn(ζ ) =
(

r − 1/ζ

−R+/�n

)
+

J∑
k=1

(ζ − 1/r)C̄kλ(ζ̄k)
2nN̄n(ζ̄k)

(ζ̄k − 1/r)(ζ − ζ̄k)

+
1

2π i

∫
(ζ − 1/r)λ(w)2n

w − 1/r
N̄n(w)ρ̄(w)

dw

w − ζ
. (3.11b)

Equation (3.11b) is the second equation that will provide the solution of the inverse problem.
Note that, as in the IST for IDNLS with decaying boundary conditions, the equations of the
inverse problem depend on �n, which in general is unknown. In that context, the problem is
easily solved by the introduction of modified eigenfunctions whose asymptotic values do not
depend on the potentials. The same does not seem to be straightforward here, however. To
circumvent this problem, we note that the potential could be reconstructed, for instance, by
means of the large-ζ expansion of Nn(ζ ). According to (3.3a), from the asymptotics of the
first and second component of (3.11b) one obtains, respectively

1/�n = 1 +
J∑

k=1

1

rζ̄k − 1
C̄k[λ(ζ̄k)]

2nN̄ (1)
n (ζ̄k)

− 1

2π i

∫
|ζ ′|=1

λ(ζ ′)2nN̄ (1)
n (ζ ′)ρ̄(ζ ′)

dζ ′

rζ ′ − 1
, (3.12a)

− Rn

�n

= −R+

�n

+
J∑

k=1

1

ζ̄k − 1/r
C̄k[λ(ζ̄k)]

2nN̄ (2)
n (ζ̄k)

− 1

2π i

∫
|ζ ′|=1

λ(ζ ′)2nN̄ (2)
n (ζ ′)ρ̄(ζ ′)

dζ ′

ζ ′ − 1/r
. (3.12b)

Equations (3.11) and (3.12a) are a system of five linear algebraic-integral equations for the
five unknowns N(1)

n (ζ ),N(2)
n (ζ ), N̄ (1)

n (ζ ), N̄ (1)
n (ζ ) and 1/�n in terms of scattering coefficients

{ρ(ζ ), ρ̄(ζ ) : |ζ | = 1}, {ζk : |ζk| > 1, Ck}Jk=1 and {ζ̄k : |ζ̄k| < 1, C̄k}Jk=1, since 0 < r < 1
is given and λ(ζ ) is a known function. If this system admits a (unique) solution (once
appropriately closed by evaluating (3.11a) at ζ = ζ̄j and (3.11b) at ζ = ζj for all
j = 1, . . . , J ), then (3.12b) allows one to reconstruct the potential Rn.

It should be also noted that (3.12a) yields 1/�n in terms of N̄ (1)
n (ζ ) and scattering data.

Since 1/�n appears linearly in (3.11a) and (3.11b), by substitution of (3.12a) into (3.11a)
and (3.11b) we obtain a system of liner equations for Nn(ζ ) and N̄n(ζ ) only.

4. Gel’fand–Levitan–Marchenko equations

It is also possible to provide a reconstruction of the potentials by developing the discrete
analog of Gel’fand–Levitan–Marchenko (GLM) integral equations. Let us consider triangular
representations for the eigenfunctions Nn(ζ ) and N̄n(ζ ):

Nn(ζ ) =
(

r − 1/ζ

−R+/�n

)
+

∞∑
j=n

rζ − 1

ζ − r
λ(ζ )2(n−j)Kn,j |ζ | > 1 (4.1a)
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N̄n(ζ ) =
(

Q+/�n

ζ − r

)
+

∞∑
j=n

ζ − r

rζ − 1
λ(ζ )2(j−n)K̄n,j |ζ | < 1, (4.1b)

where Kn,j and K̄n,j are two-component ζ -independent vectors. Note that these
representations are compatible with the asymptotic behavior of the eigenfunctions as n → +∞,
since �n → 1 in that limit, and they are also compatible with the ζ -asymptotics provided Kn,j

and K̄n,j satisfy certain constraints. In fact, since λ2(ζ ) decays as ζ → 0 and 1/λ2(ζ ) decays
as ζ → ∞, one has

Nn(ζ ) ∼
(

r

−R+/�n

)
+ rKn,n ζ → ∞, Nn(1/r) =

(
0

−R+/�n

)

N̄n(ζ ) ∼
(

Q+/�n

−r

)
+ rK̄n,n ζ → 0, N̄n(r) =

(
Q+/�n

0

)
and comparing with (2.63) and (2.64) we obtain

rKn,n =
(

r(1/�n − 1)

(R+ − Rn)/�n

)
, rK̄n,n =

(
(Qn − Q+)/�n

−r(1/�n − 1)

)
. (4.2)

These formulas provide the reconstruction of �n and Qn,Rn in terms of the kernels Kn,n

and K̄n,n of the triangular representations for the eigenfunctions. Note also that the choice
of power expansion in λ2(ζ ) in the triangular representations (4.1) allows us to admit kernels
Kn,j and K̄n,j that are not necessarily strongly decaying at infinity. Moreover, the symmetry
relation (2.67) for the eigenfunctions corresponds to

K̄n,j = −σ1Kn,j ∀n, j ∈ Z.

We now apply the operator 1
2π i

∫
|ζ |=1 dζλ(ζ )2(n−m−1) for m � n to the first equation of the

inverse problem, equation (3.11a), and then substitute the triangular representations (4.1) to
obtain
∞∑

j=n

K̄n,j

1

2π i

∫
|ζ |=1

ζ − r

rζ − 1
λ(ζ )2(j−m−1) dζ

=
J∑

k=1

Ck(rζk − 1)λ(ζk)
−2n

(ζk − r)2

(
r − 1/ζk

−R+/�n

)
1

2π i

∫
|ζ |=1

ζ − r

ζ − ζk

λ(ζ )2(n−m−1) dζ

+
∞∑

j=n

Kn,j

J∑
k=1

Ck

ζk − r
λ(ζk)

−2j 1

2π i

∫
|ζ |=1

ζ − r

ζ − ζk

λ(ζ )2(n−m−1) dζ

− 1

2π i

∫
|w|=1

dw

w − r
λ(w)−2nρ(w)

(
r − 1/w

−R+/�n

)
1

2π i

∫
|ζ |=1

λ(ζ )2(n−m−1) ζ − r

w − ζ
dζ

−
∞∑

j=n

Kn,j

1

2π i

∫
|w|=1

dw
rw − 1

(w − r)2
λ(w)−2jρ(w)

1

2π i

∫
|ζ |=1

λ(ζ )2(n−m−1) ζ − r

w − ζ
dζ.

Evaluating the integrals with respect to ζ , we finally obtain

K̄n,m = δn,mG1,n + F1,m +
∞∑

j=n

Kn,j [δn,mG2,j + F2,m+j−n], (4.3)
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where

G1,n =
J∑

k=1

Ckλ(ζk)
−2(n+1)

rζk − 1

(
r − 1/ζk

−R+/�n

)
+

1

2π i

∫
|w|=1

λ(w)−2(n+1)

rw − 1
ρ(w)

(
r − 1/w

−R+/�n

)
dw

(4.4a)

G2,n =
J∑

k=1

Ckλ(ζk)
−2(n+1)

ζk − r
+

1

2π i

∫
|w|=1

λ(w)−2(n+1)

w − r
ρ(w) dw (4.4b)

F1,m =
J∑

k=1

Ckλ(ζk)
−2(m+1)

(
r − 1/ζk

−R+/�n

)
+

1

2π i

∫
|w|=1

(rw − 1)ρ(w)λ(w)−2(m+1)

(
r − 1/w

−R+/�n

)
dw (4.4c)

F2,m =
J∑

k=1

Ck(rζk − 1)

ζk − r
λ(ζk)

−2(m+1) +
1

2π i

∫
|w|=1

rw − 1

w − r
ρ(w)λ(w)−2(m+1) dw. (4.4d)

In a similar way, applying the operator 1
2π i

∫
|ζ |=1 dζ λ(ζ )2(m−n−1) for m � n to (3.11b) yields

Kn,m = δn,mḠ1,n + F̄1,m +
∞∑

j=n

K̄n,j [δn,mḠ2,j + F̄2,m+j−n], (4.5)

where

F̄1,m =
J∑

k=1

C̄kλ(ζ̄k)
2(m−1)

(
Q+/�n

ζ̄k − r

)
− 1

2π i

∫
|w|=1

λ(w)2(m−1)ρ̄(w)

(
Q+/�n

w − r

)
dw (4.6a)

F̄2,m =
J∑

k=1

C̄k

ζ̄k − r

rζ̄k − 1
λ(ζ̄k)

2(m−1) − 1

2π i

∫
|w|=1

w − r

rw − 1
λ(w)2(m−1)ρ̄(w) dw (4.6b)

Ḡ1,n = r

J∑
k=1

C̄kλ(ζ̄k)
2n

ζ̄k − 1/r

(
Q+/�n

ζ̄k − r

)
− r

1

2π i

∫
|w|=1

λ(w)2n

w − 1/r
ρ̄(w)

(
Q+/�n

w − r

)
dw (4.6c)

Ḡ2,n =
J∑

k=1

C̄kλ(ζ̄k)
2n

(ζ̄k − 1/r)2
− 1

2π i

∫
|w|=1

(w − r)λ(w)2n

(w − 1/r)2
ρ̄(w) dw (4.6d)

Together with (4.2), equations (4.3) and (4.5) provide a closed system and allow in principle
to reconstruct the potentials.

5. Time evolution and conserved quantities

Having determined how to reconstruct the potential from the scattering data in section 3, our
last task in the implementation of the IST is to determine the time evolution of the scattering
data. Accordingly, from now on we will write explicitly the time dependence of the potentials
Qn(τ) and Rn(τ) and scattering eigenfunctions φn(z, τ ), φ̄n(z, τ ), ψn(z, τ ), ψ̄n(z, τ ) etc.
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Let limn→±∞ Qn = Q±(τ ) and limn→±∞ Rn = R±(τ ) be the boundary data as a function
of time. The value of Q±(τ ) and R±(τ ) is uniquely determined from the initial data via (1.4).
Indeed, interchanging the order of limit and derivative, (1.4) and (2.4) imply

lim
n→±∞

dQn

dτ
= dQ±

dτ
= 2iQ2

oQ±, lim
n→±∞

d(RnQn)

dτ
= d

(
Q2

o

)
dτ

= 0. (5.1)

Hence we obtain immediately

Q±(τ ) = Qo eiθ±(τ ), (5.2a)

where

θ±(τ ) = θ±(0) + 2Q2
oτ. (5.2b)

Equation (5.2) determines the time evolution of the asymptotic phase of the potential as
n → ±∞. Moreover, since Rn(τ) = Q∗

n(τ ), we have R±(τ ) = Q∗
±(τ ) = Q2

o e−iθ±(τ ).
Let us now determine the time evolution of the eigenfunctions. The time dependence of the

solutions of the Lax pair is specified by (2.1b). The asymptotic behavior of the eigenfunctions
φn(z, τ ), φ̄n(z, τ ), ψn(z, τ ) and ψ̄n(z, τ ), however, is given at all times τ by (2.2b). Note that
from (2.1b) and (2.4) it follows that

Mn(z, τ ) ∼
(

i(Q2
o − ω0) −i(z − 1/z)Q±(τ )

−i(z − 1/z)R±(τ ) −i(Q2
o − ω0)

)
n → ±∞,

where we have introduced the short-hand notation ω0 = 1
2 (z − 1/z)2. Using this asymptotic

behavior, we then obtain a system of equations which fixes, at large space infinities, the time
dependence of the asymptotic values of the eigenfunctions. Indeed, using the asymptotic form
of the scattering problem as n → ±∞,

Q±(τ )v(2)
n � v

(1)
n+1 − zv(1)

n , R±(τ )v(1)
n � v

(2)
n+1 − v(2)

n /z, (5.3)

we obtain

∂

∂τ
v(1)

n ∼ i

(
Q2

o +
z2 − 1/z2

2

)
v(1)

n − i(z − 1/z)v
(1)
n+1, (5.4a)

∂

∂τ
v(2)

n ∼ −i(z − 1/z)v
(2)
n+1 − i

(
Q2

o − z2 − 1/z2

2

)
v(2)

n , (5.4b)

as n → ±∞. In order to satisfy (5.4b), we introduce modified eigenfunctions to be solutions
of the time-differential equation (2.2b):

φ̃n(τ ) = eiω(1)
∞ τ φn(τ ), ψ̃n(τ ) = eiω(2)

∞ τψn(τ ), (5.5)˜̄φn(τ) = eiω(2)
∞ τ φ̄n(τ ), ˜̄ψn(τ) = eiω(1)

∞ τ ψ̄n(τ ). (5.6)

One has

∂φ̃n

∂τ
= iω(1)

∞ φ̃n + eiω(1)
∞ τ ∂φn

∂τ
, (5.7)

with similar equations for the other three modified eigenfunctions.
Since Q±(τ ) = Qo eiθ±(τ ), from (2.9) we have, as n → −∞

φn(τ) �
(

Q−(τ )

λr − z

)
λnrn,

∂φn(τ )

∂τ
�
(

iθ̇−(τ )Q−(τ )

0

)
λnrn.
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Requiring that the components of φ̃n(z, τ ) satisfy (5.4) asymptotically as |n| → ∞ we then
obtain, from the second component of (5.7),

ω(1)
∞ = −Q2

o +
z2 − 1/z2

2
− λr(z − 1/z). (5.8)

It then follows that the time evolution of the scattering eigenfunction φn(z, t) is given by

∂φn

∂τ
= (

Mn − iω(1)
∞ I

)
φn, (5.9)

where I is the 2 × 2 identity matrix as before. In a similar way one obtains that

ω(2)
∞ = Q2

o +
z2 − 1/z2

2
− r(z − 1/z)/λ.

Introducing the matrix

Ω(z) = diag
(
iω(1)

∞ (z), iω(2)
∞ (z)

)
,

we can also write the time evolution equations for the matrix eigenfunctions Φn(z, τ ) and
Ψn(z, τ ) defined in (2.16) as

∂Φn(z, τ )

∂τ
= Mn(z, τ )Φn(z, τ ) − Φn(z, τ )Ω(z),

∂Ψn(z, τ )

∂τ
= Mn(z, τ )Ψn − Ψn(z, τ )Ω(z).

(5.10)

Note that, as a consequence of (5.2), we obtain that the phase difference is time independent:

d

dτ
[θ+(τ ) − θ−(τ )] = 0.

(This was to be expected, since the asymptotic values of the amplitude of the potential as
n → ±∞ coincide.) From the scattering equation (2.17) we then obtain

∂Φn(z, τ )

∂τ
= ∂Ψn(z, τ )

∂τ
T(z, τ ) + Ψn(z, τ )

∂T(z, τ )

∂τ
.

That is, taking into account (5.10),

∂T(z, τ )

∂τ
= [Ω(z), T(z, τ )].

Componentwise, from (2.17)

∂a(z, τ )

∂τ
= ∂ā(z, τ )

∂τ
= 0, (5.11a)

∂b(z, τ )

∂τ
= i

[
ω(2)

∞ (z) − ω(1)
∞ (z)

]
b(z, τ ) ≡ i

[
2Q2

o + r(z − 1/z)(λ − 1/λ)
]
b(z, τ ),

∂b̄(z, τ )

∂τ
= −i

[
ω(2)

∞ (z) − ω(1)
∞ (z)

]
b(z, τ ) ≡ −i

[
2Q2

o + r(z − 1/z)(λ − 1/λ)
]
b̄(z, τ ).

(5.11b)

We conclude that a(z, τ ) and ā(z, τ ) are time independent, while

b(z, τ ) = b(z, 0) e2iQ2
oτ+iµ(z)τ (5.12a)

b̄(z, τ ) = b̄(z, 0) e−2iQ2
oτ−iµ(z)τ , (5.12b)

where the function

µ(z) = r(z − 1/z)(λ − 1/λ) (5.13)
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expresses the discrete analog of the linear dispersion relation of the continuous case. Note
that, using (2.23), the above dispersion relation can be written in terms of the uniformization
variable ζ as

µ(ζ ) = r2 (ζ − 2/r + 1/ζ )(ζ − 2r + 1/ζ )

(ζ − r)(1/ζ − r)
. (5.14)

Similar arguments can be used to obtain the time dependence of the norming constants for the
discrete eigenvalues. Namely, if zk is a discrete eigenvalue, from (2.21) one has

∂

∂τ
φn(zk, τ ) = ḃkψn(zk, τ ) + bk

∂

∂τ
ψn(zk, τ ).

Recalling (2.2b) we also have

Mn(zk, τ )φn(zk, τ ) − iω(1)
∞ (zk)φn(zk)

= ḃkψn(zk, τ ) + bkMn(zk, τ )ψn(zk, τ ) − ibkω
(2)
∞ (zk)ψn(zk, τ ). (5.15)

(Note that the operator Mn depends on z.) Therefore we have ḃk = i
[
ω

(2)
∞ (zk) − ω

(1)
∞ (zk)

]
bk ,

which yields

bk(τ ) = bk(0) e2iQ2
oτ+iµ(zk)τ , (5.16a)

where µ(z) is again given by (5.13). Similarly, one obtains

b̄k(τ ) = b̄k(0) e−2iQ2
oτ−iµ(z̄k)τ . (5.16b)

The time evolution of the modified scattering matrix S(ζ, τ ) is the same as T(z, τ ) (cf (2.33)).
Next, we show how to obtain an infinity of conserved quantities for (1.4). Recall that the

scattering coefficient a(ζ ) is time independent. Since a(ζ ) is analytic outside the unit circle
|ζ | = 1 and tends to 1 as ζ → ∞, it admits a Laurent series expansion whose coefficients
are the constant of the motion as well. Substituting the expansions for the eigenfunctions
(cf (A.5)) into the Wronskian representation (2.35) it follows that the Laurent expansion for
the function r(ζ + 1/ζ − 2r)a(ζ ) is given by

r(ζ + 1/ζ − 2r)a(ζ ) = −�n


∞∑

k=0

∞∑
j=0

M(1),k
n N

(2),j
n

ζ k+j
−

∞∑
j=0

∞∑
k=−1

M(2),k
n N

(1),j
n

ζ k+j

 .

Renaming the indices yields

r(ζ + 1/ζ − 2r)a(ζ ) = −�n


∞∑

�=0

1

ζ�

�∑
j=0

M(1),�−j
n N(2),j

n −
∞∑

�=−1

1

ζ�

�+1∑
j=0

M(2),�−j
n N(1),j

n


and therefore for any � ∈ N, the 1/ζ � coefficient of the Laurent series expansion for
r(ζ + 1/ζ − 2r)a(ζ ) is given by

I� = �n

 �∑
j=0

(
M(1),�−j

n N(2),j
n − M(2),�−j

n N(1),j
n

)− M(2),−1
n N(1),�+1

n

 . (5.17)

Since a(ζ ) is constant in time, (5.17) are an infinite set of conserved quantities for the IDNLS
equation for � = −1, 0, 1, . . .. The first few of them are

I−1 = �nN
(1),0
n M(2),−1

n

I0 = �n

[−N(1),0
n M(2),0

n + M(1),0
n N(2),0

n − N(1),1
n M(2),−1

n

]
. . .
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etc. Substituting the explicit expressions for the coefficients of the Laurent series expansion
of the eigenfunctions derived in the appendix yields

I−1 = r, I0 = −
∞∑

n=−∞

[
RnQn−1 − Q2

o

]
, . . . .

A second set of conserved quantities can be obtained in a similar way from the coefficients of
the Laurent expansion for ā(ζ ), i.e.

J� = �n

 �∑
j=0

(
M̄(2),�−j

n N̄ (1),j
n − M̄(1),�−j

n N̄ (2),j
n

)− M̄(1),−1
n N̄ (2),�+1

n

 . (5.18)

Recalling symmetries (2.67) and (2.75), these conserved quantities can be written as

J−1 = r, J0 = −
∞∑

n=−∞

[
QnRn−1 − Q2

o

]
, . . . .

Also, by taking into account the τ -dependence of the scattering coefficients (2.17), it follows
that the determinant (2.19) of the scattering matrix T(z) is a constant of the motion as well,
that is

c∞(τ ) =
∞∏

j=−∞

1 − Qj(τ)Rj (τ )

1 − Q2
o

≡
∞∏

j=−∞

1 − Qj(0)Rj (0)

1 − Q2
o

. (5.19)

The system of equations (1.4) is a Hamiltonian system, with coordinates Qn(τ) and momenta
Rn(τ) respectively. The Hamiltonian is given by (cf [16, 22])

H =
∞∑

n=−∞

[
Rn(Qn+1 + Qn−1) − 2Q2

o

]
+ 2 log

[
1 − (

RnQn − Q2
o

)]
. (5.20)

Finally, note that motion constants are also given in terms of the scattering data by the trace
formula (2.83). In fact, recalling that a(ζ ) and ā(ζ ), as well as their zeros ζk, ζ̄k (discrete
eigenvalues) are time independent, the coefficients of the expansions of, say, ā(ζ ) as ζ → 0
in (2.83)

Kn =
∮

|w|=1

log[1 − |λ(w)|2|ρ̄(w)|2]

wn
dw, n ∈ Z (5.21)

provide an infinite set of conserved quantities, assuming all of these integrals are convergent.

6. One-soliton solution

Pure soliton solutions are obtained when the scattering data comprise proper eigenvalues and
the reflection coefficients vanish identically on the unit circle |ζ | = 1. As is well known,
in this situation the algebraic-integral system that linearizes the inverse problem reduces to a
purely algebraic system of equations and can be solved exactly.

Let us consider the linear system (3.11) and (3.12a) for the case of one-soliton
(reflectionless, and with just one pair of eigenvalues ζ̄1, ζ1 = 1/ζ̄ ∗

1 and associated norming
constants C̄1, C1 respectively)

N(1)
n (ζ1) + AnN̄

(1)
n (ζ̄1) = 1/ζ1 − r ≡ r − ζ̄ ∗

1 , (6.1a)

N(2)
n (ζ1) + AnN̄

(2)
n (ζ̄1) + R+/�n = 0, (6.1b)

N̄ (1)
n (ζ̄1) + BnN

(1)
n (ζ1) − Q+/�n = 0, (6.1c)
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N̄ (2)
n (ζ̄1) + BnN

(2)
n (ζ1) = ζ̄1 − r, (6.1d)

1/�n + CnN̄
(1)
n (ζ̄1) = 1, (6.1e)

and, from (3.12b),

Rn = R+ − Dn�nN̄
(2)
n (ζ̄1), (6.2)

where for brevity we have defined the functions

An = ζ1 − 1/r

(ζ̄1 − ζ1)(ζ̄1 − 1/r)
C̄1(λ

2(ζ̄1))
n ≡ r − ζ̄ ∗

1

r(|ζ̄1|2 − 1)(ζ̄1 − 1/r)
C̄1(λ

2(ζ̄1))
n, (6.3a)

Bn = ζ̄1 − r

(ζ1 − ζ̄1)(ζ1 − r)
C1(λ

2(ζ1))
−n ≡ (ζ̄ ∗

1 )2(ζ̄1 − r)

r(1 − |ζ̄1|2)(1/r − ζ̄ ∗
1 )

C1(λ
2(ζ̄1))

n, (6.3b)

Cn = − 1/r

ζ̄1 − 1/r
C̄1(λ

2(ζ̄1))
n ≡ |ζ̄1|2 − 1

ζ̄ ∗
1 − r

An, (6.3c)

Dn = 1

ζ̄1 − 1/r
C̄1(λ

2(ζ̄1))
n ≡ −r

|ζ̄1|2 − 1

ζ̄ ∗
1 − r

An. (6.3d)

Note that in (6.3b) we have used the symmetries λ(1/z∗) = (1/λ(z))∗ and ζ1 = 1/ζ̄ ∗
1

(|ζ1| > 1), and the fact that both λ2(ζ1) and λ2(ζ̄1) are real, to conclude that λ2(ζ1) =
1/λ2(ζ̄1). Indeed, note that λ2(ζ̄1) = ζ̄1(ζ̄1 − r)(ζ̄ ∗

1 − 1/r)/[r|ζ̄1 − 1/r|2]. Therefore
Im λ2(ζ̄1) = (|ζ̄1|2 + 1 − 2 Re ζ̄1/r) Im ζ̄1. The term in brackets is identically zero, since
ζ̄1 is on the circle of center 1/r and radius Qo/r . We conclude that both λ2(ζ̄1) and λ2(ζ1)

appearing in (6.3) are real.
One can solve the linear algebraic system (6.1), obtain 1/�n and N̄ (2)

n (ζ̄1), and then
substitute into (6.2) to reconstruct the potential. The coefficients of the linear system are all
expressed in terms of An and Bn. Also, note that from (2.24) it follows

λ2(ζ1)

λ2(ζ̄1)
= 1/λ4(ζ̄1) = r2

|ζ̄1|2
|ζ̄1 − 1/r|2
|ζ̄1 − r|2 ≡ Q2

o

|ζ̄1|2|ζ̄1 − r|2 , (6.4)

where we used that ζ̄1 is on the circle on center 1/r and radius Qo/r (cf (2.76) and
figure 3). Consequently, from the symmetry (3.4) in the norming constants it follows that

AnBn = |C1|2|ζ̄1|2
(|ζ̄1|2 − 1)2

( |ζ̄1|2
Q2

o

|ζ̄1 − r|2
)n+1

. (6.5)

Note that (6.5) implies that AnBn > 0 ∀n ∈ Z. From the above linear system (6.1) one then
obtains

1/�n = 1 − |ζ̄1|2AnBn

1 + AnQ+(|ζ̄1|2 − 1)/(ζ̄ ∗
1 − r) − AnBn

(6.6a)

and

N̄ (2)
n (ζ̄1) = (ζ̄1 − r)(1 + Q+Cn − AnBn) + R+Bn(1 + |ζ̄1|2AnBn)

(1 − AnBn)(1 + Q+Cn − AnBn)
. (6.6b)

Then, as shown in the appendix, by defining AnBn = xn, from (6.2) we obtain the
reconstruction of the potential as

Rn = R+

[
1 +

r

Qo

(1 − |ζ̄1|2) eiφ1
xn

1 + |ζ̄1|xn

]
, (6.7)
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Figure 4. The value of 1/�n as a function of n resulting from two different choices of discrete
eigenvalue. Left: ζ̄1 = (1 − Qo)/r , with Qo = 2/3, θ+ = 0 and norming constant C̄1 = 1/2.
Right: ζ̄1 = (1 − Qo eiπ/12)/r , with Qo = 2/3, θ+ = 0 and C̄1 = 2 eiπ/12.

where φ1 = arg(ζ̄1 − r), and xn is a positive quantity for all n ∈ Z, given by

xn = |C̄1| |ζ̄1|
1 − |ζ̄1|2 (λ2(ζ̄1))

n = dλ2n(ζ̄1) > 0, d = |C̄1ζ̄1|/(1 − |ζ̄1|2).
Then, we can write

Rn = R+

[
1 +

aλ2n(ζ̄1)

1 + d|ζ̄1|λ2n(ζ̄1)

]
, a = r eiφ1 |C̄1ζ̄1|/Qo. (6.8)

Note that since |λ(ζ̄1)| < 1, then Rn → R+ as n → +∞, and as n → −∞ one has
Rn → R+a/(d|ζ̄1|) ≡ R−, where the last identity follows from (2.84).

The time dependence in (6.7) is completely determined by that of R+ and |C̄1|, for which
we have, respectively, R+(τ ) = R+(0) e−2iQ2

oτ and

|C̄1(τ )| = |C̄1(0)| exp[Im µ(ζ̄1)τ ], (6.9)

where µ(ζ ) is given by (5.14). It is illuminating to look at the time dependence in the original
variables z and λ. According to (3.4a) and (5.16), it is given by

C̄k(τ ) = C̄k(0) exp
[−2iQ2

oτ − iµ(z̄k)τ
]
,

and

µ(z̄k) = r(z̄k − 1/z̄k)(λ(z̄k) − 1/λ(z̄k)).

Now we can use the fact that points of the discrete spectrum are such that |z̄k| = 1 and
|Re z̄k| > r , and that for such points

ξ(z̄k) = (z̄k + 1/z̄k)/2r = (z̄k + z̄∗
k)/2r ≡ Re z̄k/r > 1,

and therefore

λ(z̄k) = ξ(z̄k) −
√

ξ(z̄k)2 − 1 ∈ R.

Note also that

λ(z̄k) − 1/λ(z̄k) = −2
√

ξ(z̄k)2 − 1,

and therefore we have

µ(z̄k) = −2r(z̄k − 1/z̄k)
√

(Re z̄k)2/r2 − 1 = −4i Im z̄k

√
(Re z̄k)2 − r2

(and it is actually purely imaginary), so that finally

C̄k(τ ) = C̄k(0) exp
[−2iQ2

oτ − 4τ Im z̄k

√
(Re z̄k)2 − r2

]
.

The value of 1/�n as a function n is shown in figure 4 for two different choices of discrete
eigenvalue, which produce respectively to a stationary (black) dark soliton and a moving (gray)
dark soliton. The shape of the two corresponding soliton solutions is shown in figures 5 and 6.

It is worth mentioning that the Casorati determinant form of dark solitons was recently
obtained in [24].
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Figure 5. The amplitude (left) and argument (right) of the black dark-soliton solution generated
by the choice of discrete eigenvalue and norming constant in the left part of figure 4.
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Figure 6. The amplitude (left) and argument (right) of the grey dark-soliton solution generated by
the choice of discrete eigenvalue and norming constant in the right part of figure 4.

7. Small amplitude limit and linearization

Unlike the case with decaying boundary conditions, the term ‘small amplitude’ here does not
refer to the solution itself, but rather to the difference between the solution and the uniform
background. Here we discuss the small-amplitude limit of the IST and we compare it to
the solution obtained by directly linearizing the IDNLS equation (1.4) around a uniform
background.

7.1. Small amplitude limit from the inverse problem

To obtain the small-amplitude limit of the IST, consider the equations of the inverse problem
(3.11) in the absence of solitons, namely

N̄n(ζ ) =
(

Q+/�n

ζ − r

)
− 1

2π i

∫
|w|=1

(ζ − r)(1/λ2(w))n

(w − ζ )(w − r)
Nn(w)ρ(w) dw,

Nn(ζ ) =
(

r − 1/ζ

−R+/�n

)
+

1

2π i

∫
|w|=1

(ζ − 1/r)(λ2(w))n

(w − ζ )(w − 1/r)
N̄n(w)ρ̄(w) dw,

1

�n

= 1 − 1

2π i

∫
|w|=1

(λ2(w))n

rw − 1
N̄ (1)

n (w)ρ̄(w) dw,

Rn = R+ +
r�n

2π i

∫
|w|=1

(λ2(w))n

rw − 1
N̄ (2)

n (w)ρ̄(w) dw.

We can solve these equations iteratively:

N̄n(ζ ) =
(

Q+/�n

ζ − r

)
− 1

2π i

∫
|w|=1

(ζ − r)(1/λ2(w))n

(w − ζ )(w − r)

{(
r − 1/w

−R+/�n

)
+

1

2π i

∫
|w′|=1

(w − 1/r)(λ2(w′))n

(w′ − w)(w′ − 1/r)

(
Q+/�n

w′ − r

)
ρ̄(w′) dw′ + · · ·

}
ρ(w) dw,
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Nn(ζ ) =
(

r − 1/ζ

−R+/�n

)
+

1

2π i

∫
|w|=1

(ζ − 1/r)(λ2(w))n

(w − ζ )(w − 1/r)

{(
Q+/�n

w − r

)
− 1

2π i

∫
|w′|=1

(w − r)(1/λ2(w′))n

(w′ − w)(w′ − r)

(
r − 1/w′

−R+/�n

)
ρ(w′) dw′ + · · ·

}
ρ̄(w) dw,

1

�n

= 1 − 1

2π i

∫
|w|=1

(λ2(w))n

rw − 1

×
[
Q+

�n

− 1

2π i

∫
|w|=1

(w − r)(1/λ2(w′))n

(w′ − w)(w′ − r)
(r − 1/w′)ρ(w′) dw′ + · · ·

]
ρ̄(w) dw,

Rn = R+ +
�nr

2π i

∫
|w|=1

(λ2(w))n

rw − 1

×
[
(w − r) +

1

2π i

R+

�n

∫
|w′|=1

(w − r)(1/λ2(w′))n

(w′ − w)(w′ − r)
ρ(w′) dw′ + · · ·

]
ρ̄(w) dw.

In particular, at leading order in ρ(ζ ) and ρ̄(ζ ), one has

�n ∼ 1 +
Q+

2π i

∫
|w|=1

ρ̄(w)
(λ2(w))n

rw − 1
dw

and

Rn ∼ R+ +
r

2π i

∫
|w|=1

ρ̄(w)
(λ2(w))n

rw − 1
(w − r) dw.

If we explicitly introduce the time dependence as follows from (5.2) and (5.12), this gives

Rn(τ) ∼ e−2iQ2
oτ

[
R+(0) +

r

2π i

∫
|w|=1

ρ̄(w, 0) e−iµ(w)τ (λ2(w))n

rw − 1
(w − r) dw

]
, (7.1)

where µ(w) is given by (5.13). Note that in (7.1) λ2 plays the role of a periodic Fourier variable,
which suggests that one should perform a change of variable and express the dispersion relation
in terms of λ as well. From r(λ + 1/λ) = z + 1/z it follows that z = η ±

√
η2 − 1 and

1/z = η ∓
√

η2 − 1, where η = r(λ + 1/λ)/2 and

z − 1/z = ±
√

r2(λ + 1/λ)2 − 4. (7.2)

Therefore, we can write the dispersion relation as

µ(λ) = ±r(λ − 1/λ)
√

r2(λ + 1/λ)2 − 4. (7.3)

From equation (2.24) we have

λ2(w) = w
w − r

rw − 1
(7.4)

and therefore we can rewrite (7.1) as follows:

Rn(τ) ∼ e−2iQ2
oτ

[
R+(0) +

r

2π i

∫
|w|=1

(λ2(w))n+1ρ̄(w, 0) e−iµ(w)τ dw

w

]
. (7.5)

Moreover, recall that w = λ(w)/z(w), and therefore

dw

w
= z

λ

z − λ dz/dλ

z2
dλ ≡

[
1

λ
− 1

z

dz

dλ

]
dλ.
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In order to obtain the expression of dz/dλ, we use r(λ + 1/λ) = z + 1/z, which gives

dz

dλ
= r

1 − 1/λ2

1 − 1/z2
,

and finally

dw

w
=
[

1 − r
λ − 1/λ

z − 1/z

]
dλ

λ
≡
[

1 − µ(λ)

r2(λ + 1/λ)2 − 4

]
dλ

λ
,

where in the last formula we used (7.2). Substituting into (7.5) yields

Rn(τ) ∼ e−2iQ2
oτ

{
R+(0) +

r

2π i

∫
|λ|=1

[
1 − µ(λ)

r2(λ + 1/λ)2 − 4

]
(λ2)n+1ρ̄(λ, 0) e−iµ(λ)τ dλ

λ

}
,

(7.6)

where µ(λ) is given by (7.3). As far as the contour of integration is concerned, this follows
from (7.4), knowing that w is on the unit circle. We already showed that |w| = 1 if and only
if |λ| = 1, and in fact if w = eiθ , 0 � θ � 2π from (7.4) it follows

λ2 = eiθ eiθ − r

r eiθ − 1
≡ −e2iθ q

q∗ , q = 1 − r e−iθ

and then as θ spans the unit circle, so does λ. Finally, to obtain a more traditional Fourier
representation, we perform one more change of variables and define y = λ2. This leads to

Rn(τ) ∼ e−2iQ2
oτ

{
R+(0) +

r

4π i

∫
|y|=1

[
1 − µ(y)

r2(y + 1/y + 2) − 4

]
ynρ̄(

√
y, 0) e−iµ(y)τ dy

+
r

4π i

∫
|y|=1

[
1 +

µ(y)

r2(y + 1/y + 2) − 4

]
ynρ̄(−√

y, 0) eiµ(y)τ dy

}
, (7.7)

where from (7.3) it follows

µ2(y) = r2(y + 1/y − 2)[r2(y + 1/y + 2) − 4]. (7.8)

7.2. Linearization and small-amplitude limit via discrete Fourier transform

We now consider the solution of the linearized IDNLS equation. Recall that Qn → Q± =
Qo eiθ±(τ ) as n → ±∞, with θ±(τ ) = θ±(0) + 2iQ2

oτ . We then consider the ‘normalized’
discrete NLS equation for the rescaled field Q̃n = Qn e−2iQ2

oτ :

i
d

dτ
Q̃n = (Q̃n+1 + Q̃n−1)(1 − |Q̃n|2) − 2(1 − Q2

o)Q̃n

and define

Q̃n(τ ) = eiθ+(0)(Qo + un(τ)).

If un is small (that is, |un| � Qo), neglecting terms quadratic in un one obtains the following
equation:

i
dun

dτ
= r2(un+1 + un−1 − 2un) − 2Q2

o(un + u∗
n). (7.9)

We then seek for solutions of (7.9) in the form

û(y, τ ) =
∞∑

n=−∞
y−nun(τ ), un(τ ) = 1

2π i

∫
|y|=1

yn−1û(y, τ ) dy. (7.10)
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Note that

u∗
n(τ ) = 1

2π i

∫
|y|=1

yn−1û∗(1/y, τ ) dy

and substituting into (7.9) yields the following coupled system of ordinary differential
equations:

i
d

dτ
û(y, τ ) = r2(y + 1/y − 2)û(y, τ ) − 2Q2

o(û(y, τ ) + û∗(1/y, τ ))

−i
d

dτ
û∗(1/y, τ ) = r2(y + 1/y − 2)û∗(1/y, τ ) − 2Q2

o(û(y, τ ) + û∗(1/y, τ ))

or, calling a = û(y, τ ) and b = û∗(1/y, τ ),

i
da

dτ
= r2(y + 1/y − 2)a − 2Q2

o(a + b) (7.11a)

−i
db

dτ
= r2(y + 1/y − 2)b − 2Q2

o(a + b) (7.11b)

with the constraint a(y, τ ) = b∗(1/y, τ ). The above system implies

d2a

dτ 2
= −r2(y + 1/y − 2)[r2(y + 1/y + 2) − 4]a,

whose general solution is given by

a(y, τ ) = A1(y) eiµ(y)τ + A2(y) e−iµ(y)τ , (7.12)

where

µ(y) = r
√

2 − y + 1/y
√

4 − r2(y + 1/y + 2), (7.13)

and A1(y) and A2(y) are arbitrary functions. Similarly,

b(y, τ ) = B1(y) e−iµ(y)τ + B2(y) eiµ(y)τ (7.14)

and from the symmetry a(y, τ ) = b∗(1/y, τ ) it follows5

B∗
j (1/y) = Aj(y), j = 1, 2, (7.15)

where we have used that

µ∗(1/y) = µ(y). (7.16)

In order for (7.12) and (7.14) to satisfy system (7.11), A1(y) and A2(y) must satisfy a symmetry
condition. In fact, if we substitute (7.12) and (7.14) into (7.11) and make use of symmetry
(7.15), we obtain

A∗
2(1/y) = r2(y + 1/y − 2) + µ(y) − 2Q2

o

2Q2
o

A1(y). (7.17)

Then, we can determine the arbitrary functions A1(y) and A2(y) in terms of the initial data,
as the following linear system:

A1(y) + A2(y) =
∞∑

n=−∞
y−nun(0), (7.18a)

5 With this choice of signs in (7.13), since |y| = 1 the argument of each square root is real and positive, and therefore
µ∗(y) = µ(y); moreover, µ is symmetric for the exchange y → 1/y.
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A∗
1(1/y) + A∗

2(1/y) =
∞∑

n=−∞
y−nu∗

n(0), (7.18b)

which can be solved using (7.17), obtaining

A1(y) = 2Q4
o

µ(y)
[
r2(y + 1/y − 2) + µ(y) − 2Q2

o

]
×
[ ∞∑

n=−∞
y−nun(0) +

r2(y + 1/y − 2) + µ(y) − 2Q2
o

2Q2
o

∞∑
n=−∞

y−nu∗
n(0)

]
. (7.19)

From (7.12) and the second part of (7.10) we then obtain

un(τ) = 1

2π i

∫
|y|=1

yn−1[A1(y) eiµ(y)τ + A2(y) e−iµ(y)τ ] dy, (7.20)

and consequently

Rn(τ) = e−2iQ2
oτ

{
R+(0) − e−iθ+(0)

2π i

∫
|y|=1

yn−1[A∗
1(1/y) e−iµ(y)τ + A∗

2(1/y) eiµ(y)τ ] dy

}
.

(7.21)

We now compare this solution with the expression obtained from the small-amplitude limit of
the inverse problem. Comparing (7.21) with (7.7) yields

A∗
1(1/y) = −eiθ+(0)r

2

[
1 − µ(y)

r2(y + 1/y + 2) − 4

]
yρ̄(

√
y, 0), (7.22a)

A∗
2(1/y) = −eiθ+(0)r

2

[
1 +

µ(y)

r2(y + 1/y + 2) − 4

]
yρ̄(−√

y, 0). (7.22b)

As we show in the appendix, the symmetry (2.73c) for the reflection coefficients corresponds
to (7.17) for the functions A1(y) and A2(y) for any value of y on the unit circle.

8. Continuum limit

It is instructive to see how the solution of the discrete problem tends to the solution of the
continuous case in the limit h → 0, where h is the lattice spacing. To study the correspondence
between the discrete to the continuous case, recall that

Qn = qnh, Qo = hq0, r2 = 1 − h2q2
0 , z = eikh. (8.1)

Then k = −i[log|z|+i arg z]/h, and real values of k in the interval [−π/h, π/h] span the entire
unit circle for z. In particular, the portion of the unit circle with |Re z| < r ≡

√
1 − h2q2

0 ,
corresponding to the continuous spectrum (see below), is mapped into two disjoint segments
of the interval [−π/h, π/h], namely, [−k̃0,−k0] ∪ [k0, k̃0] (cf figure 7), where

k0 = 1

h
arctan

hq0√
1 − h2q2

0

, k̃0 = π

h
− k0.

When h → 0, one has k0 → q0 and k̃0 → ∞ so in the continuous limit one is left with only
the two branch points ±q0 instead of the four ±z0 and ±z∗

0. Moreover,

r =
√

1 − h2q2
0 ∼ 1 − h2q2

0

2
+ O(h4) z ∼ 1 + ikh + O(h2). (8.2)
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(This figure is in colour only in the electronic version)

Thus, from (2.10) we obtain

λ = cos(kh)√
1 − h2q2

0

±
√

cos2(kh)

1 − h2q2
0

− 1 ∼ 1 ± ih
√

k2 − q2
0 + O(h2), (8.3)

where the signs ± correspond to the upper/lower sheet of the Riemann surface, and the
exterior/interior of the unit circle when λ is expressed in terms of the uniformization variable
ζ . From the definition of ζ (2.23) it then follows

ζ = λ

z
= e−ikh

 cos(kh)√
1 − h2q2

0

±
√

cos2(kh)

1 − h2q2
0

− 1

 ∼ 1 + ih
[±

√
k2 − q2

0 − k
]

+ O(h2).

(8.4)

Here, however, it is not obvious what the role of the signs ± is, apart from the fact that if we
choose kj to be the real value of the continuous spectral parameter corresponding to a discrete
eigenvalue ζj , then we expect |kj | < q0 and the two values of ζj = ζ(kj ) correspond to ζj

and ζ̄j , with the first one outside the unit circle, and the second one inside. Therefore, if we
define, in analogy with the continuous case,

νj =
√

q2
0 − k2

j > 0, −q0 < kj < q0, (8.5)

one has

ζ̄j = 1 − ih(kj − iνj ) + O(h2), ζj = 1 − ih(kj + iνj ) + O(h2) (8.6)

such that

|ζ̄j |2 = 1 − 2hνj + O(h2), |ζ̄j | = 1 − hνj + O(h2), (8.7)

whereas

|ζj |2 = 1 + 2hνj + O(h2), |ζj | = 1 + hνj + O(h2). (8.8)

Note also that from (A.22) it follows that tan φ1 = tan ψ1 + O(h) and by the way the angles
are defined, one expects

φ1 = π − ψ1 + O(h). (8.9)



Inverse scattering transform for the integrable discrete nonlinear Schrödinger equation 1749

Moreover, ζ̄1 − 1/r = Qo/r eiψ1 , which at order h gives

−i(k1 − iν1) = q0 eiψ1 , (8.10)

i.e., since k2
1 + ν2

1 = q0,

ψ1 = −π

2
− arg α1 ↔ φ1 = arg α1 − π/2, (8.11)

where α1 = k1 + iν1. Note also that we have

λ2(ζ̄j ) ∼ 1 − 2hνj (real and smaller than 1) (8.12)

and |ζ̄j |/(1 − |ζ̄j |2) ∼ 1/2hνj . Therefore, ‘rescaling’ the norming constant as follows:

C̄1 = hc̄1 (8.13)

and writing from (8.12) λ2(ζ̄j ) ∼ e−2hνj , we obtain

xn ∼ |c̄1|
2νj

e−2νj hn → |c̄1|
2νj

e−2νj x as h → 0, nh → x. (8.14)

Then from (A.20) it is straightforward to obtain

�n → 1 as h → 0 (8.15)

and (6.7) gives the solution corresponding to (1.2).
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Appendix

Here we present several relations which are useful in the development of the direct and inverse
scattering transforms and we provide the proof of several claims in the text.

Evaluation of |λ|. The evaluation of |λ| as given in (2.10) is an important issue. Let us first
consider the case of real ξ . If ξ ∈ R and |ξ | > 1, then λ ∈ R and either |λ| > 1 or |λ| < 1
(cf figure 1.) On the other hand, if ξ ∈ R and |ξ | < 1, then λ = ξ ± i

√
1 − ξ 2 and |λ| = 1.

Now, note that in terms of the original variable z = x + iy:

Re ξ = x

2r

(
1 +

1

x2 + y2

)
, Im ξ = y

2r

(
1 − 1

x2 + y2

)
and ξ ∈ R corresponds to either y ≡ Im z = 0 or |z| = 1. If Im z = 0, then the condition
−1 < ξ < 1 corresponds to −2r < x + 1/x < 2r , which, since r2 − 1 < 0, is never satisfied.
Therefore, we are left with |z| = 1 and −2r < 2x < 2r , i.e. |Re z| < r . Hence, all points
on the circle |z| = 1 with |Re z| < r , are such that −1 < ξ < 1 and therefore |λ| = 1.
It is possible to show that this condition is also necessary, i.e. that |λ| = 1 → ξ ∈ R and
−1 < ξ < 1. Note that z can also be expressed in terms of ξ as follows:

z = r
(
ξ ±

√
ξ 2 − 1/r2

)
, 1/z = r

(
ξ ∓

√
ξ 2 − 1/r2

)
, (A.1)

with branch points at ξ = ±1/r .

Proof of remark 1. We intend to show that (λr − z)2 + Q2
o = 0 iff z = ±z0 or z = ±z∗

0.
This can be done more easily in terms of the uniform variable ζ . Taking into account (2.8)
and (2.23) one has

(λr − z)2 + Q2
o = −(λr − z)(1/λr − 1/z) + Q2

o = −2r2 + r(λ/z + z/λ) ≡ r(ζ + 1/ζ − 2r)

(A.2)
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and, since we proved that the continuous spectrum in the ζ -plane is mapped onto the
(punctured) unit circle, we see that for |ζ | = 1 one has (λ(ζ )r − z(ζ ))2 + Q2

o = 0 if and
only if ζ + ζ ∗ = 2r , i.e. if and only if ζ = r ± iQo. This shows that the Wronskians (2.15)
vanish only at ζ0, ζ

∗
0 , which are image, in the ζ -plane, of the branch points z = ±z0,±z∗

0.

Location of the discrete eigenvalues in the z-plane. Consider a discrete eigenvalue zk and
suppose φn(zk) = (

φ(1)
n (zk)φ

(2)
n (zk)

)
is a bound state, i.e. it decays fast as |n| → ∞. One can

easily show from the scattering problem that∣∣φ(1)
n+1(zk)

∣∣2 − ∣∣φ(2)
n+1(zk)

∣∣2 = (1 − QnRn)
[∣∣φ(1)

n (zk)
∣∣2 − ∣∣φ(2)

n (zk)
∣∣2]

+ (|zk|2 − 1)
[∣∣φ(2)

n+1(zk)
∣∣2 + (1 − QnRn)

∣∣φ(1)
n (zk)

∣∣2]. (A.3)

From the definition of �n in (2.38) it follows that 1 − QnRn = (
1 − Q2

o

)
�n/�n+1 ≡

r2�n/�n+1, and multiplying both members of (A.3) by r−2n−2�n+1 it follows that

r−2n−2�n+1
[∣∣φ(1)

n+1(zk)
∣∣2 − ∣∣φ(2)

n+1(zk)
∣∣2] = r−2n�n

[∣∣φ(1)
n (zk)

∣∣2 − ∣∣φ(2)
n (zk)

∣∣2]
+ (|zk|2 − 1)

[
r−2n−2�n+1

∣∣φ(2)
n+1(zk)

∣∣2 + r−2n�n

∣∣φ(1)
n (zk)

∣∣2].
Summing over all n one obtains

(|zk|2 − 1)

+∞∑
n=−∞

�n

r2n

[∣∣φ(1)
n (zk)

∣∣2 +
∣∣φ(2)

n (zk)
∣∣2] = 0.

Noting that the expression in brackets is strictly positive, as well as �n, we conclude that
|zk| = 1.

Proof of remark 2. From (2.24) it follows |λ|2 � 1 iff |rζ − 1| � |ζ ||ζ − r|, i.e.

|λ|2 � 1 ⇔ (|ζ |2 − 1)(|ζ |2 + 1 − r(ζ + ζ ∗)) � 0

or equivalently

|λ|2 � 1 ⇔ (|ζ |2 − 1)
(|ζ − r|2 + Q2

o

)
� 0

and we conclude that (2.25a) holds. Similarly, again from (2.24) it follows

|z|2 � 1 ⇔ |ζ − r| � |ζ ||rζ − 1|.
Squaring both sides one obtains

|z|2 � 1 ⇔ (|ζ |2 − 1)[|ζ |2 + 1 − (ζ + ζ ∗)/r] � 0.

Note further that r2 = 1−Q2
o and therefore the term in square bracket is |ζ |2+1−1/r(ζ +ζ ∗) =

|ζ − 1/r|2 − Q2
o

/
r2. We therefore conclude that the sign of |z|2 − 1 depends on the

sheet of the complex z-plane and on whether the point is inside or outside the larger circle
|ζ − 1/r| = Qo/r . Thus (2.25b) holds.

Relevant values of the mapping (z, λ) to ζ . Recalling that ξ = (z + 1/z)/2r and ζ = λ/z, we
can calculate explicitly the image of various distinguished points in the z-plane. The results
are shown in table 1.

Note that since 0 < r,Qo < 1, one has 0 < 1/r−Qo/r < 1 and 1 < 1/r < 1/r+Qo/r <

2/r and therefore all points on sheet I are mapped into points that are outside the unit circle
|ζ | = 1, and all points on sheet II are mapped inside. Note also that (2.24) shows that any
given value of ζ is in general the image of two different points on either one or the other
z-plane.

Green’s functions. To find the explicit expression for Green’s functions introduced in
section 2.3, let us write them in terms of the discrete Fourier transform, i.e.

G±
n (ζ ) = 1

2π i

∮
|p|=1

pn−1Ĝ±(p) dp
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Table 1. Distinguished points in both sheets of the complex z-plane and their images.

z ξ λ ζ

Sheet I: λ = ξ +
√

ξ2 − 1.
z0 = r + iQo 1 1 z∗

0 = ζ ∗
0

i 0 ±i (above/below the cut) ±1
−z∗

0 = −r + iQo −1 −1 z0 = ζ0

−1 −1/r −1/r − Qo/r 1/r + Qo/r

−z0 = −r − iQo −1 −1 z∗
0 = ζ ∗

0
-i 0 ±i (above/below the cut) ∓1
z∗

0 = r − iQo 1 1 z0 = ζ0

1 1/r 1/r + Qo/r 1/r + Qo/r

0 ∼1/2zr ∼2ξ ∞
∞ ∼z/2r ∼2ξ 1/r

Sheet II: λ = ξ −
√

ξ2 − 1.
z0 = r + iQo 1 1 z∗

0 = ζ ∗
0

i 0 ∓i (above/below the cut) ∓1
−z∗

0 = −r + iQo 1 −1 z0 = ζ0

−1 −1/r −1/r + Qo/r 1/r − Qo/r

−z0 = −r − iQo −1 −1 z∗
0 = ζ ∗

0
−i 0 ∓i (above/below the cut) ±1
z∗

0 = r − iQo 1 1 z0 = ζ0

1 1/r 1/r − Qo/r 1/r − Qo/r

z = 0 ∼1/2zr ∼ξ
[
1 − (

1 − 1
2 ξ−2 + · · ·)] r

∞ ∼z/2r ∼ξ
[
1 − (

1 − 1
2 ξ−2 + · · ·)] 0

which then satisfy, according to (2.44),

1

2π i

∮
|p|=1

pn−1

[
pĜ±(p) − 1

r

(
z/λ Q±/λ2

R± 1/(zλ)

)
Ĝ±(p)

]
dp

= 1

r

(
1/λ2 0

0 1

)
1

2π i

∮
|p|=1

pn−1 dp.

Therefore one has

Ĝ±(p) = 1

r(p − 1)(p − 1/λ2)

(
[p − 1/(rzλ)]/λ2 Q±/(rλ2)

R±/(rλ2) p − z/(rλ),

)
and consequently

G±
n (ζ ) = 1

2π i

∮
|p|=1

pn−1 1

r(p − 1)(p − 1/λ2)

(
[p − 1/(rzλ)]/λ2 Q±/(rλ2)

R±/(rλ2) p − z/(rλ)

)
.

The integrals above depend only whether the poles 1, 1/λ2 are located inside or outside the
contour of integration. However, when |λ| = 1, both poles are on the contour and one has
to consider contours that are perturbed away from |p| = 1 to avoid the singularities. In
particular, for the upper sign we consider a contour Cout enclosing p = 0 and p = 1, 1/λ2

and for the lower sign a contour C in enclosing p = 0 but neither p = 1 nor p = 1/λ2. The
residue theorem gives

1

2π i

∮
Cout

f (p)

p − bj

pn−1 dp =
{
(bj )

n−1f (bj ) n � 1
0 n � 0
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and
1

2π i

∮
C in

f (p)

p − bj

pn−1 dp =
{

0 n � 1
−(bj )

n−1f (bj ) n � 0

for b1 = 1, b2 = 1/λ2 for any function f (p) which is regular at bj , we obtain two Green’s
functions

Gout
n (ζ ) = θ(n − 1)

1

r(1 − 1/λ2)

{(
[1 − 1/(rzλ)]/λ2 Q−/(rλ2)

R−/(rλ2) 1 − z/(rλ)

)
− λ−2(n−1)

(
[1/λ2 − 1/(rzλ)]/λ2 Q−/(rλ2)

R−/(rλ2) 1/λ2 − z/(rλ)

)}

Gin
n (ζ ) = −θ(−n)

1

r(1 − 1/λ2)

{(
[1 − 1/(rzλ)]/λ2 Q+/(rλ

2)

R+/(rλ
2) 1 − z/(rλ)

)
− λ−2(n−1)

(
[λ−2 − 1/(rzλ)]/λ2 Q+/(rλ

2)

R+/(rλ
2) 1/λ2 − z/(rλ)

)}
.

Next, using (2.24) we finally obtain (2.45).

Neumann series. Consider the summation equation (2.62) for M̃n(ζ ), which we write in the
form

M̃n(ζ ) =
(

1
0

)
+

n−1∑
j=−∞

(DW)j (ζ )M̃j (ζ ),

where Dj = diag(1, λ(ζ )2(j+1−n)) and Wn(ζ ) is the energy-dependent potential matrix defined
in (2.58). A solution of the above equation can be sought for in the form of a Neumann series

M̃n(ζ ) =
∞∑

k=0

γ (k)
n (ζ ),

where

γ (0)
n (ζ ) =

(
1
0

)
, γ (k+1)

n (ζ ) =
n−1∑

j=−∞
(DW)j (ζ )γ

(k)
j (ζ ) k � 0.

If the potentials fn, gn, hn in (2.60) are �1, one can establish a bound on the γ (k)
n such that the

series representation converges absolutely and uniformly in n and uniformly in ζ in the region
|ζ | � 1. In fact, we prove by induction on k that for |ζ | � 1:∥∥γ (k)

n (ζ )
∥∥ �

n−1∑
j=−∞

‖Wj (ζ )‖k

k!
�

n−1∑
j=−∞

‖Wj‖k

k!
, (A.4)

where ‖·‖ denotes any matrix norm and ‖Wj‖ results from bounding each element of the
energy-dependent matrix potential Wj (ζ ) with respect to ζ , and hence its norm. Note that
the entries of Wj then only depends on the functions fn, gn, hn, which are summable by
assumption. Recall that for |ζ | � 1 one has |λ(ζ )|2(j+1−n) � 1 for any j � n and therefore
‖Dj (ζ )‖ � 1 as well. Using the recursive definition for γ (k)

n we then obtain∥∥γ (k+1)
n (ζ )

∥∥ �
n−1∑

j=−∞
‖Dj (ζ )‖‖Wj (ζ )‖∥∥γ (k)

j (ζ )
∥∥

�
n−1∑

j=−∞
‖Wj‖

j−1∑
m=−∞

‖Wm‖k

k!
�

n−1∑
j=−∞

‖Wj‖k+1

(k + 1)!
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and in the last inequality a summation by parts formula (cf, for instance, [16]) was used. The
bounds in (A.4) are absolutely and uniformly summable in k if ‖W‖1 ≡ ∑∞

j=−∞ ‖Wj‖ < ∞
and this completes the proof.

WKB expansion for the eigenfunctions. The coefficients of the Laurent series for the
eigenfunctions can be obtained by means of a WKB expansion. Let us write the large-ζ
expansion of the eigenfunctions Mn(ζ ) and Nn(ζ ) as

M(1)
n (ζ ) =

∞∑
k=0

M(1),k
n

/
ζ k, M(2)

n (ζ ) =
∞∑

k=−1

M(2),k
n

/
ζ k (A.5a)

N(1)
n (ζ ) =

∞∑
k=0

N(1),k
n

/
ζ k, N(2)

n (ζ ) =
∞∑

k=0

N(2),k
n

/
ζ k. (A.5b)

Note that from (2.24) it follows

1/λ2 = r/ζ − Q2
o

∞∑
j=0

rj /ζ j+2, λ2 = ζ

r
+ Q2

o

∞∑
j=0

1/(rj+2ζ j ) (A.6a)

1/(λz) = r − Q2
o

∞∑
j=0

rj /ζ j+1, λz = 1

r
+ Q2

o

∞∑
j=1

1/(rj+1ζ j ). (A.6b)

As a consequence, substituting (A.5) and (A.6) into the scattering problem (2.31) we obtain

r

∞∑
k=0

M
(1),k
n+1

/
ζ k=

∞∑
k=1

M(1),k−1
n

/
ζ k + rQn

∞∑
k=0

M(2),k−1
n

/
ζ k − Q2

oQn

∞∑
k=1

1/ζ k

k−1∑
j=0

rjM(2),k−j−2
n

(A.7a)

r

∞∑
k=−1

M
(2),k
n+1

/
ζ k = Rn

∞∑
k=0

M(1),k
n

/
ζ k + r

∞∑
k=−1

M(2),k
n

/
ζ k − Q2

o

∞∑
k=0

1/ζ k

k∑
j=0

rjM(2),k−j−1
n .

(A.7b)

Equating the coefficients of the different powers of ζ gives a coupled set of difference equations.
In particular, k = −1 yields

M(2),−1
n = 1 (A.8a)

(taking into account the boundary conditions) and k = 0 in (A.7a) gives

M(1),0
n = Qn−1, (A.8b)

i.e., the first of (2.63a). Then the equations (A.7) can be solved iteratively, anchoring the
iteration from (A.8). In fact, one has

r�M(2),k
n = RnM

(1),k
n − Q2

o

k∑
j=0

rjM(2),k−j−1
n k = 0, 1, . . .

rM
(1),k
n+1 = M(1),k−1

n + rQnM
(2),k−1
n − Q2

oQn

k−1∑
j=0

rjM(2),k−j−2
n k = 1, 2, . . . ,
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where � denotes the shift operator, i.e. �fn = fn+1 − fn. Then, we can write

rM(2),k
n =

n−1∑
j=−∞

[
RjM

(1),k
j − R−M

(1),k
−∞

]− Q2
o

k∑
�=0

r�

n−1∑
j=−∞

[
M

(2),k−�−1
j − M

(2),k−�−1
−∞

]
k = 0, 1, . . . (A.9a)

rM
(1),k
n+1 = M(1),k−1

n + rQnM
(2),k−1
n − Q2

oQn

k−1∑
j=0

rjM(2),k−j−2
n k = 1, 2, . . . , (A.9b)

where the terms in square brackets are subtracted out so that the corresponding series are
convergent. For example, we can easily obtain

rM(2),0
n =

n−1∑
j=−∞

[
RjQj−1 − Q2

o

]
, rM

(1),1
n+1 = Qn−1 + Qn

n−1∑
j=−∞

[
RjQj−1 − Q2

o

]−Q2
oQn

(A.10)

and so on. Similarly, substituting (A.5) and (A.6) into the scattering problem (2.31b) for
Nn(ζ ), at leading order yields

RnN
(1),0
n = −rN(2),0

n r2N
(1),0
n+1 = N(1),0

n + rQnN
(2),0
n .

Substituting the first one into the second one, we then get the difference equation

N
(1),0
n+1 = 1 − QnRn

r2
N(1),0

n ,

whose solution can be written as

N(1),0
n = α/�n,

where �n is defined by (2.38) and α is an arbitrary constant. If the limits n → +∞ and
ζ → ∞ commute, we expect N(1),0

n ∼ r as n → +∞, which, since 1/�n → 1 as n → +∞,
fixes α = r . Then we obtain the second of (2.63a). For the other coefficients of the Laurent
expansion (A.5b) for k � 1 one has the equations

r2N
(1),k
n+1 = N(1),k

n + Q2
o

k−1∑
j=0

N(1),j
n r−k+j + rQnN

(2),k
n

r2N
(2),k−1
n+1 = RnN

(1),k
n + Q2

oRn

k−1∑
j=0

N(1),j
n r−k+j + rN(2),k

n .

We multiply the second equation for Qn and subtract it from the first one, thus obtaining

r2N
(1),k
n+1 = Qnr

2N
(2),k−1
n+1 + (1 − QnRn)N

(1),k
n + Q2

o

k−1∑
j=0

N(1),j
n r−k+j (1 − QnRn)

rN(2),k
n = r2N

(2),k−1
n+1 − RnN

(1),k
n − Q2

oRn

k−1∑
j=0

N(1),j
n r−k+j−1

which can be solved iteratively. Let us introduce for all k � 1 the functions ϕ
(j),k
n = �nN

(j),k
n .

Taking into account the definition of �n, we see that (1 − QnRn)�n+1 = r2�n and therefore
multiplying the first equation by �n+1 yields

�ϕ(1),k
n = Qnϕ

(2),k−1
n+1 + Q2

o

k−1∑
j=0

r−k+jϕ(1),j
n k = 1, 2, . . .
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which can be explicitly solved

�nN
(1),k
n = −

∞∑
j=n

[
Qj�j+1N

(2),k−1
j+1 − Q+N

(2),k−1
∞

]− Q2
o

k−1∑
�=0

r�−k

∞∑
j=n

[
�jN

(1),�
j − N(1),�

∞
]
,

(A.11a)

and together with

rN(2),k
n = r2N

(2),k−1
n+1 − RnN

(1),k
n − Q2

oRn

k−1∑
j=0

N(1),j
n r−k+j−1 (A.11b)

complete the recursion. Similarly, from the behavior of (2.31a) as ζ → 0 one obtains (2.63b).
We now discuss the asymptotic behavior of eigenfunctions and scattering data at points r

and 1/r . The scattering problem (2.31b) for M̄n about ζ → r becomes

rM̄n+1(ζ ) ∼
(

−(ζ − r)
/
Q2

o Qn

−r(ζ − r)Rn

/
Q2

o r

)
M̄n(ζ ) ζ → r

and if we assume

M̄n(ζ ) ∼
(

M̄(1),0
n + (ζ − r)M̄(1),1

n + · · ·
M̄(2),0

n + (ζ − r)M̄(2),1
n + · · ·

)
we obtain the first of (2.64), where the choice of the constant is compatible with the limit as
n → −∞ corresponding to

( − Q2
o

/
r,−R−

)T ≡ (r − 1/r,−R−)T . The same expansion as
ζ → r for N̄n(ζ ) yields the second of (2.64). The expansions for Mn(ζ ) and Nn(ζ ) about
ζ = 1/r are obtained in a similar way.

Proof of remark 3. Let us first prove part (a). From remark 1 it follows that if z ∈ C, then
ξ ∈ ]−1, 1[ and therefore λ = ξ ± i

√
1 − ξ 2. Then |λ| = 1, and hence |ζ | = |λ|/|z| = 1.

Conversely, take ζ such that |ζ | = 1; then from (2.24) it follows that |z(ζ )|4 = 1. Moreover,
from remark 2 one also has |λ(ζ )| = 1, and therefore one has −1 < ξ < 1 which, recalling the
definition of ξ = (z + 1/z)/2r , and since |z| = 1 ⇔ 1/z = z∗, implies that −r < Re z < r ,
i.e. z ∈ C.

We now prove part (b). Suppose that z ∈ D. Then ξ ∈ ]−1/r,−1[ ∪ ]1, 1/r[ on either
sheet, and consequently λ = ξ ±

√
ξ 2 − 1 ∈ R. The claim is that such z is mapped onto the

circle |ζ − 1/r| = Qo/r in the ζ -plane, i.e. onto the locus

|ζ |2 − 2 Re ζ/r = −1. (A.12a)

Observe that for z ∈ D one has |ζ |2 = |λ|2 = λ2 and Re ζ = Re(λz∗)/|z|2 ≡ λ Re z and
therefore, in terms of λ, z, the locus (A.12a) becomes

λ(λ − 2 Re z/r) = −1. (A.12b)

Taking into account (A.1) and recalling that for z ∈ D it is ξ ∈ ]−1/r,−1[ ∪ ]1, 1/r[, it follows
that Re z = rξ and

λ − 2 Re z/r = −(ξ ∓
√

ξ 2 − 1
)

hence, recalling (2.10), one can check that (A.12b) is indeed satisfied. Conversely, if one
takes an arbitrary ζ on the circle |ζ − 1/r| = Qo/r , then |ζ |2 = 2 Re ζ/r − 1 and from (2.24)
it follows that |z(ζ )|4 = 1. Then, taking into account the result of (a), one necessarily has
z ∈ D.

Derivation of (2.82). Since the diagonal terms of T vanish when evaluated at a discrete
eigenvalue, equations (2.81) can be written as
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ā′(ζ̄k)

b̄(ζ̄k)
= 1

z

dz

dζ

∣∣∣∣
ζ=ζ̄k

∞∑
j=−∞

(
Ψ−1

j+1Zσ3Ψj

)
21(ζ̄k) (A.13a)

a′(ζk)

b(ζk)
= 1

z

dz

dζ

∣∣∣∣
ζ=ζk

∞∑
j=−∞

(
Ψ−1

j+1Zσ3Ψj

)
12(ζ̄k), (A.13b)

where we used that T12(ζ̄k) = b̄(ζ̄k) and T21(ζk) = b(ζk). Now note that from (2.24) it follows

1

z

dz

dζ
= − r

2

ζ 2 − 2rζ + 1

ζ(ζ − r)(rζ − 1)

and, from (2.15b) and (2.38),

Ψ−1
j = 1

W(ψ̄j , ψj )

(
ψ

(2)
j −ψ

(1)
j

−ψ̄
(2)
j ψ̄

(1)
j

)
≡ − �jζr−2j

r(ζ 2 − 2rζ + 1)

(
ψ

(2)
j −ψ

(1)
j

−ψ̄
(2)
j ψ̄

(1)
j

)
.

Therefore, calculating Ψ−1
j+1Zσ3Ψj and substituting into (A.13) we obtain

ā′(ζ̄k)

b̄(ζ̄k)
= −1

2

1

(ζ̄k − r)(rζ̄k − 1)

∞∑
j=−∞

r−2j�j

× [
z(ζ̄k)ψ̄

(1)
j−1(ζ̄k)ψ̄

(2)
j (ζ̄k) + ψ̄

(1)
j (ζ̄k)ψ̄

(2)
j−1(ζ̄k)/z(ζ̄k)

]
(A.14a)

a′(ζk)

b(ζk)
= 1

2

1

(ζk − r)(rζk − 1)

∞∑
j=−∞

r−2j�j

× [
z(ζk)ψ

(2)
j (ζk)ψ

(1)
j−1(ζk) + ψ

(1)
j (ζk)ψ

(2)
j−1(ζk)/z(ζk)

]
. (A.14b)

Now observe that since the discrete eigenvalues in the z-plane are located on the unit circle,
in correspondence of any zk it is z∗

k = 1/zk and therefore the discrete eigenfunctions satisfy
an additional symmetry:

ψn(ζk) = − rλ(ζk) − z(ζk)

Q+
σ1ψ

∗
n (ζk) (A.15a)

ψ̄n(ζ̄k) = rλ(ζ̄k) − z(ζ̄k)

R+
σ1ψ̄

∗
n(ζ̄k) (A.15b)

which allows us to express the second component of the discrete eigenfunctions in (A.14) in
terms of the first one and obtain (2.82).

Reconstruction of the one-soliton solution (6.7). Let us introduce the short-hand notation
AnBn = x2

n for (6.5), where

xn = |C̄1|
Qo

|ζ̄1 − r|
1 − |ζ̄1|2 (λ2(ζ̄1))

n.

Note that xn � 0, since we showed that λ2(ζ̄1) ∈ R and |ζ̄1| < 1. The condition
|ζ̄1 − 1/r| = Qo/r is equivalent to

|ζ̄1 − r| = Qo|ζ̄1| (A.16)

and therefore we can also write

xn = |C̄1| |ζ̄1|
1 − |ζ̄1|2 (λ2(ζ̄1))

n. (A.17)
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Note also that

Q+Cn = Q+
|ζ̄1|2 − 1

ζ̄ ∗
1 − r

An ≡ −C̄1 ei(θ+−ψ1)(λ2(ζ̄1))
n.

Then, since from (3.7) one has C̄1 = ±|C̄1| ei(ψ1−θ+), it follows that Q+Cn is also real.
Correspondingly, from (A.17) it follows that Q+Cn = ∓|C̄1|(λ2(ζ̄1))

n ≡ −βxn, where

β = (1 − |ζ̄1|2)/|ζ̄1|. (A.18)

Note that β > 0, since |ζ̄1| < 1. Combining these results, we can write

�n = 1 ∓ βxn − x2
n

1 − |ζ̄1|2x2
n

. (A.19)

Now note that λ2(ζ̄1) < 1 and therefore xn → 0 as n → +∞ and xn → ∞ as n → −∞,
which means that the denominator becomes zero, and therefore �n becomes singular, unless
there is a cancelation with the numerator. In any case, one has �n → 1 as n → +∞ and
�n → 1/|ζ̄1|2 > 1 as n → −∞. Let us factorize both numerator and denominator of (A.19)

�n = (β1 − xn)(β2 + xn)

(1 − |ζ̄1|xn)(1 + |ζ̄1|xn)
.

Note that β1β2 = 1, which means that one of the two roots is greater than 1 and the other one
is smaller than 1. Also, they have the same sign. Moreover, β1 − β2 = ∓β ≶ 0, so for the
upper sign it is β2 > β1 and for the lower sign β1 > β2. Explicitly,

�n = (1/|ζ̄1| ± xn)(|ζ̄1| ∓ xn)

(1 − |ζ̄1|xn)(1 + |ζ̄1|xn)
≡ |ζ̄1| ∓ xn

|ζ̄1|(1 ∓ |ζ̄1|xn)
. (A.20)

Of these two expressions for �n, the one corresponding to the upper sign is singular, while
the one corresponding to the lower sign is regular for all n. Correspondingly, we obtain for
the potential the two expressions

Rn = R+

[
1 ∓ r

Q2
o

1 − |ζ̄1|2
|ζ̄1| (ζ̄1 − r)

xn

1 ∓ |ζ̄1|xn

]
. (A.21)

Again, the expression corresponding to the lower (upper) sign is regular (singular). This can
be further simplified by noting that, from (A.16), we also have

r

Q2
o

1 − |ζ̄1|2
|ζ̄1| (ζ̄1 − r) ≡ r

Qo

(1 − |ζ̄1|2) eiφ1 ,

where φ1 = arg(ζ̄1 − r) and it can be expressed in terms of ψ1 as follows:

tan φ1 = sin ψ1

Qo + cos ψ1
. (A.22)

We therefore finally obtain, for the expression corresponding to the lower sign, (6.7).

Equivalence of different representations of the linear limit. Here, we show that the symmetry
(2.73c) for the reflection coefficients corresponds to (7.17) for the functions A1(y) and A2(y)

for any value of y on the unit circle. Taking into account (2.73c), equations (7.17) and (7.22)
yield

1 +
µ(y)

r2(y + 1/y + 2) − 4
= − r2(y + 1/y − 2) + µ(y) − 2Q2

o

2Q2
o

[
1 − µ(y)

r2(y + 1/y + 2) − 4

]
.

(A.23)
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Moreover, from definition (7.3) of µ2(y) it follows that[
1 +

µ(y)

r2(y + 1/y + 2) − 4

] [
1 − µ(y)

r2(y + 1/y + 2) − 4

]
= − 4Q2

o

r2(y + 1/y + 2) − 4

and therefore (A.23) is equivalent to[
1 +

µ(y)

r2(y + 1/y + 2) − 4

]2

= −2
r2(y + 1/y − 2) + µ(y) − 2Q2

o

r2(y + 1/y + 2) − 4
,

which is identically satisfied.
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