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Abstract
We report on the analysis method to extract quantitative local
electrodynamics in superconductors by means of the magneto-optical
technique. First of all, we discuss the calibration procedure to convert the
local light intensity values into magnetic induction field distribution and start
focusing on the role played by the generally disregarded magnetic induction
components parallel to the indicator film plane (in-plane field effect). To
account for the reliability of the whole technique, the method used to
reconstruct the electrical current density distribution is reported, together
with a numerical test example. The methodology is applied to measure local
magnetic field and current distributions on a typical YBa2Cu3O7−x good
quality film. We show how the in-plane field influences the MO
measurements, after which we present an algorithm to account for the
in-plane field components. The meaningful impact of the correction on the
experimental results is shown. Afterwards, we discuss some aspects about
the electrodynamics of the superconducting sample.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The magneto-optical (MO) technique is a powerful tool to
examine the local magnetic field distribution over the surface
of a superconducting sample [1–3]. The main advantage of
the MO tool with respect to other magnetic field imaging
techniques, such as SQUID or µHall-probe array scanning
magnetometry, is the parallel measurement on each point of
the interested surface, which allows the precise and local
evaluation of electrodynamical quantities (B, J,E) [3] and
the observation of local dynamic phenomenology [4].

The conventional MO measurement process results in a set
of images representing the surface of a ferromagnetic indicator
film that is placed over the flat superconductor. Throughout
the Faraday effect, the indicator film with in-plane anisotropy

[5], hit by linearly polarized light, shows the changes in its
local magnetic moment due to external magnetic field as local
light intensity modulation. The quantitative analysis starts
with the calibration process where the local light intensity of
the images is converted into local magnetic induction values.
Generally, only the perpendicular component of the magnetic
induction is considered in the calibration process, whereas the
in-plane components are disregarded. Although in the case
of thin samples, the measurement of the magnetic induction
component perpendicular to the superconductor surface
alone does suffice to rebuild the electrical current density
distribution, in a ‘model-independent’ way by the numerical
inversion of the Biot–Savart law [3], the supercurrents
always induce in-plane magnetic field components at the
superconductor surfaces and, as shown in [6, 7], the indicator
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film strongly reacts to the in-plane components too. Then, the
inversion process results in misleading features in the current
density distribution if the in-plane field effect is not accounted
for. In this work, we show how to extend the one-dimensional
in-plane field effect correction [6] to a ‘model-independent’
two-dimensional and iterative algorithm which evaluates the
full magnetic induction distribution on the superconductor
surface and the in-plane current density distribution with high
accuracy.

The paper is organized as follows. The experimental
apparatus is briefly described in section 2. In section 3,
we report on the calibration procedure of the MO image
data. Here, we start focusing on the electrodynamical
model of the indicator film that accounts for the effect of
the in-plane magnetic fields. The inversion procedure of
the Biot–Savart law, which follows a method developed by
Roth [8] and applied to MO analysis by Jooss [3, 9], is
described in detail and verified in section 4. In section 5,
the method is applied to the experimental results obtained
with conventional MO analysis, which are affected by the
in-plane field effect. The iterative procedure, designed to
correct the MO measurements from the in-plane field effect,
is described in section 6. Then, we make a first comparison
between the precise quantitative information obtained by the
MO investigation of the superconductor and known models
concerning the distribution of the electrodynamic fields (B, J )
inside the sample. The results and comments are presented in
section 7. Finally, we resume our conclusions in section 8.

2. Experimental set-up

Our experimental set-up for magneto-optical analysis is
depicted in figure 1. The microscope is a Optiphot© by
NikonTM, equipped with a Glan-Thompson polarizer and a
rotating polarization analyser. Outside the mirror, there is
an exciting filter in the wavelength range centred at 530 nm,
in order to obtain the maximum Faraday rotation from the
indicator film. The magnetic sensors are Bi-doped ferrite
garnets with in-plane anisotropy (thickness 2–5 µm), grown
on a GGG transparent substrate; on the other face, an
Al mirror and a protective layer are deposited (both of them
have thickness of about 150 nm). For details on the physical
properties of these indicator films, see [10].

The cryostat is a custom-design by OxfordTM with
continuous flow of refrigerator liquid; a heater and a
temperature controller allow working temperatures ranging
from 3.5 K to 350 K. The video camera is a monochromatic
12 bit digital camera (AdimecTM MX12P©) with a CCD matrix
of 1024 × 1024 pixels. Other details of our apparatus can be
found in [11].

3. Conversion of the MO images into magnetic
induction values

The light intensity of the pixels in MO images carries
information about the local magnetic field at the indicator
plane. To extract this information, we consider a suitable
electrodynamical model to account for the indicator film
behaviour [6]. With reference to figure 2, the interaction

Figure 1. Scheme of our experimental set-up. The light beam, from
the Hg lamp (1), is collimated by a biconvex lens (2) before passing
through a polarizer (3). After the exciting filter (not drawn), the
light hits a beam splitter (4) and is focused by the objective lens (5)
onto the indicator surface (6). The indicator film is put over the
superconducting sample inside the cryostat (7). An external magnet
(8), cooled with water, generates a uniform magnetic field in the
direction perpendicular to the indicator plane. The refracted light
passes through the lens (5), the beam-splitter (4) and the rotating
analyser (9), before being focalized by the camera lens (10) and
captured in the CCD matrix of the video camera (11). A personal
computer (12-not drawn) picks up the digital signal of the camera
and elaborates it.
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Figure 2. Abstract view of the indicator film cross section (only the
MS projections to xz plane are depicted). (a) When there is no
external magnetic excitation, the spontaneous magnetization vector
lies in the film plane. (b) An external magnetic field perturbs the
local magnetization of the indicator. The field component
perpendicular to the film surface is responsible for the rotation of the
spontaneous magnetization out of the indicator plane.

energy Eint of the system (indicator film) with magnetic field
B can be evaluated as

Eint = EA(1 − cos φ) + BMS[1 − cos(α − φ)] (3.1)

where EA is the anisotropy energy, MS is the value of
spontaneous magnetization and α is the angle formed between
the magnetic induction vector and the xy plane, where the
spontaneous magnetization lies with no external fields. The
angle φ accounts for the perturbation of the magnetic moments
inside the ferrite; the derivative of (3.1), with respect to φ,
yields the equilibrium position

φ = arctan
Bz

Bxy + BA
(3.2)
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Figure 3. Example of a calibration curve. The points are the light
intensity (normalized after the division by the maximum intensity
image) in a pixel on the indicator surface (T = 5 K, θ = 45◦ =
0.7854 rad). The line is the fit with equation (3.5). The fitting
procedure yields the values of the three parameters needed for the
conversion of the light intensity values into magnetic induction ones
(χ 2 = 8.145 × 10−6, CMS = 0.2508 ± 0.0038, BA = 99.9 ± 2.5, I0 =
−0.020 90 ± 0.000 48). The two arrows indicate the saturation field
of the indicator, above which no information on the local field can
be resolved. Then we limit our analysis on the images containing
points with maximum local field below the saturation threshold.

with BA = EA/MS, Bz = B · k̂ = B sin α and Bxy =√
(B · ˆ̇ı)2 + (B · ĵ)2 = B cos α.

The polarization plane of the incident light is rotated by
the Faraday effect, and the amount of rotation, indicated by the
angle αF, is proportional to the magnetization component along
the light direction. We disregard the dispersion of light path
lengths because, in the considered configuration, deviations
to perpendicular light on the indicator surface are much less
than other polarization ‘losses’. Then we assume the simple
relation (see figure 2)

αF = CMS sin φ (3.3)

where C is a parameter which depends on the thickness of
the indicator film. All the parameters characterizing the
ferrite garnet strongly depend on the temperature as well
as on the wavelength of the light. Here it is supposed
that the measurements are isothermal and performed with
monochromatic light, so for each temperature we make a
distinct calibration process and all parameters are taken as
constants.

The Faraday rotation is detected by the analyser, which is
fixed at an angle θ off the polarizer direction. From the Malus
law, the light intensity I received by the video camera is

I = I0 + IMAX cos2(αF + θ). (3.4)

IMAX is the light intensity of the incident beam and I0 is the
intensity of the non-linear polarized light (this parameter and
θ also model the polarization losses across the optical path).
Combining equation (3.4) with (3.3) and (3.2), we obtain the
relation between the measured light intensity and the magnetic
induction:

I = I0 + IMAX cos2

[
CMSBz√

(BA + Bxy)2 + B2
z

+ θ

]
. (3.5)

Figure 4. Reference system. The origin of the axis is put onto a
plane at half the thickness of the sample. The distance between the
top surface of the sample and the indicator film is h.

This equation demonstrates that the indicator film reacts also
with the in-plane components of the magnetic induction. As
we will see in more detail later, this contribution increases with
higher electrical currents and with increasing thickness of the
sample. In any case, the effect of the in-plane field consists in
the apparent increasing of the local anisotropy field.

Equation (3.5) can be used for the calibration procedure,
after we have collected the light intensity measurements of
a point over the indicator film surface under the action of a
known value of the magnetic induction field. This can be
achieved in a zone far enough from the area influenced by
the field generated by the sample, where the Faraday rotation
is only determined by the externally applied field which is
uniform and perpendicular to the indicator plane. In this case,
there is no action of in-plane fields.

The required I (Bz) data are collected by means of an
isothermal magnetization cycle: the external magnetic field
is increased discontinuously in steps and for each step we
acquire a MO image. The procedure can vary in different
experiments: zero field cooling or field cooling of the sample,
relaxation measurements, etc. In any case, the complete ramp
of applied dc fields is needed for the calibration.

Figure 3 shows a typical calibration curve. The points are
the light intensity values of a single pixel, belonging to a zone
far from the sample, and the solid line is the calibration curve
obtained by fitting the experimental data with equation (3.5).
We can determine experimentally two parameters: the angle θ

and IMAX, as the image acquired with the polarizer parallel to
the analyser. In the case of the measurements presented here,
this procedure yields a magnetic resolution of about 1 mT
(for magnetic fields ranging from 1 mT to about 130 mT).
The calibration procedure described here allows obtaining the
local value (with sign) of the magnetic induction component
in the z direction, for arbitrary external fields and instants of
time, but always at a fixed temperature. The time resolution
is only limited by the acquisition hardware (e.g. for our frame
grabber the time step is 40 ms).

4. The inversion method

The magnetic induction field in a point over the indicator
surface is the superposition of the field generated by the
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Figure 5. Calculated magnetic field map and current density distributions. (a) Magnetic induction field (z component) distribution on the
top surface of a square superconducting sample in fully developed Bean critical state. The following parameters were used for this map
(1500 × 1500 pixels): external applied field (perpendicular to the image, positive from the paper to the reader) of 90 mT, critical current
density of 1011 A m−2, sample thickness of 300 nm. (b) and (c) Electrical current density distribution for Jx and Jy components, respectively,
calculated by applying the inversion method to the field map reported in (a). The figures show the local values with sign of the two electrical
current density components; positive values mean the current density vector is directed from bottom to top ( y) or from left to right (x). The
small modulations on the borders of the image and of the current density distribution are due to the finite frequency spectrum utilized and
represent the error of the inversion procedure. Their values are four to five orders of magnitude less than the signal.

superconductor, Hind, and the sum of all the magnetic sources
external to it, Hext. In SI units

B(r) = µ0(Hext(r) + Hind(r)). (4.1)

The electrical current density, flowing inside the sample
(∇ · J(r) = 0), induces a magnetic field according to the
Biot–Savart law:

µ0Hind(r) = µ0

4π

∫
J(r′) ∧ (r − r′)

|r − r′| d3r ′. (4.2)

Each component of the induced field is generated by two
components of the electrical current density field (with
reference to figure 4):

µ0Hind · ˆ̇ı = µ0Hx(x, y, z)

= µ0

4π

∫∫∫
Jy(x

′, y ′, z′)(z − z′) − Jz(x
′, y ′, z′)(y − y ′)√

[(x − x ′)2 + (y − y ′)2 + (z − z′)2]3

× dx ′ dy ′ dz′ (4.3)

µ0Hind · ĵ = µ0Hy(x, y, z)

= µ0

4π

∫∫∫
Jz(x

′, y ′, z′)(x − x ′) − Jx(x
′, y ′, z′)(z − z′)√

[(x − x ′)2 + (y − y ′)2 + (z − z′)2]3

× dx ′ dy ′ dz′ (4.4)

µ0Hind · k̂ = µ0Hz(x, y, z)

= µ0

4π

∫∫∫
Jx(x

′, y ′, z′)(y − y ′) − Jy(x
′, y ′, z′)(x − x ′)√

[(x − x ′)2 + (y − y ′)2 + (z − z′)2]3

× dx ′ dy ′ dz′. (4.5)

In principle, the information from a non-invasive measurement
is not enough to solve the full 3D inverse problem [8]. The
unique and exact solution can be found for the 2D inverse
problem, where the electrical current density distribution is
considered constant over the z direction. This is true for
samples flat and thin, i.e. with d < 2λ [12]. Otherwise, the
measured quantities must be considered as averaged over the
thickness. Therefore, regarding the 2D problem, the equation

to be inverted is

µ0Hz(x, y, h)

= µ0

4π

∫ d/2

−d/2

∫∫
Jx(x

′, y ′)(y − y ′) − Jy(x
′, y ′)(x − x ′)√

[(x − x ′)2 + (y − y ′)2 + (h − z′)2]3

× dx ′ dy ′ dz′. (4.6)

The inversion problem can be dealt with different approaches
(a direct one is the matrix inversion, see [13, 14]). We
follow the arguments of Roth et al [8]: the Biot–Savart law
has translational symmetry, thus we can apply the convolution
theorem. This method was developed and applied to MO
technique by Jooss [3, 9], who treated more accurately the
finite thickness of the sample. By two-dimensional Fourier
transformation, equation (4.6) transforms into

µ0H̃ z(kx, ky, h) = i
µ0

2

∫ d/2

−d/2


 ky√

k2
x + k2

y

J̃ x(kx, ky)

− kx√
k2

x + k2
y

J̃ y(kx, ky)


 e−(h−z′)

√
k2
x+k2

y dz′. (4.7)

The integration over the thickness (variable z′) can be done
analytically and yields

µ0H̃ z(kx, ky, h) = i
µ0

2

(
ky

k
J̃ x(kx, ky) − kx

k
J̃ y(kx, ky)

)

× e−hk

k
sinh

(
d

2
k

)
. (4.8)

Using the condition for the electrical current density field
to flow only inside the sample (i.e. ∇ · J(r) = 0 with the
assumption that ∂Jz/∂z = 0), we obtain a solvable system:{

µ0H̃ z(kx, ky, h) = iµ0

2 J̃ x(kx, ky)
e−hk

ky
sinh

(
d
2 k
)

J̃ x(kx, ky) = −J̃ y(kx, ky)
kx

ky

. (4.9)

The solution of the system (4.9) is the electrical current
density distribution (Jx(x, y) and Jy(x, y)) in a plane parallel
to the indicator one, with information on local current
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(a)

(b)

Figure 6. (a) Vector sum of the two current density components
(Jx(x, y) and Jy(x, y)). (b) Modulus distribution of the current
density. As expected in the full-penetrated Bean critical state for
this geometry, the electrical current density is uniform, flows
parallel to the edges and bends near the discontinuity
lines [21].

density direction and its local magnitude. The Fourier
transformation is carried out by a FFT algorithm, which costs
NxNy(1 + 2 log(NxNy)) operations (NxNy is the dimension
of the MO image in pixels). Since the dimensions of
the images are finite, the FFT transformation introduces a
superlattice of spurious current distributions. These current
cells interact with the real current distribution if the area
outside the sample contained in the MO image is not large
enough. If the measurements are contaminated by some
background noise (introduced by the electronic systems), the
data can be filtered in k-space by means of an Hanning
window. For more details see [3, 8, 9]. We test our
algorithm with an artificial distribution of magnetic induction
values, calculated on the basis of the Bean critical state
model for rectangular thin superconductors [15]. In figure 5,
the magnetic induction field map and the corresponding
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Figure 7. Profile along the central part of the current density map of
figure 5(c). The current is constant in the sample, but changes
direction crossing the centre. The plateau is located at 9.992 ×
1010 A m−2. The small peaks at the centre (less than ten pixels) are
due to Gibbs oscillations because, in this theoretical model, the
current density changes direction suddenly, i.e. with infinite
frequency.

Figure 8. Optical image of the YBCO film. Four types of disorder
are visible on the surface: some small holes produced during the
etching process (1) (respectively, from top to bottom, the
dimensions of the visible defects are 25 × 18, 7 × 7 and 15 ×
15 µm2); a deep scratch on the lower side (2); some impurities (3)
and a soft pattern of lines, which do not disturb the electrical current
flow into the superconducting film because they are located on the
superficial non-superconducting layers.

current density distribution, obtained by the inversion method,
are shown. The two electrical current density components,
Jx(x, y) and Jy(x, y), can be combined to yield the direction
pattern of the current or the local values of the current density
modulus, as shown in figure 6. The result of the inversion
is in excellent agreement with the theoretical distribution. In
figure 7, the profile along the middle line of the square is
presented. The value at the plateau differs less than 0.01%
from the actual one.

5. Experimental results

We present the MO analysis on a YBa2Cu3O7−δ (YBCO) film
(TC = 88 K, 	TC = 0.7 K), grown by thermal co-evaporation
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Figure 9. Magnetic induction distribution in the plane of the indicator film, along the direction perpendicular to the indicator plane (z). The
maps were obtained from the corresponding magneto-optical images by means of the calibration procedure described in section 3. The area
outside the sample necessary for a correct inversion procedure was partially cut for visual clarity. The measurement was carried at T = 5 K.
(a) µ0Hext = 14.6 mT. The film is almost entirely in the Meissner state (B = 0), with the exclusion of the zone damaged by the cracks
(bottom). (b) µ0Hext = 46.2 mT. At this stage, a part of the sample carries the vortices (nucleated from the edges) and sustains an electrical
current to stop the flux motion due to Lorenz forces (i.e. a critical current). The cushion-like structure is characteristic of the rectangular
geometry. The central part is flux free because of a Meissner current distribution. The holes and cracks have strongly perturbed the flux
diffusion whereas in two quadrants (top and right) the flux profile is very homogeneous. (c) µ0Hext = 69.2 mT. Evolution of the flux
diffusion near the fully penetrated critical state.

Figure 10. Electrical current density modulus distributions (|J (x, y)| =
√

J 2
X(x, y) + J 2

Y (x, y)) obtained by the inversions of the magnetic
field maps reported in the previous figure. Everywhere the electrical current density is directed clockwise. (a) µ0Hext = 14.6 mT. The
Meissner current flows in the whole sample volume. Its magnitude decreases continuously from the edges to the centre. (b) µ0Hext =
46.2 mT. The discontinuity lines (dark cross), where the electrical current bends, are more clearly visible in the penetrated zone. In the
central part there is the remaining Meissner current distribution. (c) µ0Hext = 69.2 mT. The sample is near the full penetration and a strong
current flows in almost the entire film. In this image, the unphysical high values of electrical current density outside the sample is more
evident.

on an yttria stabilized zirconia (YSZ) substrate with a 40 nm
thick CeO2 buffer layer. The original deposition (square with
1 cm long sides, 400 nm thick) was chemically etched in
order to obtain smaller squares with sides of about 1.25 mm.
The optical image of the investigated sample is shown in
figure 8. Three magnetic field maps, representative of
a virgin magnetization cycle at T = 5 K, are presented
in figure 9. These images show three different states
during the magnetic flux diffusion inside the YBCO film:
Meissner state, partly penetrated critical state and nearly full-
penetrated critical state. The corresponding distributions
of the electrical current density modulus, obtained by the
inversion procedure, are presented in figure 10. Both magnetic
field and electrical current density distributions qualitatively
exhibit the well connected nanostructure of the YBCO film.
With the exception of the visible microscopic defects (their
influence is not discussed here), the flux front and the current

pattern are arranged so as to obey the electrodynamical
requirements imposed by the film geometry. In fact, the
superconducting region is simply connected and there are no
visible grain boundaries that penalize the electrical current
flow pattern.

Besides the behaviour associated with the physical
properties of the superconductor, we now focus on the
unphysical result of non-zero current density distribution
outside the sample. This effect can be noted clearly as a
light shadow around the superconducting film, for example in
figure 10(c). It can also be explored locally with line profiles,
as those plotted in figure 11. The sample edges are located at
the peaks of the current density curves and the spurious current
density distribution appears as tails outside the superconductor.
Moreover, the peaks of the current density at the edges and
the curvature of the profiles are, by themselves, unexpected
features. Since the inversion method works correctly, we argue
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Figure 11. Linear profiles of the electrical current density modulus
along the horizontal mid line of the squared film. The area occupied
by the YBCO film is located between the peaks.

that the cause resides in the measurement process, i.e. in the
calibration procedure. In [6], this effect was observed by the
MO technique (with a one-dimensional quantitative analysis)
and was addressed to the magnetic field components directed
in the plane of the indicator film. The only approximation
we made working with the model (3.5) was just to ignore the
in-plane magnetic field components, as commonly done in
the standard MO calibration procedure [1–4, 14, 16]. In
what follows, we relax the approximation of negligible
in-plane magnetic fields and construct a 2D iterative procedure
to correct the Bz maps.

6. In-plane field effect correction

The equation used to convert the light intensity values into
magnetic induction field (z component) ones is the inverse
of (3.5):

Bz = (BA + Bxy) tan arcsin

[
1

CMS

(
arccos

√
I − I0

IMAX
− θ

)]
.

(6.1)

This equation can be rewritten as

Bz =
(

1 +
Bxy

BA

)
Bz|o (6.2)

where Bz|o is the equation obtained neglecting the Bxy

contribution [6]. This relation holds locally: to correct
the magnetic induction maps, we have to know the local

values of Bxy =
√

(B · ˆ̇ı)2 + (B · ĵ)2. If the externally applied
magnetic field is strictly directed along the z direction, the
magnetic induction components parallel to the indicator plane
are generated only by the electrical current flowing inside
the superconductor. Equations (4.3) and (4.4) can be used
to obtain these magnetic field components, but they require
knowledge about the electrical current distribution along
the z direction. We suppose that Jz is much lower than the
in-plane components (as expected for the geometry of the
investigated sample) and, as before, that the electrical current
distribution is regarded as thickness averaged (z independent).
We use the result of the inversion as the approximation of
the real current density distribution to calculate the in-plane
magnetic field components numerically by means of equations
(4.3) and (4.4). The correction of the Bz maps follows, in a
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Figure 12. Comparison between two profiles of Bz, before and after
the in-plane field correction, along the line displayed in figure 9(c).

straightforward manner, from equation (6.2). This process
can be iteratively repeated until the convergence is reached,
following the scheme

B(n)
z (x, y, h)

(Biot–Savart inversion)→ {
J (n)

x (x, y), J (n)
y (x, y)

}
equations (4.3) and (4.4)→ {

B(n)
x (x, y, h), B(n)

y (x, y, h)
}

equation (6.2)→ B(n+1)
z (x, y, h).

The comparison between the magnetic induction values after
and before the in-plane field correction is presented in
figure 12. The difference of the Bz values inside the sample
is remarkable: higher electrical current density results in
larger contribution from the in-plane magnetic field. As
shown in figure 13(a), the light shadow outside the sample
has disappeared, i.e. now the current density vanishes outside
the superconductor, in agreement with [6]. The profiles of
current density modulus, during the correction process, are
visible in figure 13(b). The complete series of profiles, i.e. at
different external fields, are presented in figure 13(c).

7. Discussion

The remarkable difference between the first inversion result
and the corrected one is due to the calibration procedure:
the in-plane field generated by the supercurrents into the
sample locally interacts with the indicator magnetic moments
(see equation (3.2)), this effect is seen as a Faraday rotation
reduction. So, if we convert the light intensity maps into
Bz data, disregarding the in-plane field contribution, we
underestimate locally the perpendicular magnetic induction
component and, thus, the data contain a spurious magnetic field
modulation. Because of the investigated sample geometry, the
supercurrents induce locally an in-plane magnetic field, but
their relation with the out-of-plane component is non-local
[17]. Then, the spurious modulation corresponds to a fictitious
current density distribution located inside the sample (where
it is superimposed to the real one) and outside too.

The comparison between the series of profiles at different
applied fields, figures 11 and 13(c), demonstrates that the
correction depends only on the current density magnitude.
After the correction, the edges of the sample overlap, careless
of the applied magnetic field. Outside the sample, the residual
signal is due to defects belonging to the indicator film (surface
or bulk cracks, in-plane magnetic domain structures).
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Figure 13. Result of the iterative procedure for the in-plane field
effect correction. (a) Electrical current density modulus distribution
from the same MO image of figure 10(c). Outside the sample, the
values of current density are strongly reduced and the spurious
signal is due to the imperfections of the indicator film. (b) Iteration
result for the current density modulus. For the sake of readability,
only the right part of the profiles is displayed. (c) Series of current
density modulus profiles traced along the same line of the profiles of
figure 11.

The main difference concerns the shape of the current
density profile inside the sample, dependent on the space
coordinates, hence of the local magnetic induction. The
behaviour drastically changes with the correction: from
monotonically increasing towards the edges with positive
curvature to an almost constant, Bean-like, current density
value, see figure 13(b).

It turns out, in our experiment, that the in-plane field
exceeds locally the 40% of BA (over the sample region), namely
this was roughly the previous error on the magnetic induction
estimation inside the superconducting film. The error on the
current density distribution is even more drastic, because it
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Figure 14. Profile of the electrical current density ( y component) at
T = 5 K and µ0Hext = 46.2 mT. In the critical state neither the
Bean-like nor the Kim-like trend takes into account the observed
small slope of the critical current (decreasing with local magnetic
field), but in the Meissner zone a simple equation (7.1) describes
very well the experimentally determined values of the current
density. The solid curve is calculated with the parameter values
show in the graph.

depends on the current density flow pattern, i.e. both on local
(structural) and on non-local (geometrical) properties.

To make a first comparison between the corrected current
density distribution with simple theoretical models, a set of line
profiles was traced along the middle section of the magnetic
flux diffusion front. In this way, the Lorenz forces generated
by the electrical current flowing in opposite quadrants annul
each other and the electrodynamic fields can be approximated
by the strip geometry [18]. In particular, the Meissner current
is simply described by

JM(x) = 2JC

π
arctan

x

a

√(
a2 − x2

p

)
√(

x2
p − x2

) (7.1)

where JC is the current density value at the flux front edge, a
is the half-width of the square (strip) and xp is the penetration
depth of the vortices inside the superconductor. For a given
profile we take the average value of JC, xp and a between the
two flux fronts. The straight calculus of equation (7.1) and the
corresponding experimental profile are shown in figure 14.
The agreement is quite satisfying, if we consider that the
investigated sample geometry is not so regular. The critical
state profile, i.e. the region of higher current density, seems
to be almost constant. The little discrepancies with the
Bean critical state model [19] come mainly from the sample
transverse geometry [20] and they will be discussed in detail
in a future work. Now, we note that without the correction
the actual critical current density cannot be deduced, since the
value at the edge is over 200% of that at the Meissner zone
boundary.

8. Conclusion

We demonstrated the importance of the in-plane field effect
for the quantitative MO analysis of thin flat superconducting
samples. We presented a 2D iterative algorithm which
corrects the MO data and reconstructs the current density
distribution inside the sample and the full magnetic induction
distribution over the superconductor. The new procedure
allows evaluating, without artefacts, the local values of the
electrical current density that contains essential information
about the pinning mechanisms.
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