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Abstract
Methodological advances in multiple scattering theory (MST) in both wave and Green’s
function versions are reported for the calculation of electronic ground and excited state
properties of condensed matter systems with an emphasis on core-level photoemission and
absorption spectra. Full-potential MST is reviewed and extended to non-local potentials.
Multichannel MST is reformulated in terms of the multichannel density matrix whereby
strong electron correlation of atomic multiplet type can be accounted for in both ground and
excited states.

1. Introduction

Electron spectroscopies using synchrotron radiation are
playing an increasingly important role for the in-depth
investigation of structural and electronic properties of matter.
For example, resonant x-ray scattering, in the elastic or
inelastic mode, is rapidly becoming the crucial technique for
understanding the subtleties of the microscopic mechanism
relating to magnetic and electronic (orbital) degrees of
freedom in strongly correlated systems and for studying their
low-energy excitations. X-ray absorption and natural circular
dichroism are used to access structural and electronic details
in many systems of interest in material science, including
molecular and organic materials of interest in biophysics
(e.g. proteins), while magnetic circular and linear dichroism
are able to carry information on the magnetic properties
of many systems, from the traditional ones (for which the
information is complementary to that derived by neutrons) to
the newly developed materials such as nano-structures, thin
films and multilayers, where the use of synchrotron radiation

is essential to obtain the desired information. In this context a
successful theoretical interpretation of these spectroscopies is
of paramount importance for extracting the rich electronic and
structural information contained in the experimental spectra.

Moreover, significant progress into the preparation,
characterization and industrial exploitation of new magnetic
materials based on transition metals and/or rare earths has
spurred new research. As a consequence, we have witnessed
the explosion of the nano-revolution aimed at developing
new technologies, devices and synthesis routes. At present,
many research groups working in both basic and applied
research move their interest to the new nano-science and
nanotechnology fields. Now, the change in the size scale
of the new materials implies both the modification of their
properties and the appearance of new physical phenomena,
since in these systems correlation effects are most pronounced
due to their reduced dimensionality. Another field where
correlation effects are important for the same reasons is
surface science, which encompasses the important field
of catalysis. Therefore, a satisfactory description of the
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electronic correlations, both in the ground and in the excited
states probed by x-rays in Synchrotron Radiation (SR)
spectroscopy, is one of the major challenges in condensed
matter physics.

The purpose of this paper is to present a theoretical
framework, based on multiple scattering theory (MST), able
to provide a unified description of the electronic ground state
as well as the excited states of a physical system, taking
into account correlation effects, at least at a local level,
beyond what can be reached in a description based on density
functional theory (DFT). The key ingredient in this approach
is the knowledge of the Green’s function (GF) which provides
information on both the ground state and the excited ones.
Needless to say, the knowledge of the properties of the ground
state is of paramount importance in the interpretation of the
excited states as observed in SR spectroscopy.

At its most basic, multiple scattering theory is a
technique for solving a linear partial differential equation
(or a system thereof) over a region of space with certain
boundary conditions. It is implemented by dividing the space
into non-overlapping domains (cells), solving the differential
equation separately in each of the cells and then assembling
together the partial solutions into a global solution that is
continuous and smooth across the whole region and satisfies
the given boundary conditions.

As such MST has been applied to the solution of many
problems drawn from classic as well as quantum physics,
ranging from the study of membranes and electromagnetism
to the quantum-mechanical wave equation. In quantum
mechanics it has been widely used to solve the Schrödinger
equation (or the associated Lippmann–Schwinger equation)
for both scattering and bound states.

One of the early applications of the theory, from
which the name was derived, was in nuclear theory for
the calculation of the scattering cross-section of a neutron
impinging onto an atomic nucleus composed of many
nucleons. The idea was based on imagining the nucleons
frozen at certain positions in space, calculating the successive
scatterings of the incoming particle from this configuration
(whence the name multiple scattering) and then performing
the average over all space configurations with a probability
distribution based on the nuclear wavefunction. This is very
similar to a photoemission (PE) process in matter. Instead of
coming from a source external to the system, the impinging
particle (the electron in this case) is generated internally and in
its way out of the system is scattered by the atoms constituting
the sample, which are at fixed positions in space.

The transition from this non-stationary process to a
stationary one, as needed for the calculation of bound states
in a solid, was a straightforward step. The theory indeed
was soon proposed by Korringa and by Kohn and Rostoker
(KKR) as a convenient method for calculating the electronic
structure of solids [1, 2] and was later extended to polyatomic
molecules by Slater and Johnson [3].

A characteristic feature of the method is the complete
separation between the potential aspect of the material under
study, embodied in the cell scattering power, from the
structural aspect of the problem, reflecting the geometrical
position of the atoms in space.

Applications of the KKR method were first made within
the so-called muffin-tin approximation for the potential. In
this approximation the potential is confined within non-
overlapping spheres, where it is spherically symmetrized, and
takes a constant value in the interstitial region. Despite this
approximation the method was complicated and demanding
from a numerical point of view and as a band-structure
method was therefore superseded by more efficient linearized
methods, such as the linearized muffin-tin-orbital method
(LMTO) [4] and the linearized augmented-plane-wave
method (LAPW) [5].

Full-potential versions of these band methods have also
been introduced in recent years. However, none of these
methods can match the power and versatility of a full-potential
method based on the formalism of MST, either in terms of
providing a complete solution of the Schrödinger equation or
in the range of problems that could be treated. In particular,
none of these methods leads easily to the construction of the
Green’s function which is invaluable in the study of a number
of properties of many physical systems. Moreover, the same
GF can be used to calculate spectroscopic response functions,
since it includes the information on excited state as well, as
anticipated above.

For these reasons, in the last two decades, the KKR
method has experienced a revival in the framework of the
Green’s function method (KKR-GF). Indeed, due to the
introduction of the complex energy integration, it was found
that the method is well suited for ground state calculations,
with an efficiency comparable to typical diagonalization
methods. A host of problems became in this way tractable,
ranging from solids with reduced symmetry (e.g. isolated
impurities in ordered crystals, surfaces, interfaces, layered
systems, etc) to randomly disordered alloys in the coherent
potential approximation. A very recent comprehensive review
on the KKR-GF is contained in [6].

At the same time, it soon became clear that the
muffin-tin approximation was not adequate for the treatment
of systems with reduced symmetry or for the calculation
of lattice forces and relaxation. In order to deal with these
problems a number of groups developed a full-potential
KKR-GF method, obtaining very good results, comparable
with the full-potential LAPW method, as concerns total
energy calculations, lattice forces and relaxation around an
impurity ([7–11] and references therein).

Instead, applications to states well above the Fermi
energy, as required in the simulations of x-ray spectroscopies,
such as absorption, photoemission, anomalous scattering,
etc, have been scarce and proceeded slowly. In the words
of [12], ‘the feeling that one should calculate the “near-field
corrections”, coupled with the need to solve a fairly
complicated system of coupled differential equation to
determine the local (cell) solutions (based on the phase
function method) has contributed greatly to the slow
development of a Full-Potential method based on MST’. It
was only after it was realized that near-field corrections are not
necessary and a new method to generate local solutions was
found that progress became faster, at least in the calculation
of the electronic structure of solids.
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For all the above reasons full-potential codes based on
MST for the calculation of x-ray spectroscopies are not
very numerous. We mention here the work by Huhne and
Ebert [13] on the calculation of x-ray absorption spectra
using the full-potential spin-polarized relativistic MST and
that of Ankudinov and Rehr [14] in the scalar relativistic
approximation.

Very recently we have developed a derivation of a
real space full-potential multiple scattering theory, both
for continuum and bound states, that is free from the
drawbacks that up to now have impaired its development (in
particular the need to use cell shape functions and rectangular
matrices), under conditions for space-partitioning that are not
excessively restrictive and easily implemented [15–17]. This
approach provides a straightforward extension of MST in the
muffin-tin approximation, with only one truncation parameter
given by the classical relation lmax = kRb, where k is the
electron wavevector (either in the excited or ground state
of the system under consideration) and Rb the radius of the
bounding sphere of the scattering cell. It was also shown that
the theory converges absolutely in the lmax →∞ limit. As a
consequence the method provides a firm ground to the use of
full-potential MST as a viable method for electronic structure
calculations and makes possible the computation of x-ray
spectroscopies, notably photo-electron diffraction, absorption
and anomalous scattering among others, with the ease and
versatility of the corresponding muffin-tin theory.

This development was essential for establishing the
limitations of the effective quasi-particle description of x-ray
spectroscopy based on a complex optical potential [18].
Due to the fact that now the single-particle Schrödinger
equation is solved exactly (within some numerical precision)
without approximation for the geometrical shape of the
potential, it becomes possible to test the performance of a
particular optical potential to describe the average effects of
the so-called neglected channels, that is to say the effect of
all the inelastic events that accompany the photoemission
(photoabsorption) process.

On the other hand, in the calculation of the ground
state properties in the framework of the DFT approach, the
possibility of an exact solution of the Kohn and Sham [19]
orbitals has allowed us to test the reliability of the starting
density functional. In this way it was found that DFT, although
based on the exact ground state theorem of Hohenberg and
Kohn [20], in practice describes electronic correlations in
an average way, due to the fact that the exact form of the
associated functional is unknown (henceforth, when talking
about DFT, we shall mean the practical implementations of
the theory (i.e. local (spin) density approximation (L(S)DA)
or generalized gradient approximation (GGA)) [21]). A well
known case of failure of DFT is in the description of the
electronic properties of transition metal compounds. Their
physics is strongly related to the particular nature of their
3d valence states. On the one hand the 3d states are partly
localized and thus retain some electron correlation effects
of the free atom, e.g. Hund’s rule coupling responsible
for the formation of magnetic moments. On the other
hand they are considerably hybridized (i.e. delocalized) and

thus strongly participate in solid state phenomena such
as bonding, electronic transport and magnetic ordering.
The failure of DFT to predict properties of the ground
states in these materials reflects itself in the corresponding
failure of effective independent particle theories (i.e. in
the framework of an optical potential) in the description
of x-ray spectroscopies. The case of the non-statistical
branching ratio of the L2,3 edges in these materials is
paradigmatic [22]. We know however that an approach based
on atomic multiplet theory works [23]. This is a configuration
interaction method and thus accounts well for (local) electron
correlation effects. Solid state effects are treated by adding
to the atomic Hamiltonian either an effective crystal field or
the hybridization with a few near-neighbor ligand orbitals,
in which case one arrives at the charge transfer cluster
model. The atomic multiplet and charge transfer cluster model
approaches have been extremely successful in describing
and understanding the XAS and related spectroscopies of
transition metal compounds [23]. However, all extra-atomic
terms (crystal field and hybridization) are usually introduced
through empirical parameters, which limits considerably
the predictive power of this scheme. Even though cluster
calculations for L2,3 edge XAS of transition metal oxides
using a full ab initio quantum chemistry method have obtained
good agreement with experiments without introducing any
empirical parameters [24], it is clear that quantum chemistry
methods are limited to very small systems. Consequently
long range effects, which are especially important in metallic
and covalently bonded systems (periodic and non-periodic),
cannot be handled in this framework.

As a general consideration, whenever local electronic
correlations are important, be it the case of extended systems,
systems of reduced dimensionality, surfaces, etc, a theoretical
scheme able to encompass both aspects of space extension
and electronic interaction is highly needed. A step forward
toward this goal in the framework of MST for the description
of excited states was provided by Natoli et al [25] and
is known as multichannel multiple scattering theory. It
is a generalization of the multiple scattering method to
correlated N-electron wavefunctions in the framework of the
configuration interaction method. In this scheme the atoms
become dynamical entities that can exchange energy with an
incoming electron (be it a test electron or a photo-electron in
a photoemission and absorption experiment) in such a way
that in each collision the total energy of the projectile and the
target is conserved: while the atom jumps between its possible
quantum states the electron loses or gains energy accordingly,
changing its kinetic energy from one scattering event to
the next. The various possible quantum atomic excitations
can be identified with the local atomic multiplets and are
called channels, so that to each channel there corresponds
a particular propagation wavevector of the electron. This
situation is very similar to an electron–molecule collision
described by quantum molecular dynamics, where the same
terminology is employed [26]. The amplitude probability
for changing channel in a collision process is described
by the interchannel atomic T-matrix, which is the natural
generalization of the atomic t-matrix of the usual MST, in
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which the atom is described by a static potential. Indeed
the multichannel MST turns out to be a straightforward
generalization of the usual MST: it is sufficient to add a
channel index to the atomic T-matrix and take into account
that in the free propagation from one atom to the next the
wavevector of the electron does not change; in other words,
the free propagation is diagonal in the channel index. For
more details the reader is referred to [25]. Krüger and Natoli
reformulated the theory, providing its first implementation
for the description of the L2,3-edge absorption spectra using
a particle–hole wavefunction [27] and obtaining very good
agreement with experiments.

In the present paper we intend to show that the
multichannel approach can be used to introduce local
correlations not only in the excited states to calculate
spectroscopic response functions but also in the ground state
wavefunction, using the analyticity of the corresponding
Green’s function. In so doing we shall be confronted with
the necessity of introducing non-local potentials. Even though
in DFT the ground state energy is a functional of only
the local density, so that a local effective potential is
obtained by a functional differentiation of the energy with
respect to the density, our ignorance about the form of
this functional compels us to use approximate expressions,
including non-local quantities such as the one-particle density
matrix, in order to obtain accurate representations of the
exchange energy (cf the use of Hartree–Fock–Kohn–Sham
orbitals in [21], section 8.4). However, in the practical
implementation of the theory and in a trade-off of accuracy for
simplicity, the use of approximate local potentials is preferred,
since this is very convenient for numerical calculations, as in
L(S)DA.

Moreover in section 3 below a simple estimate of the
range of non-locality of the one-particle density matrix based
on the known analytic form for a free electron gas provides
a range between 3 and 10 au for valence states, showing
that the local approximation might be rather crude. The local
approximation is indeed the main source of error in L(S)DA
calculations of the correlation energy (see e.g. section 8.7
of [21] and references therein). The generalized gradient
approximation by Perdew and Yue, introducing a non-locality
correction still in the framework of a local potential, improves
this situation considerably. However, its performance has
not been studied in strongly correlated extended systems,
the properties of which we intend to address in this paper,
especially in the case of almost filled bands of 3d or 4f
character. Moreover, since the exchange energy is between
one and two orders of magnitude higher than the correlation
energy, even a small error in the first might be comparable
with a substantial fraction of the latter.

In the present paper, our goal is the formulation of
a quasi-particle- or many-particle-theory that allows the
calculation of both ground and excited state properties
such as probed in electron spectroscopies. Therefore, in
the calculation of ground state properties, we prefer not to
approximate the exchange energy and to work with non-local
potentials in the framework of MST, by analogy with the
Hartree–Fock–Kohn–Sham method of DFT, which provides

an exact functional form for the exchange [21]. For excited
states, non-local potentials are a necessary means both to
describe quantum-mechanical exchange and to represent all
the degrees of freedom eliminated in the reduction process of
the quasi-particle formulation. In this way it is hoped to go
beyond DF theory in the description of the physical properties
of correlated systems in their ground state and to improve our
ability to analyze their SR spectroscopies.

Section 2 presents a new derivation of the solution of the
Lippmann–Schwinger equation in the framework of MST for
non-local potentials, suitable for a straightforward extension
to the multichannel case. Section 2.1 gives the derivation
for scattering states, while section 2.2 calculates the Green
function and illustrates how it can be used to calculate both the
properties of the ground state and the spectroscopic response
functions related to excited states. Finally section 3 extends
the theory to the multichannel case, illustrates the reduction to
the single channel case, calculates the relevant spectroscopic
response functions for photoemission and photoabsorption
and introduces the multichannel GF as a key ingredient for
performing ground state self-consistent calculations taking
into account local electronic correlations. To this purpose
a generalization of the usual Kohn–Sham implementation
of DFT is given in the case where many configurations
are present in the ground state wavefunction. Section 4
summarizes the results.

2. Multiple scattering method for scattering and
bound states: quasi-particle approach

In this section we assume that we have already reduced
the excitation problem to an effective independent particle
problem via the knowledge of an effective optical potential
V(r; r′) which is in general non-local. The reduction
process will be sketched in section 3. Throughout the
paper we shall use real spherical harmonics and shall
put for short JL(r; k) ≡ jl(kr)YL(r̂), NL(r; k) ≡ nl(kr)YL(r̂)
and H̃+L (r; k) ≡ −ikh+l (kr)YL(r̂), where jl, nl, hl denote
respectively spherical Bessel, Neumann and Hankel functions
of order l and L stands for l,m.

2.1. Scattering states

In the quasi-particle approach, we need to solve the
Schrödinger equation (in Rydberg units)

(∇2
+ E)ψ(r;k)−

∫
V(r; r′)ψ(r′;k) d3r′ = 0 (1)

supplemented by the outgoing boundary conditions

ψ(r;k) ' eik·r
+ f (r̂;k)

eikr

r
(2)

where k =
√

E is the photo-electron wavevector and f (r̂;k)
is the scattering amplitude. We have omitted for simplicity

an overall factor (k/(16π3))
1
2 which takes into account the

normalization of the scattering states to one state per Ryd.
We assume that V(r; r′) is a most general optical potential,
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i.e. it may be non-local, complex and energy dependent. Its
non-local part may be long range, in the sense that it extends
well beyond nearest neighbors, although decaying not slower
than 1/r2 with r = |r−r′|, which is the behavior of the density
matrix in a free electron gas [21].

By introducing the free electron Green function, the
solution of the equation

(∇2
+ E)G+0 (r− r′;E) = δ(r− r′) (3)

we can transform the differential equation (1) with the
boundary condition (2) into an integral equation, known as the
Lippmann–Schwinger equation, easier to solve and of more
transparent physical interpretation. This equation describes
the response of the system, described by the potential V(r; r′),
to an exciting plane wave eik·r and is given by

ψ(r;k) = eik·r
+

∫
G+0 (r− r′;E)V(r′; r′′)

× ψ(r′′;k) d3r′ d3r′′. (4)

By applying the operator (∇2
+E) to the left-hand side, taking

into account equation (3) and that (∇2
+ E)eik·r

= 0, we
easily find that the solution (4) obeys equation (1). As for
the boundary conditions, we use the fact that the solution of
equation (3) is given at large r by

G+0 (r− r′;E) = −
1

4π
eik|r−r′|

|r− r′|

≈
eikr(1−r·r′/r2)

r
(r→∞) (5)

which, when inserted in (4), provides an explicit expression
for the scattering amplitude f (r̂;k). Its modulus squared is
the cross-section of an impinging electronic plane wave onto
the scattering potential. Due to the expansions [25]

eik·r
= 4π

∑
L

ilYL(k̂)JL(r; k) (6)

G+0 (r− r′;E) =
∑

L

JL(r; k)H̃+L (r
′
; k) (r < r′) (7)

=

∑
L

JL(r′; k)H̃+L (r; k) (r > r′) (8)

and the linearity of equation (4), we can write the
corresponding solution as

ψ(r;k) =
∑

L

AL(k)ψL(r; k) (9)

where AL = 4π ilYL(k̂) and ψL(r; k) is the wavefunction in
response to an exciting wave with angular momentum (AM)
L, satisfying the equation

ψL(r; k) = JL(r; k)+
∫

G+0 (r− r′; k)V(r′; r′′)

× ψL(r′′; k) d3r′ d3r′′. (10)

Remembering the relations (6)–(8), we see that at great
distances

ψL(r; k) = JL(r; k)+
∑

L′
H̃+L′(r; k)

×

∫
JL′(r

′
; k)V(r′; r′′)ψL(r′′; k) d3r′ d3r′′

= JL(r; k)+
∑

L′
H̃+L′(r; k)TL′L (11)

where we have defined TL′L as

TL′L =

∫
JL′(r; k)V(r; r

′)ψL(r′;k) d3r d3r′. (12)

The quantity TL′L = TLL′ is known as the T-matrix of
the potential and measures the scattering response to an
incident wave of angular momentum L into one with angular
momentum L′.

In MST we now partition the space in terms of
non-overlapping space-filling cells �j with surfaces Sj and
origins at Rj and introduce local variables rj = r − Rj. The
partition is assumed to satisfy the requirement that the shortest
inter-cell vector Rij = Ri−Rj joining the origins of the nearest
neighbor cells i and j is larger than any intra-cell vector ri or
rj, when r is inside cell i or cell j. If necessary, empty cells can
be introduced to satisfy this requirement. We also assume that
there exists a finite neighborhood around the origin of each
cell lying in the domain of the cell [28].

Accordingly, we split the potential V as V̄ + 1V , where
V̄(r; r′) is different from zero only for r, r′ inside the same
cell. V̄ is partitioned into cell potentials, such that V̄(r; r′) =∑

jv̄j(rj; r′j), where v̄j(rj; r′j) takes the value of V̄(r; r′) for
r, r′ inside cell j and vanishes elsewhere. In the following
we disregard the part 1V of the non-local potential extending
beyond the cell, which will be included in a second step.

We introduce as well local scattering solutions of the form
of equation (10), but referred to the center Rj of cell �j and
relative to the potential v̄j(rj)

ψ̄L(rj; k) = JL(rj; k)

+

∫
�j

G+0 (rj − r′j; k)v̄j(r′j; r
′′
j )ψ̄L(r′′j ; k) d3r′j d3r′′j (13)

so that the global solution ψ(r;k) in (4) can be represented
locally in each cell �j by the expression [28]

ψ̄(rj;k) =
∑

L

C̄j
L(k)ψ̄L(rj; k). (14)

The coefficients C̄j
L(k) are to be determined by the condition

that the global solution be smoothly continuous at the
common boundaries of contiguous cells.

A simple way to obtain this condition is to rewrite
equation (4) referred to a particular center Ri, so that we have

ψ̄(ri;k) = eik·rieik·Ri

+

∫
�i

G+0 (ri − r′i; k)v̄i(r′i; r
′′
i )ψ̄(r

′′
i ; k) d3r′i d3r′′i

+

∑
j6=i

∫
�j

G+0 (rj − r′j; k)v̄j(r′j; r
′′
j )

× ψ̄(r′′j ; k) d3r′j d3r′′j . (15)

5
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By using the local representation (14) and equation (13) we
find∑

L

C̄i
L(k)JL(ri; k) = eik·rieik·Ri

+

∑
j6=i

∫
�j

G+0 (rj − r′j; k)v̄j(r′j; r
′′
j )

×

∑
L

C̄j
L(k)ψ̄L(r′′j ; k) d3r′j d3r′′j .

(16)

The derivation now proceeds along the lines of traditional
MST [28, 12, 15]. We take ri in the neighborhood of the origin
of cell �i and use the two center re-expansion of the free
GF [25]

G+0 (r− r′; k) =
∑
LL′

JL(ri; k)G
ij
LL′JL′(rj; k) (17)

which converges absolutely and uniformly in both cells
provided Rij > ri + rj. This is a condition satisfied for
muffin-tin cells, but not in general for space-filling cells.
In [16, 17] it is shown that a rigorous derivation of the MS
equations can be achieved by assuming the weaker condition
Rij > max(ri, rj), separately for each pair of cells, a relation
assured by the conditions assumed above for the partition of
the space. Since we can take ri arbitrarily near to the origin
of cell i, the absolute convergence of the expansion (17) is
always assured. In equation (17) Gij

LL′ are the free electron
propagator in the site and angular momentum basis (KKR real
space structure factors) given by

Gij
LL′ = 4π

∑
L′′

C(L,L′;L′′)il−l′+l′′H̃+L′′(Rij; k) (18)

where

C(L,L′;L′′) =
∫

YL(�)YL′(�)YL′′(�) d�. (19)

Projecting equation (16) onto the spherical harmonics (SH)
YL(r̂), eliminating the common factor jl(kri) and remembering
the definition (12) for the cell T̄ j-matrix relative to the
potential V̄ , we find the following algebraic equations for the
coefficients C̄i

L(k):

C̄i
L(k) = Ii

L(k)+
∑
j6=i

∑
L′L′′

Gij
LL′ T̄

j
L′L′′ C̄

j
L′′(k) (20)

where

Ii
L(k) =

√
k

π
ilYL(k̂)eik·Ri . (21)

Notice that in the last expression we have reinserted the factor

(k/(16π3))
1
2 necessary to normalize the scattering states to

one state per Ryd, which had been omitted for simplicity
in equation (2). These relations describe the propagation
of the site and angular momentum amplitudes Ci

L(k) from
one site to another analogous to that described by the
Lippmann–Schwinger equation (4) for the point amplitudes
ψ(r;k), except that now the scattering power of the potential
at point r is replaced by the corresponding scattering strength

T j
LL′ of the cell at site j. They can be viewed as a Dyson

equation for the expansion coefficients Ci
L(k).

Reference [17] gives a new scheme to calculate the
scattering amplitudes T j

LL′ in the case of a local potential,
based on a method to generate local basis functions for
truncated potential cells that is simple, fast, efficient, valid for
any shape of the cell and does not make use of cell shape
functions expanded in spherical harmonics, reducing in this
way to the minimum their number in the expansion of the
scattering wavefunction. Such a method has overcome the
major stumbling block for the development of a full-potential
MS theory. For a non-local potential the solution can be
found along the same lines as for the Hartree–Fock equations
by an iterative procedure starting from the local solution. If
necessary, a local exchange can be added and subtracted in
order to make the iterative procedure converge faster. It is
interesting to note that the non-locality of the potential V̄
does not affect the intuitive interpretation of MST, since in the
Dyson equation (20) only the physical scattering amplitudes
of the various cells intervene.

In MST it is expedient to work with other amplitudes
B̄j

L(k) such that

B̄j
L(k) =

∑
L′

T̄ j
LL′C̄

j
L′(k) (22)

by expanding locally the scattering function in terms of new
basis functions given by

8̄L(rj; k) =
∑

L′
[T j
]
−1
L′Lψ̄L′(rj; k) (23)

so that now

ψ̄(rj;k) =
∑

L

B̄j
L(k)8̄L(rj; k). (24)

On the basis of equation (20), the new MS equation are easily
seen to be∑

L′
(T̄ i)−1

LL′ B̄
i
L′(k)−

j6=i∑
j,L′

Gij
LL′ B̄

j
L′(k) = Ii

L(k) (25)

from which we derive the solution

B̄i
L(k) =

∑
jL′
τ

ij
LL′ I

j
L′(k) =

√
k

π

∑
jL′
τ

ij
LL′ i

l′YL′(k̂)e
ik·Ri (26)

in terms of the scattering path operator τ, the inverse of the
MS matrix (T̄−1

−G)

τ = (T̄−1
−G)−1. (27)

As usual, we have introduced matrices labeled by the site and
angular momentum indices. Equations (26) and (25) show
that the quantities Bi

L(k) are scattering amplitudes, which
in the case of real potentials satisfy the generalized optical
theorem [29, 25]∫

dk̂ B̄i
L(k)[B̄

j
L′(k)]

∗
= −

1
π

Imτ ij
LL′ . (28)

This relation is very important, since it establishes the con-
nection between the photoemission and the photoabsorption

6
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cross-section [17]. Moreover, −Imτ ii
LL is proportional to the

L-projected density of states onto site i. All this is obviously
valid for a non-local potential with support only inside each
cell.

The solution for the whole potential V , including the
non-local long range part 1V , can now be found in the
following way. Writing in equation (10) |ψL〉 = |ψ̄L〉+|1ψL〉

we have, in operator form,

|ψ̄L〉 + |1ψL〉 = |JL〉 + G+0 (V̄ +1V)(|ψ̄L〉 + |1ψL〉) (29)

where |ψ̄L〉 = |JL〉+G+0 V̄|ψ̄L〉 is the solution of equation (10)
already found in terms of MST. Therefore |1ψL〉 obeys the
following equation:

|1ψL〉 = G+0 V̄|1ψL〉 + G+0 1V|ψ̄L〉 + G+0 1V|1ψL〉. (30)

Neglecting for the moment the last term in this equation we
have

|1ψL〉 = G+0 V̄|1ψL〉 + G+0 1V|ψ̄L〉. (31)

This is an equation similar to (10) with a kernel G+0 V̄ and
an inhomogeneous term given by G+0 1V|ψ̄L〉. Projecting the
solution onto cell �i, noticing that 1V is zero inside �i by
definition and remembering equation (17), this term takes the
form ∑

L

JL(ri)K
i
L(k) (32)

where, indicating by S the whole space,

Ki
L(k) =

∑
jL′

Gij
LL′

∫
S−�i

JL′(rj)1V(rj; r′)ψ̄L(r′) d3rj d3r′.

(33)

Notice that a convergence problem might arise for cells �j,
nearest neighbors of cell �i, where, for points near the cell
boundaries, ri + rj might be greater than Rij. The way to
bypass this difficulty is to use the displaced cell approach (see,
for example, section 6.5.3 of [12] and appendix G of [17]),
whereby one can write∑

L

JL(ri)K
i
L(k) ≡

∑
j3

{∑
LL′

JL3(b)JL(ri)G3L′(Rij + b)

×

∫
S−�i

JL′(rj)1V(rj; r′)ψ̄L(r′) d3rj d3r′
}

(34)

obtaining a convergent result, provided |Rij + b| > Rb
i +

Rb
j (where again Rb

i is the bounding sphere of cell �i)
and the sums inside the curly brackets are performed first.
Equation (34) can serve as a definition for Ki

L(k) by projection
onto the complete set of functions JL(ri). Here JLL′(b) is the
usual translation operator in MST as defined in [12]. Notice
that the vector b depends only on the geometry of the partition
of the space in cells and is independent of L. Equation (34)
reduces to equation (33) at points for which ri + rj < Rij.

With this proviso we can expand |1ψL〉 in terms of the
same basis functions as for |ψ̄L〉. Following the same lines as
the solution illustrated above, the new scattering amplitudes

Bi
L(k) that include the correction introduced by 1V are given

by

Bi
L(k) =

∑
jL′
τ

ij
LL′(I

j
L′(k)+ Kj

L′(k))

=

√
k

π

∑
jL′
τ

ij
LL′(i

l′YL′(k̂)e
ik·Ri + Kj

L′(k)). (35)

Now, in order to take into account the last neglected term
in (30) we use this expression for Bi

L(k) in place of the
old amplitudes (26) to calculate ψ̄L(r′) in (33) and iterate
this procedure until self-consistence. This procedure should
converge if the perturbation 1V is ‘small’ enough, i.e. if the
trace of Tr(G−0 1V†G+0 1V) < 1 for energies E not on the real
axis.

Expression (35) can be used to calculate the response
functions for core spectroscopies. But in this case the presence
of the extra term Kj

L′(k) invalidates the generalized optical
theorem so that to calculate absorption spectra it is preferable
to use the expression for the complete GF, which is calculated
in the next section 2.2. Here we also give an alternative
method to calculate |ψL〉 in terms of the Green’s function for
the potential V̄ .

2.2. Green’s function

As already anticipated in section 1, one of the major
advantages of MST is the direct access to the Green’s
function of the system. Having an explicit expression for
this quantity is of the utmost importance both for writing
down spectroscopic response functions (see [18]) and for
the calculation of ground state properties through contour
integration in the complex energy plane (see e.g. [10] and
references therein).

The GF is a solution of the Schrödinger equation with a
source term

(∇2
+ E)G±(r, r′;E)

−

∫
d3r′′ V(r, r′′)G±(r′′, r′;E) = δ(r− r′). (36)

It is known that a formal solution of this equation is given
by

G±(r, r′;E) =
∑

n

ψ?n (r)ψn(r′)
E − En ± iη

(37)

where the sum runs over all eigenfunctions ψn, whether
discrete or continuous, of the associated Schrödinger
equation (1). Henceforth, we shall omit the indication of the
analyticity behavior, unless necessary. From this expression it
is clear that in the complex energy plane

1
2π

∮
C

G(r, r;E) dE =
∑
n∈C

|ψn(r)|2 (38)

where now the sum runs over the states with energy inside
the contour C. Moreover, the density of states can be found
simply as

−
1
π

Im
∫

d3r G+(r, r;E) =
∑

n
δ(E − En). (39)

7
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As for the wavefunction, we observe that equa-
tion (36) can be transformed into the corresponding
Lippmann–Schwinger equation

G(r, r′;E) = G0(r− r′;E)

+

∫
G0(r− r1;E)V(r1; r2)G(r2, r′;E) d3r1 d3r2. (40)

Following the partition of the potential V = V̄ + 1V
introduced in the previous section, we first solve for V̄
in the framework of MST. The solution corresponding to
equation (40) for this potential can be found by the procedure
used by Zeller [30]. The result is

Ḡ(ri, r′j;E) =
∑
LL′
ψ̄L(ri)[(I−GT̄)−1G]ijLL′ψ̄L′(r

′
j)

+ δij

∑
L

ψ̄L(r<)9L(r>) (41)

where r< (r>) indicates the lesser (the greater) of ri and r′i.
The function 9L′(r) is the irregular solution in cell i that
matches smoothly to H̃+L′(r) at Ri

b.
The solution G for the entire potential is then seen to

satisfy the equation

G = Ḡ+ Ḡ1VG = Ḡ+ G1VḠ (42)

remembering that by definition (1 + E − V̄)Ḡ = I, and can
be obtained by iteration if again Tr(Ḡ−1V†Ḡ+1V) < 1. The
first few iterations should be sufficient.

We notice, en passant, that |ψ〉, the wavefunction obeying
the Lippmann–Schwinger equation for the full potential V ,
satisfies an equation equivalent to (42),

|ψ〉 = |ψ̄〉 + Ḡ1V|ψ〉 (43)

the solution of which can again be found by iteration. The
zeroth order approximation of this equation provides the same
solution as (31) with G0 replaced by Ḡ and constitutes a
preferred starting point for an iterative procedure. We shall
discuss in section 3 the range of the non-local potential 1V .

As mentioned above, the solution of (40), together with
equation (38), constitutes the basis for the self-consistent
calculations of the ground state either of periodic systems (by
working in Fourier space) [10] or in real space [31] in the
framework of the local density approximation to DF theory.
In this case the MS solution for the Green’s function Ḡ in (41)
is sufficient.

In practice, given an initial potential constructed on
the basis of an initial density ρ0(r) according to a certain
functional expression, one constructs the GF (41) and finds
the associated density according to the relation

−
1
π

Im
∫ E1

F

−∞

G+(r, r;E) dE = ρ1(r) (44)

where the integral can be calculated by deforming the
integration path in the complex plane and E1

F is obtained from
the relation ∫

d3r ρ1(r) = N. (45)

N being the total number of electrons in the system. This new
density can serve to build a second potential to generate a
second GF and a second E2

F and so on, until self-consistency.
It can be shown that this procedure minimizes also the
ground state energy. Moreover, calculations in periodic and
finite systems can now be done efficiently in full-potential
mode [10, 17].

The knowledge of the self-consistent GS density is
convenient for calculating the effective optical potential in
the local density approximation in emission spectroscopy
where, according to the final state rule, the final state to be
considered is the GS of the system. However, the procedure
can also be useful for excited states with a deep core hole
in absorption spectroscopy, since with good approximation
these can be considered as the GS of the system for the
Z + 1 impurity atom. In this way one can assess e.g. relative
edge shifts in compounds where the photoabsorber enters with
different formal valences, and in general investigate effects
related to the self-consistent density. Moreover, it is known
that in the absorption cases where the excited photo-electron
almost fills up a final state band (e.g. CuO) the Pauli principle
blocks charge screening, so the LD optical potential should be
constructed using the GS density.

It is clear from equation (37) that the GF contains
information not only on the occupied states of the system but
also on the unoccupied ones, so it can be used to construct the
response function for core electron spectroscopies. We refer
the reader to [17] for the treatment of this subject in the case
of local general potentials.

3. Multichannel multiple scattering theory

3.1. Multichannel spectroscopies: scattering states

To fix the ideas we start by calculating the angular-resolved
photoemission cross-section in the many-body case, which is
the basis for all other x-ray spectroscopies. In this experiment,
photo-electrons of energy E = k2 are detected along a
direction k̂ determined by the user. In this section, for the
convenience of the reader, we shall use the notations of [25]
for the statement of the problem, so that it will be easier to
underline similarities and differences with the previous paper.

The expression for the photoemission cross-section for
the ejection of a photo-electron of final momentum k and
kinetic energy k2 along the direction k̂ can be written as [18]

dσ(ω)

dk̂
= 4π2αh̄ω

∣∣∣∣∣〈29N
k |ε̂ ·

N∑
i=1

ri|9
N
g 〉

∣∣∣∣∣
2

(46)

where 9N
k is the many-body final scattering state, normalized

to one state per energy interval unit, for the N-electron system
with one electron of momentum k traveling to infinity, and9N

g

its ground state with respective energies EN
k and EN

g . Here α
is the fine structure constant, h̄ω the incoming photon energy
and ε̂ its polarization. Energy conservation imposes that h̄ω =
EN

k −EN
g . According to Breit and Bethe [32], in order to satisfy

the correct boundary conditions for the ejected photo-electron
(no electron in a continuum state in the remote past), we must

8
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take the time-reversed scattering state by application of the
time-reversal operator 2.

In the case of photoemission from a deep core state φc
L0

of
angular momentum L0 = (l0,m0), we assume that, to a good
approximation,

9N
g (r, r1, . . . , rN−1) = (N!)

1/2Aφc
L0
(r)

×

∑
n

cn8
N−1
n (r1, . . . , rN−1)

= (N!)1/2Aφc
L0
(r)9N−1

g (r1, . . . , rN−1) (47)

where A is the usual antisymmetrizing operator (A =
1/N!

∑
P(−1)PP, with A2

= A, P being the permutation
operator) and 8N−1

n (r1, . . . , rN−1) are Slater determinants
describing the configurations present in the ground state
of the system. Normalization imposes

∑
n|cn|

2
= 1 if

〈φc|φc〉 = 1 and for simplicity of presentation we shall
omit spin variables, though their introduction into the theory
would be straightforward. Moreover, we treat here only the
non-relativistic case, although the method could be extended
with some labor to the relativistic one.

In a similar way, we can write without loss of generality

9N
f (r, r1, . . . , rN−1) = (N!)

1/2A

×

∑
α

φf
α(r)9̃

N−1
α (r1, . . . , rN−1) (48)

where α labels any complete basis set and where the functions
φ

f
α , ignoring exchange effects, can be thought to describe the

excited photo-electron while the 9̃N−1
α states are normalized

eigenstates of the Hamiltonian HN−1 describing the remaining
(N − 1)-electron system with eigenvalues ẼN−1

α :

HN−19̃N−1
α = ẼN−1

α 9̃N−1
α . (49)

The tilde over them stands as a reminder that in the
expansion (48) the relaxed states around the core hole
are dominant. If needed, they can be in turn expanded
in terms of Slater determinants describing the intervening
configurations in the final state. The expansion in (48) is akin
to the eigenfunction-expansion method in quantum molecular
dynamics [26, 33]. For example, in electron–molecule
scattering, the total scattering wavefunction is expanded in
terms of eigenfunctions of the target state (the molecule). In a
photoemission experiment, the photo-electron plays the role
of the impinging electron (which in this case is generated
inside the system), while the rest of the (N − 1)-particle
system represents the target. Borrowing the term from
electron–molecule scattering theory, we call the states 9̃N−1

α

final state channels. This similarity is not surprising, since
in the photoemission process the time-reversed scattering
wavefunction appears in equation (46). We sketch the analogy
between photoemission and electron scattering in section B.
Here and henceforth the index f in the final state 9N

f can
be replaced by k whenever we deal specifically with the
scattering state 9N

k .
The wavefunction 9N

f is an eigenstate of the total

Hamiltonian HN with eigenvalue EN
f = EN

g + h̄ω, i.e.

HN9N
f = EN

f 9
N
f . (50)

Moreover,

HN
= −∇

2
r +

1,N−1∑
i

2
|r− ri|

−

Na∑
k=1

2Zk

|r− Rk|
+ HN−1

= −∇
2
r +

1,N−1∑
i

V(r, ri)+8Z(r)+ HN−1. (51)

Na being the number of atomic sites and 8Z(r) the total
nuclear potential.

By inserting (48) into (50), projecting onto the states
9̃N−1
α and using (49), one obtains for the amplitude functions

φ
f
α the set of coupled equations

(∇2
+ k2

α)

(
φf
α(r)−

∑
β

∫
ραβ(r; r′)φ

f
β(r
′)dr′

)

=

∑
β

∫
V1
αβ(r, r′)φf

β(r
′) dr′

+

∑
β

∫
V2
αβ(r, r′)φf

β(r
′) dr′ (52)

where

k2
α = h̄ω − (EN−1

g − EN
g )− (Ẽ

N−1
α − EN−1

g )

= h̄ω − Ic −1Eα. (53)

Ic being the ionization potential for the core state and1Eα the
excitation energy left behind in the (N−1)-particle system. In
equation (52) the second non-local term in the left-hand side
comes from the presence of the antisymmetrizing operator
A in the expansion (48) and is expressed in terms of the
interchannel one-particle density matrix

ραβ(r′; r) = ρ∗βα(r; r
′) = (N − 1)

×

∫
9̃(N−1)∗
α (r, r2, . . . , rN−1)

× 9̃N−1
β (r′, r2, . . . , rN−1) dr2 · · · drN−1.

(54)

The non-local interchannel potentials V1
αβ(r, r′) are

the matrix elements between states 9̃N−1
α and 9̃N−1

β of
the interaction potential V(r, ri) plus the external nuclear
potential 8Z(r) and include local terms as well as non-local
exchange terms originating from the exchange interaction.
Explicitly, in terms of the density matrix (54), we have
V1
αβ(r, r′) = Vd

αβ(r, r′)+ Vexc
αβ (r, r′), where

Vd
αβ(r, r′) = δ(r− r′)

×

[∫
ραβ(r′′; r′′)

2
|r− r′′|

dr′′+8Z(r)δαβ

]
Vexc
αβ (r, r′) = −ραβ(r; r′)

×

[
2

|r− r′|
+

1
2
(8Z(r)+8Z(r′))

]
.

(55)

9



J. Phys.: Condens. Matter 24 (2012) 365501 C R Natoli et al

Moreover

V2
αβ(r, r′) = −

∫
ρ2
αβ(r, r′′; r′, r′′)

×

(
2

|r′′ − r|
+

2
|r′′ − r′|

)
dr′′ (56)

is given in terms of the two-particle density matrix

ρ2
αβ(r

′, r′′; r, r′′) = (N − 1)(N − 2)/2

×

∫
9̃(N−1)∗
α (r, r′′, . . . , rN−1)

× 9̃N−1
β (r′, r′′, . . . , rN−1) dr3 · · · drN−1 (57)

which, if necessary, can be approximated in terms of
one-particle density matrices, as shown in section 3.3. In
equations (55) and (56) we have symmetrized respectively
the external potential 8Z(r) and the Coulomb interaction
2/|r′′ − r| due to the fact that when summed over β in
equation (52) the two terms give the same contribution. This
shows explicitly the hermiticity of the interchannel potential.
Likewise one can show that

(∇2
r + k2

α)
∑
β

∫
ραβ(r; r′)φ

f
β(r
′)dr′

=

∑
β

∫
[(∇2

r′ + k2
β)ραβ(r; r

′)]φ
f
β(r
′) dr′ (58)

where ∇2
r′ acts only on ρ. This implies that this term is also

Hermitian. These properties of the density matrix are shown
in section A.

The difference between the present approach and
that of two earlier papers on the same subject lies in
the fact that in [25] a local density approximation of
the exchange interchannel potential was assumed to be
feasible, without however specifying the actual procedure for
performing such an operation, while in [27] the non-locality
(and the orthogonalization of the photo-electron final state
wavefunction to the initially occupied states) was imposed
only inside the photoabsorbing cell. No good approximation
was found in the first case at low photo-electron energies,
whereas the second approach was found to be good in
the nearly empty band case (Ca and Ti compounds, for
example [27, 34]) but failed, although not too badly, in the
nearly full band case, as in the CuO compound. The need
to also orthogonalize the excited electron wavefunction on
the ligand was quite evident. A simple argument bears this
out. We can estimate the correlation length of ραα(r; r′) for
valence states in terms of a free electron gas model, whereby
(see page 107 of [21])

ραα(r; r′) = ρ
(

r+ r′

2

)
sin t − t cos t

t3
(59)

where ρ(r) is the density at point r, t = kF(r)|r − r′| and
kF(r) = (3π2ρ(r))1/3 = 1/(0.52rs), rs being the electron gas
parameter given by rs = (

3
4πρ )

1/3. At valence states densities,

typically rs ≈ 2 au, so that kF ≈ 1(au)−1. This means that at
a distance of only 3 au ≈ 1.5 Å from point r the exchange

decreases by a factor of ≈3 or 10 (according to the value
of t), implying a non-locality at least extended up to nearest
neighbors.

Coming back to the photoemission problem, the set of
equations (52) is to be supplemented with the boundary
conditions related to the behavior of the photo-electron at
infinity and to the state of the (N − 1)-electron system
according to the partition of the total energy EN

f = EN
g + h̄ω

between them. To each different partition there corresponds
a different set of boundary conditions leading to a different
solution of the set of (52). For example, if we are interested in
a particular photoemission channel γ with kinetic energy k2

γ

leaving behind the energy 1Eγ into the system, in the limit
r→+∞ we should impose the scattering conditions

φα(r;kγ ) '
(

kα
16π3

) 1
2

eikγ · rδαγ + fα(r̂,kγ )
eikαr

r
(60)

where we have made explicit the dependence of φα on kγ as
an argument rather than an upper index. Here, as usual, δαγ
is the Kronecker symbol, fα is the scattering amplitude and
the factor (kα/16π3)1/2 takes care of the normalization of the
photo-electronic plane wave at the detector to one state per
Rydberg.

Using equations (46)–(48), defining the overlap density
matrix

ραg(r′; r) = (N − 1)
∫
9̃(N−1)∗
α (r, r2, . . . , rN−1)

× 9N−1
g (r′, r2, . . . , rN−1) dr2 · · · drN−1 (61)

and introducing the orthogonalized core initial state

φ̃c
α(r) = φ

c
α(r)− S−1

α

∫
ραg(r; r′)φc

α(r
′) dr′ (62)

we can rewrite the photoemission cross-section as

dσ(ω)

dk̂
= 8π2αh̄ω

∑
m0

∣∣∣∣∣∑
α

Sα〈φ
−
α (r;kβ)|ε̂ · r|φ̃

c
l0m0

(r)〉

∣∣∣∣∣
2

.

(63)

Here and in equation (62) we have introduced the overlap
integrals Sα = 〈29̃N−1

α |9N−1
g 〉 of the passive electrons and

indicated by φ−α the time-reversal of φf
α (in practice the

complex conjugate, if spin is neglected). Spin–orbit splitting
in the initial core state has been ignored for simplicity,
although it can be easily added, and spin degeneracy (in the
case of non-magnetic systems) has been taken into account by
an extra factor of 2.

The set of equations in (52) contains the complete
description of all the outcomes of the photoemission process,
be it of intrinsic origin (i.e. consequent to the relaxation of the
system around the core hole) or extrinsic (excitations created
by the photo-electron in its way out of the system). Their
complete solution is out of the question; however, one can
analyze their implications in particular cases. The simplest
one is when the excited photo-electron interacts weakly with
the rest of the system, e.g. when the final state is an extended
wide band. This case lends itself to structural analysis, in both

10
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photoemission and photoabsorption. To a good approximation
we need only to consider the completely relaxed or elastic
channel (i.e. the one for which 1Eγ = 0), because it carries
most of the weight and is usually used for structural analysis.
Indeed, using for this channel the index α = 0, we have as a
typical value |S0|

2
= |〈29̃N−1

0 |9N−1
g 〉|

2
≈ 0.9 [35].

With this in mind, we can then think of solving the
set of coupled Schrödinger equations (52) by eliminating all
unwanted channels in favor of the elastic one [18]. The result
is a single equation for the channel function φ0(r) at energy
E = k2

0 with an effective complex energy-dependent non-local
optical potential of the kind

[∇
2
+ E −8Z(r)− Vc(r)]φ0(r)

=

∫
6opt(r, r′;E)φ0(r′) dr′ (64)

where we have isolated its local Coulomb part (Vc) and
indicated the energy dependence coming from the eliminated
channels by the argument E in 6opt. Notice that, although not
explicitly indicated, this equation should be solved with the
constraint that the channel function φ0(r) be orthogonal to
the one-particle states constituting the configurations present
in the ground state. Usually this condition is neglected,
but its effects might be quite important near the edge, at
low photo-electron energies. In fact the exchange effects
described by 6opt do not contain this kind of constraint,
but only the reflection of it on the interparticle potential.
A widespread approximation for 6opt is that based on the
local density single plasmon pole approximation of a GW
self-energy by Hedin and Lundqvist [36, 37] (see [38] for
an explicit expression of it), or a generalization of it [39].
These exchange–correlation potentials ignore the description
of intrinsic losses (presumably small in the case of weak
interaction of the photo-electron with the rest of the system)
and describe the exchange at a local level.

Obviously different is the case when the interaction of the
photo-electron with the core hole and the rest of the system
is strong. In this instance, effects of single quantum states
become important and contribute features to the spectrum
which are not of structural origin. We need to solve the set of
coupled Schrödinger equations (52) with scattering boundary
conditions (60). As in the single channel case, this is best
done by passing to the corresponding Lippmann–Schwinger
equations

φf
α(r) =

(
kγ

16π3

) 1
2

eikγ ·rδαγ

+

∑
β

∫
G0(r− r′; kα)Ṽαβ(r′, r′′)φf

β(r
′′) dr′ dr′′ (65)

where the free Green function G0(r − r′; kα) in channel α is
the solution of the free equation

(∇2
+ k2

α)G0(r− r′; kα) = δ(r− r′) (66)

with energy k2
α . Notice that now in equation (65) the potential

Ṽαβ also incorporates the effect of the exchange term in the
left-hand side (lhs) of equation (52), so that

Ṽαβ(r; r′) = V1
αβ + V2

αβ + (∇
2
r + k2

α)ραβ(r; r
′). (67)

With this in mind, equation (65) clearly reduces to (52)
upon application on both sides of the operator (∇2

+ k2
α) with

the correct boundary conditions (60).
The procedure for applying the MS method and taking

into account the non-locality of Ṽexc
αβ (r, r′) then follows the

same lines as in section 2.1.
Calling V̄ again the restriction of Ṽ to cell exchange,

equation (65) can be written in vector form

8̄f (r;kγ ) = I(kγ )

+

∫
G0(r− r′;k)V̄(r′, r′′)8̄f (r′′) dr′ dr′′ (68)

where in the channel space 8f is a vector with components

8
f
α , I(kγ ) is a vector with components ( kγ

16π3 )
1
2 eikγ ·rδαγ , k

is a vector with components kα , G0(k) is a diagonal matrix
with elements G0(r− r′; kα)δαβ and finally V̄ is the potential
matrix. As before we introduce local (cell) scattering solutions
in response to an exciting partial L-wave in channel γ .
Defining the vector JL(rj;kγ ) with components JL(rj; kγ )δαγ
we have

9̄L(rj;kγ ) = JL(rj;kγ )

+

∫
G+0 (rj − r′j;k)V̄

j(r′j, r′′j )9̄L(r′′j ;kγ ) d3r′j d3r′′j (69)

so that in any individual cell the global solution can be
expanded in terms of these local solutions as

8̄f (rj;kγ ) =
∑

L

C̄j
L(kγ )9̄L(rj;kγ ) (70)

where C̄j
L is a vector with components C̄j

Lα . In terms of the
interchannel matrix

T̄j
LαL′β =

∫
JL(rj; kα)V̄

j
αβ(r

′
j, r′′j )9L′β(r

′′
j ;kγ ) d3r′j d3r′′j

(71)

and putting together site, angular momentum and channel
indices we finally obtain the multichannel MS equations for
the amplitudes C̄j

Lα(k) written in matrix form

C̄(kγ ) = I(kγ )+G0(k)T̄C̄(kγ ) (72)

where

C̄(kγ ) = (C̄
j
Lα(kγ )δij)

I(kγ ) =

(√
kγ
π

ilYL(k̂γ )eikγ ·Riδαγ δijδLL′

)
G0(k) = (G

ij
LL′(kα)δαβ)

T̄ = (T̄j
LαL′βδij).

(73)

This is the straightforward generalization of the single channel
MS equations, in that now the cell potential is no longer static
and can react to the impinging photo-electron by changing its
energy (and therefore its propagation channel).

There is one last point to clarify. Up to now we have
assumed that the functions ραβ(r, r′) in equation (54) are
known. The eigenfunctions 9̃N−1

α (r1, . . . , rN−1) of the (N −
1)-particle problem are obviously unknown. However, what

11
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we need is a density matrix, i.e. an integrated property of
the (N − 1)-particle functions, which can be reasonably
approximated. For example in a 3dn transition metal with one
atom per cell we might take

9̃N−1
α (r1, . . . , rN−1) ≈ A5j9̃

j
α(rj1, . . . , rjn)

× 8(rNcn+1, . . . , rN−1) (74)

where 9̃
j
α(rj1, . . . , rjn) is one of the local multiplet

wavefunctions centered at site j for the 3dn configuration.
They are linear combinations of Slater determinants made
up of single-particle functions calculated in a relaxed
one-particle mean field potential, Nc is the number of cells and
8(rNcn+1, . . . , rN−1) is the uncorrelated Slater determinant
relative to the remaining electrons in the system. This is
the approach used in [27], where the problem of calculating
the non-local exchange–correlation potential in each cell was
elegantly bypassed by calculating the interchannel T j-matrix
in the R-matrix approach [27], so that the antisymmetrizer
A was acting only inside the cell. Notice that also the
excitation energies k2

α are not known, but, in keeping with
the ansatz (74), they can be reasonably approximated by the
multiplet energy splittings. The same approximation might be
used to calculate the two-particle density matrix or one might
resort to some kind of decoupling (see section 3.2).

Continuing with the multichannel theory, we can
introduce as before B-amplitudes via the relation

B̄j
Lα(kγ ) =

∑
L′β

T̄ j
LαL′β C̄j

L′β(kγ ) (75)

for which the generalized optical theorem again holds∑
γ

∫
dk̂γ B̄i

Lα(kγ )[B̄
j
L′β(kγ )]

∗
= −

1
π

Imτij
LαL′β (76)

where, as before, τ = (T̄−1
−G) in the extended multichannel

space. In this space equation (76) can be derived in the same
way as in appendix D of [17], provided the inhomogeneous
term I(kγ ) is of the form given in equation (73). Similar
derivations can be found in [25, 27].

As before, we can introduce new local basis functions

8̄f (rj;kγ ) =
∑
Lβ

B̄j
Lβ(kγ )8̄Lβ(rj;kγ ) (77)

so that the photoemission cross-section (63) becomes

dσ(ω)

dk̂γ
= 8π2αh̄ω

∑
m0

∣∣∣∣∣∑
Lβ

S∗βM̃LcLβ B̄j
Lβ(kγ )

∣∣∣∣∣
2

(78)

with similar definition of the atomic matrix element M̃LcLβ in
terms of the orthogonalized core initial state (62) given by

M̃LcLβ = 〈8̄Lβ(r;kβ)|ε̂ · r|φ̃c
l0m0

(r)〉. (79)

By integrating over the emission direction kγ we obtain the
total absorption cross-section∑
γ

∫
dk̂γ

dσ

dk̂γ
= −8παh̄ω

×

∑
LβL′β ′

S∗βM̃∗LcLβ(E)(Imτ
ii
LβL′β ′)M̃LcL′β ′(E)Sβ ′ (80)

which is the generalization of the single channel expression.
These expressions are valid if we can neglect the effect of the
non-local potential 1V .

To take this latter into account we use the matrix
generalization of equation (29) and following, but again this
procedure would spoil the generalized optical theorem in the
multichannel case. Alternatively, we can use the expression
for the complete GF (see section 3.5).

3.2. Multichannel equations for the ground state

In trying to extend the multichannel method to investigate
properties of the ground state we start from the wavefunction

9N
g (r, r1, . . . , rN−1) = (N!)

1/2A

×

∑
α

φα(r)9N−1
α (r1, . . . , rN−1) (81)

and try to optimize the single-particle φα(r) using the
variational principle

δEav

δφ∗α
=

δ

δφ∗α

(
〈9N

g |H|9
N
g 〉

〈9N
g |9

N
g 〉

)
(82)

assuming for the time being that the 9N−1
α are known and

satisfy the same equation as (49)

HN−19N−1
α = EN−1

α 9N−1
α (83)

this time without a tilde, since we are dealing with ground
state properties.

Resorting to the same projection technique used to arrive
at equation (52) we find

〈9N
g |H|9

N
g 〉 =

∑
α

∫
φ∗α(r)(−∇

2
+ EN−1

α )φα(r) dr

−

∑
αβ

∫
φ∗α(r)(−∇

2
r + EN−1

α )ραβ(r; r′)φβ(r′) dr dr′

+

∑
αβ

∫
φ∗α(r)(V

1
αβ(r; r

′)+ V2
αβ(r; r

′))φβ(r′) dr dr′

(84)

and

〈9N
g |9

N
g 〉 =

∑
α

∫
φ∗α(r)φα(r) dr

−

∑
αβ

∫
φ∗α(r)ραβ(r; r

′)φβ(r′) dr dr′. (85)

The symmetrization argument of section A shows that, despite
its appearance, the energy (84) is real, as it should be.
Moreover, by analogy with the Hartree–Fock procedure,
we impose not only the usual normalization condition
〈9N

g |9
N
g 〉 = 1 but also the orthogonality conditions∫
φ∗α(r)ραβ(r; r

′)φβ(r′) dr dr′ ≡ 〈φα|ρ|φβ〉 = 0 (86)

12
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for all α and β. Introducing the Lagrange multipliersµ+EN−1
g

and εαβ , we need to minimize the expression

δ

δφ∗α

(
〈9N

g |H|9
N
g 〉 − (µ+ EN−1

g )〈9N
g |9

N
g 〉

−

∑
αβ

εαβ〈φα|ρ|φβ〉

)
= 0 (87)

which leads to the following set of equations:

(∇2
+ k2

α)φα(r) = (∇
2
r + k2

α)
∑
β

∫
ραβ(r; r′)φβ(r′) dr′

+

∑
β

εαβ

∫
ραβ(r; r′)φβ(r′) dr′

+

∑
β

∫
V1
αβ(r, r′)φβ(r′) dr′

+

∑
β

∫
V2
αβ(r, r′)φβ(r′) dr′ (88)

where now the one- and two-particle density matrices are
referred to the (N − 1)-particle wavefunctions without tilde
(i.e. without core hole) and

k2
α = µ+ EN−1

g − EN−1
α = µ−1EN−1

α (89)

µ being the chemical potential of the system (when
〈9N

g |9
N
g 〉 = 1) and 1EN−1

α the excitation energies of the
(N − 1)-electron system.

In a standard variational scheme, equations (88) are to
be solved by assuming that the one- and two-particle density
matrices are known, even in an approximate way, in terms
of local multiplet wavefunctions, as mentioned in section 3.
However, the single-particle wavefunctions used to build them
would not contain the effect of the environment of the solid.
The remedy to this drawback will be described in section 3.3.

Equation (88) represents the propagation of a test electron
throughout the system, passing from a state described by
φα(r) to another one described by φβ(r) under the action of
the interchannel potentials V1

αβ + V2
αβ . Notice the presence of

a further kinetic term on the right-hand side of equation (88),
analogous to the same term in equation (52) describing excited
states. This term is a kind of exchange correction to the kinetic
energy arising from the antisymmetrization of the test electron
wavefunction to the rest of the system.

It is interesting to investigate the nature of the
interchannel potential. The analysis is complicated by the
presence of the two-particle density matrix in V2. To this
purpose we put

2ρ2
αβ(r, r′′; r′, r′′) = (ραβ(r; r′)ραβ(r′′; r′′)

− ραβ(r′′; r′)ραβ(r; r′′))

× (1+ hαβ(r; r′)) (90)

where the second exchange term preserves the antisymmetry
between the couples of variables on each side of the semicolon
on the left-hand side and hαβ(r; r′) is a symmetric function in

the two variables that describes a kind of correlation hole [21].
Neglecting this correlation, we find

(∇2
+ k2

α)φα(r) = (∇
2
+ k2

α)
∑
β

∫
ραβ(r; r′)φβ(r′) dr′

+

∑
β

εαβ

∫
ραβ(r; r′)φβ(r′) dr′

+

∑
β

∫
V ′αβ(r, r′)φβ(r′) dr′ (91)

where

V ′αβ(r, r′) = Vd
αβ(r, r′)+ Vexc

αβ (r, r′) (92)

is given in terms of

Vd
αβ(r, r′) = δ(r− r′)

×

[∫
ραβ(r′′; r′′)

2
|r− r′′|

dr′′ +8Z(r)δαβ

]
Vexc
αβ (r, r′) = −ραβ(r; r′)

[
2

|r− r′|
+

1
2
(8Z(r)+8Z(r′))

]
−

1
2ραβ(r; r

′)

∫
ραβ(r′′; r′′)

×

(
2

|r′′ − r|
+

2
|r′′ − r′|

)
dr′′

+
1
2

∫
ραβ(r; r′′)ραβ(r′′; r′)

×

(
2

|r′′ − r|
+

2
|r′′ − r′|

)
dr′′.

(93)

Notice that ραα(r, r) is normalized to N − 1, since the
states 9N−1

α are normalized to one. Neglecting, for short,
symmetrization, we now observe that equation (91) can be
rewritten as

(∇2
+ k2

α −8Z(r))

[
φα(r)−

∑
β

∫
ραβ(r; r′)φβ(r′) dr′

]

=

∑
β

∫
ραβ(r′′; r′′)

2
|r− r′′|

dr′′

×

[
φβ(r)−

∫
ραβ(r; r′)φβ(r′) dr′

]
−

∑
β

∫
ραβ(r; r′′)

2
|r− r′′|

dr′′

×

[
φβ(r′′)−

∫
ραβ(r′′; r′)φβ(r′) dr′

]
+

∑
β

εαβ

∫
ραβ(r; r′)φβ(r′) dr′. (94)

In the case of only one channel (α = β = 1) with no electronic
correlations, 9N−1

1 = [(N − 1)!]1/2A 5
1,N−1
i φi(ri) is equal

to the Slater determinant of the remaining N − 1 particles,
ραα(r, r′) =

∑1,N−1
i φ∗i (r)φi(r′), and the relation (90)

becomes exact with h = 0 [21]. Then equation (94) reduces to
the usual Hartree–Fock (HF) equations, the last term imposing
the orthogonality of φα(r) on all the remaining single-particle
wavefunctions.
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For many channels, equation (91) is the generalization
of the HF equations to the case where we mix different
configurations of the entire system, described by 9N−1

α ,
something like the case in a multiconfiguration HF. Actually,
one can view these equations as a kind of Euler–Lagrange
equation for the Hartree–Fock–Kohn–Sham orbitals φα(r),
in which all terms with β 6= α in the effective potentials
represent a sort of functional derivative of the correlation
energy, the exchange part being represented exactly by the
β = α term (cf e.g. equation (8.4.4) in [21]). This point of
view will be elaborated in more depth in section 3.3.

It is interesting to note that the present scheme is free
from self-interaction problems and that the pure HF potential
is modified via the presence of many channels and the
two-particle correlation function.

3.3. The ground state energy as a functional of the
multichannel density matrix

In this section we want to tackle the problem of the
self-consistent determination of the one-particle density
matrix and present a more fundamental point of view for
minimizing the ground state energy.

The starting point is the realization that the most general
one-particle density matrix derived from antisymmetric
wavefunctions can be represented as

ρ(r; r′) =
∑

i

niφi(r)φ∗i (r
′) (95)

where φi(r) is an orthonormal set of natural orbitals and
ni are occupation numbers such that 0 ≤ ni ≤ 1 [21]. They
are respectively eigenstates and eigenvalues of the operator
ρ(r; r′). This representation of the density is also the basis
for the Kohn–Sham (KS) implementation of DFT and for its
generalization (see the Hartree–Fock–Kohn–Sham method;
section 8.4 in [21]).

In an endeavor to find an extension of the HF-KS method
that takes into account a multiconfiguration (multichannel)
scheme, such as the one we have described through this paper,
we define a matrix ‘density matrix’ as a vector generalization
of equation (95)

ραβ(r; r′) =
∑

i

niφiα(r)φ∗iβ(r
′) (96)

or in operator form in channel space

0(r; r′) =
∑

i

ni|8i(r)〉〈8i(r′)| (97)

where the vector function |8i(r)〉 has components φiα(r). In
analogy with expression (95) they are eigenstates of 0(r; r′).
Notice that ∑

α

ραα(r; r) ≡ ρ(r) =
∑
iα

|φiα(r)|2 (98)

and, provided∑
α

∫
|φiα(r)|2 dr ≡ 〈8i(r)|8i(r)〉 = 1 (99)

we have for the total number of electrons N

N =
∑

i

ni. (100)

In keeping with the expression (84) for the ground state
energy and the definition (96) we write the following energy
functional:

E({ni, φiα}) =
∑
iα

ni

∫
φ∗iα(r)(−∇

2)φiα(r) dr

−
1
4

∑
iαβ

ni

∫
φ∗iα(r)(−∇

2
r −∇

2
r′)ραβ(r; r

′)φiβ(r′) dr dr′

+
1
2

∑
iαβ

ni

∫
φ∗iα(r)(V

1
αβ(r; r

′)

+
2
3 V2

αβ(r; r
′))φiβ(r′) dr dr′ (101)

where the potentials V1 and V2 are the same as defined in
equations (55) and (57). In comparison with equation (84),
we have dropped here the terms EN−1

α , which are supposed
to be taken into account by the introduction of all the other
orbitals different from the one under consideration. The factor
1
2 takes into account double counting, as does the factor of 2

3
in front of V2, since ρ2 is proportional to the product ρ1ρ1

(see equation (90)). The guiding idea is that the variational
equations obeyed by the φiα(r) should be similar to those
satisfied by the wavefunctions φα(r) of the test electron in
equation (88).

By rewriting equation (101) in terms of only the density
matrices defined in equation (96) we find

E({ni, φiα}) ≡ E({ραβ}) = T1 + T2 + V1
d + V1

exc + V2 (102)

where

T1 = −
∑
α

∫
dr∇2

rραα(r, r′)

∣∣∣∣∣
r=r′

(103)

is the usual kinetic term operator of the Kohn–Sham reference
non-interacting system,

T2 =
1
4

∑
αβ

∫
ρ∗αβ(r; r

′)(−∇2
r −∇

2
r′)ραβ(r, r′) dr dr′

= −
1
4

∑
αβ

∫
(|∇rραβ(r, r′)|2 + |∇r′ραβ(r, r′)|2) dr dr′

(104)

is a correction term to T1 arising from the presence of
correlation in the basis functions 9N−1

α (it would be zero if
such a function were a Slater determinant),

V1
d =

1
2

∑
αβ

∫
ρ∗αβ(r; r)

2
|r− r′|

ραβ(r′; r′) dr dr′

+

∑
α

∫
8Z(r)ραα(r, r) dr (105)

is the direct term of V1, whereas
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V1
exc = −

1
2

∑
αβ

∫
|ραβ(r; r′)|2

×

(
2

|r− r′|
+

1
2
(8Z(r)+8Z(r′))

)
dr dr′ (106)

is the corresponding exchange contribution, where the term
with 8Z(r) has the same origin as in T2. Finally,

V2
= −

1
3

∑
αβ

∫
ρ∗αβ(r; r

′)ρ2
αβ(r, r′′; r′, r′′)

×

(
2

|r′′ − r|
+

2
|r′′ − r′|

)
dr dr′ dr′′ (107)

is the term coming from the two-particle density matrix. Using
the relation (90) we can then rewrite V2 as

V2
= −

1
6

∑
αβ

∫
{|ραβ(r; r′)|2ραβ(r′′; r′′)

− ρ∗αβ(r; r
′)ραβ(r′′; r′)ραβ(r; r′′)}

×

(
2

|r′′ − r|
+

2
|r′′ − r′|

)
(1+ hαβ(r; r′)) dr dr′ dr′′

(108)

where the function h is left unspecified for the moment and,
in the practical implementation of the theory, could either be
neglected or considered a fixed function independent of the
density and the channel indices [21].

Having expressed the energy in terms of the ni and
φiα(r), we can obtain the ground state energy by minimizing
E(ni, φiα) with respect to ni and φiα(r). Therefore, for a fixed
set of ni, the set of the functions φiα(r) must satisfy the Euler
equations

δ

δφiα(r)

×

{
E(ni, φiα)−

∑
i

ε′i

(∫ ∑
α

|φiα(r)|2 dr− 1

)}
= 0

(109)

imposing the normalization (99) through the Lagrange
multipliers ε′i . This variational procedure leads to the
following set of coupled integro-differential equations for the
set of functions φiα(r)

(∇2
r + εi)φiα(r)

=
1
2

∑
β

∫
[(∇2

r +∇
2
r′)ραβ(r; r

′)]φiβ(r′) dr′

+

∑
β

∫
Veff
αβ(r; r

′)φiβ(r′) dr′ (110)

which can be rewritten in matrix form and with obvious
notations as∫
{δ(r− r′)(∇2

r′ + εi)I− 1
2 [(∇

2
r +∇

2
r′)0(r; r

′)]

− Veff(r; r′)}|8i(r′)〉 dr′ = 0. (111)

In this equation we have put εi = ε
′
i/ni, exploiting the fact that

each term of the functional derivative is proportional to ni 6= 0.
Moreover, the Laplacian term comes from T1, the second
from T2, whereas Veff

αβ comes from the functional derivative

of V1
d + V1

exc + V2. Notice that, due to the hermiticity of
these operators, vector solutions corresponding to different
eigenvalues εi are orthogonal, so we do not need to impose this
constraint. For short, in the following, we shall incorporate the
term 1

2 (∇
2
r +∇

2
r′)0(r; r

′) into the definition of Veff(r; r′).
Explicitly, we find

Veff
αβ(r; r

′) = δ(r− r′)

×

[∫
ραβ(r′′; r′′)

2
|r− r′′|

dr′′ +8Z(r)δαβ

]
− ραβ(r; r′)

[
2

|r− r′|
+

1
2
(8Z(r)+8Z(r′))

]
−

1
3ραβ(r; r

′)

∫
ραβ(r′′; r′′)

×

(
2

|r′′ − r|
+

2
|r′′ − r′|

)
dr′′

+
1
6

∫
ραβ(r; r′′)ραβ(r′′; r′)

×

(
2

|r′′ − r|
+

2
|r′′ − r′|

)
dr′′

−
1
3
δ(r− r′)

∫
|ραβ(r′′; r1)|

2 2
|r− r′′|

dr′′dr1

+
1
3

∫
ρ∗αβ(r; r

′′)ραβ(r′′; r′)

×

(
2

|r′′ − r|
+

2
|r′′ − r′|

)
dr′′

+
1
2 (∇

2
r +∇

2
r′)ραβ(r; r

′). (112)

Notice that here ραα′ refers to an N-particle density matrix.
Due to this, the interchannel potential (112) is not free
from self-interaction effects, in analogy with the scalar KS
procedure. For simplicity, we have dropped the correlation
term h in (108).

The set of coupled equations (110) constitutes the vector
generalization of the usual Kohn–Sham equations to the case
where we take into account several configurations in the
ground state. Similarly to the scalar counterpart, they are to
be solved self-consistently, since ραβ and Veff

αβ are themselves
expressed in terms of the φiα(r). The general problem of
finding the minimum of the energy upon variation of both
the φiα(r) and the ni has not found a solution yet ([21],
section 7.6). We follow the Kohn–Sham approach and take
ni = 1 for the lowest N eigenstates of equation (111) and zero
otherwise.

3.4. The multichannel Green’s function

What remains to be done is to indicate an iteration scheme
leading both to the self-consistent solution of equation (111)
and to the minimization of the ground state energy. To
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this purpose we introduce the multichannel Green’s function
obeying the equation

(∇2
+ E)Gαα′(r, r′;E) = δ(r− r′)δαα′

+

∑
β

∫
Veff
αβ(r, r′′)Gβα′(r

′′, r′;E) dr′′. (113)

In terms of the vector solutions |8i(r)〉 of equation (111)
corresponding to the eigenvalue εi, we can immediately
generalize the formal solution of equation (37), obtaining

G±(r, r′;E) =
∑

i

|8i(r)〉〈8i(r′)|
E − εi ± iη

G±
αα′
(r, r′;E) =

∑
i

φ?iα(r)φiα′(r′)
E − εi ± iη

.

(114)

Passing to the corresponding Lippmann–Schwinger
equation, equation (113) can also be written as

Gαα′(r, r′;E) = Gα0 (r− r′; kα(E))δαα′

+

∑
β

∫
Gα0 (r− r′′; kα(E))Veff

αβ(r
′′, r′′′)

× Gβα′(r
′′′, r′;E) dr′′ dr′′′ (115)

which in operator form becomes

G = G0 +G0VeffG. (116)

This equation is the vector generalization of equation (40), so
the solution follows the same patterns. Splitting again the MC
potential Veff as Veff

= V̄eff
+ 1Veff, we explicitly find in

terms of the scattering solutions (69)

Ḡαα′(ri, r′j;E) =
∑

LβL′β ′
9̄Lβ(ri; kα)

× [(I−G0T̄)−1G0]
ij
LβL′β ′9̄L′β ′(r

′
j; kα′)

+ δij

∑
Lβ

9̄Lβ(r<; kα) ˜̄9Lβ(r>; kα′) (117)

where we have now indicated by ˜̄9Lα(r>; kα′) the irregular
solution in cell i that matches smoothly to H̃+L (r; kα)δαα′ at
Ri

b. Using instead the basis functions defined by (77), we find

Ḡαα′(ri, r′j;E) =
∑

LβL′β ′
8̄Lβ(ri; kα)τ

ij
LβL′β ′8̄L′β ′(r

′
j; kα′)

+ δij

∑
Lβ

8̄Lβ(r<; kα) ˜̄3Lβ(r>; kα′) (118)

where now ˜̄3Lα(r>; kα′) joins smoothly to J+L (r; kα)δαα′ at
Ri

b.
The solution G for the entire potential can be found again

as before by iteration of

G = Ḡ+ Ḡ1VeffG = Ḡ+G1VeffḠ. (119)

The procedure for a self-consistent calculation now
proceeds as follows. We start from a DFT solution of the
system under study that provides the initial Kohn–Sham
orbitals by which to construct the initial set of single-particle

density matrices ραβ(r, r′). To this purpose, we discretize
by suitable normalization [40] the extended one-electron KS
orbitals φα(r) having the relevant orbital character (e.g. 3d
or 4f), so as to generate in the corresponding energy
range 2(2l + 1) discrete orbitals, and construct the nc =

(
2(2l+ 1)

n ) Slater determinants (SD) 8i (i = 1, nc) formed by
these extended orbitals for a definite n-electron configuration
suggested by the physical situation under consideration. In
this basis we diagonalize the total n-electron Hamiltonian
(including therefore the Coulomb interaction), restricting
the various space integrals to the cell(s) where we intend
to introduce local electronic correlations. In this way we
generate local multiplet wavefunctions that are used to
construct initial density matrices. The relations (112) then
generate the starting interchannel potentials, so that the
corresponding multichannel GF, obtained according to the
equations (117)–(119) above, generates a new set of density
matrices and a new chemical potential µ by contour integral

−
1
π

Im
∫ µ

−∞

Gαα′(r, r′;E) dE = ρN
αα′(r, r′) (120)

where µ is determined by the condition∑
α

∫
ρN
αα(r, r) d3r = N. (121)

This new set of quantities is then used to construct a new set
of interchannel potentials and so on, until self-consistency. At
each iteration the value of the ground state energy is given
by [41]

Eg = −
1
π

Im
∫

d3r

×

∑
α

∫ µ

−∞

Gαα(r, r;E)(E + ρ(E)− µ)/2 dE (122)

where ρ(E) is the density of states of the non-interacting
particles, i.e. with only the external potential 8Z(r).

This procedure should describe correlations present in the
ground state beyond their current treatment in DFT. Again,
including spin variables in the formalism is not a problem,
although essential to describe physical reality. This could be
done in the framework of spin-density-functional theory ([21],
chapter 8).

Before leaving this section, we would like to observe
that, even though the KS orbitals are auxiliary quantities
used to construct the density of the system, they are usually
interpreted as quasi-particle wavefunctions with energies
corresponding to the Lagrange multipliers εi. This is the
case of the mapping of band states in periodic systems.
Similarly, by an application of the above generalization
of the KS theory, we might think of the correlated band
states of 3d transition metals as given by the poles of the
multichannel GF (117) or the zeros of the determinant of the
MS matrix Det|I−G0(kBZ;k;E)T̄(E)|, where G0(kBZ;k;E)
is the Fourier transform of the usual free electron propagator
Gij

LL′(kα) in angular momentum representation calculated at
the wavevector kBZ of the Brillouin zone.
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A further interesting application in real space is the
possibility of introducing the electronic correlation only on
one atom or cluster of atoms and leaving the rest of the system
uncorrelated, which is obtained by keeping the interchannel
dynamics only on the atom(s) of interest and describing the
rest by their usual static t-matrices. This approach has been
used with success for the calculation of the L2,3 absorption
edges in Ca, CaF2, CaO and TiO2 under its various forms
(rutile, anatase, etc), where the photoabsorbing atom plays
the natural role of a dynamic impurity to which the rest of
the system is coupled via a reflectivity function [27, 34]. In
investigating ground state properties, this method would be
akin to the dynamical mean field theory (DMFT) approach,
but conceptually easier to implement.

3.5. Absorption cross-section in terms of multichannel GF

Putting for short D = ε̂ ·
∑N

i=1ri, we calculate the dipole
absorption cross-section expressed in terms of the N-particle
GF as

σtot(ω) = 4π2αh̄ω
∑

f

|〈9f |D|9g〉|
2δ(h̄ω + Eg − Ef )

= −4παh̄ωIm
∑

f

〈9g|D
† |9f 〉〈9f |

E − Ef + iη
D|9g〉

= −4παh̄ωIm〈9g|D
†GN(E)D|9g〉 (123)

where as usual GN(E) satisfies the equation (E−HN)GN(E)=
IN and is calculated at E = h̄ω − Ic.

As in the wavefunction case described in section 3.1, we
want to single out the motion of the final state photo-electron
(modulo exchange terms) so that, in analogy with the
procedure used in treating the electron–molecule scattering
process illustrated in section C, we expand GN(E) in terms of
the complete basis of N− 1 particle 9̃N−1

α already introduced

GN(E) = AA′
∑
αα′

9̃N−1
α (r1, . . . , rN−1)

× Gphe
αα′
(r, r′;E)9̃?N−1

α′
(r′1, . . . , r′N−1) (124)

where A′ and A are antisymmetrizer operators acting
respectively on the primed and unprimed variables.

The multichannel equations satisfied by Gphe
αα′
(r, r′;E) are

derived in section C and are given by equations (C.6) and
(C.7).

Then, on the basis of the expressions (123) and (124) and
in terms of the orthogonalized initial core state wavefunctions
defined by equation (62) we find

σtot(ω) = −8παh̄ωθ(h̄ω − Ic)

×

∑
mc

∑
αα′

Im
∫

S∗αSα′〈φ̃
c
Lc
(r)|ε̂∗ · r|

× Gphe
αα′
(r, r′; h̄ω − Ic)|ε̂ · r′|φ̃c

Lc
(r′)〉 d3r d3r′

(125)

with the usual definition of the θ function and taking into
account again spin degeneracy.

The photo-electron Gphe is different from the one
calculated in the preceding section with the interchannel
potential Veff for two reasons. First, the density matrix
0(r; r′) refers to the ground state, but it would be not difficult
to use a kind of Z + 1 approximation. Second, Veff and the
potential in equation (C.6) are not exactly the same, since the
first one comes from a generalized KS variational procedure.
Nonetheless, we feel that the two approaches would give
roughly similar spectra. In both cases we can use MST to
obtain solutions of the form (118), if the correction 1V can
be neglected. In this case equation (125) reduces to (80), since
the singular part in (118) is real, due to the hermiticity of
the many-body Hamiltonian. By contrast, in the general case,
equation (125) can be used without restrictions.

4. Conclusions

In the framework of MST, we have presented a unifying
scheme for calculating x-ray spectroscopic response functions
and ground state properties of condensed matter systems,
based on the Green’s function approach, in both the single
and multichannel scheme. Core-excited spectra are often
strongly modified by electron correlation effects that cannot
be described in an effective single-particle approach, such
as density functional theory. Well-known examples are
charge transfer and multiplet splittings in x-ray absorption
and photoemission spectra of transition metal and rare
earth compounds, where strong configuration mixing takes
place. Multichannel MST is a promising approach to this
problem since it can quite naturally account for local
configuration interaction through the off-diagonal elements
of the multichannel T-matrix. The progress of multichannel
MST theory was limited by the conceptual problems for
the calculation of the interchannel potential or multichannel
T-matrix. Here we have devised a practically feasible,
yet fully general, method for calculating the interchannel
potential via the multichannel density matrix. We have
shown how strong electron correlation can be accounted
for in both the ground and core-excited states by means of
multichannel MST both in the wavefunction and the Green’s
function formulation. In the case of the ground state we
have generalized the usual KS equation to the case where
several configurations (channels) are present in the ground
state. We have therefore developed a self-consistent procedure
to minimize the ground state energy in a way similar to
the KKR-GF method, by introducing the multichannel GF
associated with the generalized KS orbitals. In view of the
fact that the local approximation to the exchange energy is
the main source of error in LDA calculations, we have opted
to represent exactly the exchange contribution to the energy
functional. For this reason we have extended both single
channel and multichannel MST theory to fully non-local
potentials.
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Appendix A. Hermiticity of the interchannel
potentials

In projecting the N-body Hamiltonian (51) onto states 9N−1
α

we use here for convenience ri coordinates where i runs from
1 to N, with the identification r1 ≡ r. Then a typical projection
term looks like∫
9∗N−1
α (r2, . . . , rN)

×

[
H1(r1)+ HN−1(r2, . . . , rN)+

1,N∑
i6=1

V(r1, ri)

]

× (I − T1,2)φβ(r1)9
N−1
β (r2, . . . , rN) dr2 · · · drN (A.1)

where T1,2 is the transposition of elements 1 and 2 and we
have singled out the coordinate r1 in splitting HN .

Exploiting the complete symmetry of the Hamiltonian
under interchange of all coordinates we can instead single out
the coordinate 2, so that equation (A.1) gives the same result
as∫
9∗N−1
α (r2, . . . , rN)

×

[
H1(r2)+ HN−1(r1, r3, . . . , rN)+

1,N∑
i6=2

V(r2, ri)

]

× (I − T1,2)φβ(r1)9
N−1
β (r2, . . . , rN) dr2 · · · drN . (A.2)

From this property the equality of the two terms in
equation (58) follows. As a consequence, one can symmetrize
the interchannel potentials with respect to r and r′, showing
explicitly their hermiticity property.

By the same property one can also show that in
equation (84)∑
αβ

∫
φ∗α(r)(−∇

2
r + EN−1

α )ραβ(r; r′)φβ(r′) dr dr′

=

∑
αβ

∫
φ∗α(r)φβ(r

′)(−∇2
r′ + EN−1

β )ραβ(r; r′) dr dr′

(A.3)

so that

1
2

{∑
αβ

∫
φ∗α(r)φβ(r

′)(−∇2
r −∇

2
r′ + EN−1

α + EN−1
β )

× ραβ(r; r′) dr dr′
}

(A.4)

is manifestly real.

Appendix B. Analogy with electron–molecule
scattering

For the convenience of the reader we want to underline
here the analogy between equation (52) for the excited
photo-electron and the analogous expression in the case of
electron–molecule scattering [26]. In both cases, using the
same notations, the total Hamiltonian is

HN
= −∇

2
r +8Z(r)+

1,N−1∑
i

V(r, ri)+ HN−1

= H0 + HN−1
+ Vint (B.1)

where −∇2
r is the kinetic operator of the projectile, 8Z(r)

the external potential due to the atomic nuclei of the target,
HN−1 describes the internal degrees of freedom of the target
and Vint is the interaction potential that couples the motion of
the projectile with the target and allows an energy exchange
between the two subsystems.

If we now assume that the projectile and the target are
distinguishable (this might be a physical case if the projectile
is a positron), we can expand the total scattering wavefunction
9N

s in terms of a complete set of states of the target (called
channels)

HN−19N−1
α = EN−1

α 9N−1
α (B.2)

so that

9N
s (r, r1, . . . , rN−1) =

∑
α

φα(r)9N−1
α (r1, . . . , rN−1). (B.3)

For the total scattering wavefunction we have

HN9N
s = E9N

s (B.4)

where E = k2
+ EN−1

g is the sum of the kinetic energy of
the projectile at infinity and the initial state of the target
assumed in its ground state. Projecting this equation onto the
eigenstates of the target, we easily obtain a set of coupled
(channel) equations for the projectile

(∇2
+ k2

α −8Z(r))φα(r) =
∑
β

Vαβ(r)φβ(r) (B.5)

or in matrix form

[(∇2
−8Z(r))I+ k2

]Φ(r) = V(r)Φ(r) (B.6)

where k2 is a diagonal matrix with matrix elements

k2
α = E − EN−1

α = k2
−1EN−1

α . (B.7)

Φ(r) is a column vector with components φα(r) and V is the
interchannel potential matrix with matrix elements

Vαβ(r) = 〈9N−1
α |Vint|9

N−1
β 〉. (B.8)

Since the asymptotic state of the total scattering wavefunction
9N

s is

9N
s → eik·r

×9N−1
γ (r1, . . . , rN−1) (B.9)

where 9N−1
γ corresponds to the ground state of the target,

equation (B.5) are to be solved with the asymptotic boundary
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conditions

φα(r)→ eikγ ·rδαγ + fα(r̂;k)
eikr

r
. (B.10)

Notice that under the assumption that the projectile and
the target are distinguishable, the interchannel potential is
local. However, this assumption leads to wrong predictions
in the case of the electron–molecule scattering, since the
impinging electron and the electrons of the molecule are
indistinguishable in the interaction region of the molecule.
We therefore should insert an antisymmetrizing operator
in equation (B.3), so that by repeating the projection
procedure we arrive at equation (52). It is customary in
molecular dynamics to approximate the exchange part of
the non-local potential with local quantities [42]. However,
serious discrepancies with experiments still remain, especially
at low energies of the projectile. This is one of the reasons why
we retain the exact form of the exchange, both in the case of
photo-electron (absorption) spectroscopy and in the study of
the ground state, where the test electron can be assimilated to
an excited photo-electron.

Appendix C. The multichannel Green’s function in
electron–molecule scattering

Using the eigenfunction-expansion technique it is possible to
express the Green’s function (GF) of the total Hamiltonian HN

in terms of only the projectile coordinates (or the test electron
in the study of the ground state of a system). We treat first the
case of distinguishable particles.

Starting from the defining equation for the GF

(E − HN)GN(E) = IN (C.1)

we can expand the total GF in terms of eigenstates of the target
Hamiltonian HN−1 as

GN(E) =
∑
µν

9N−1
µ (r1, . . . , rN−1)Gµν(r, r′;E)

× 9?N−1
ν (r′1, . . . , r′N−1). (C.2)

Likewise, for the unity operator IN in equation (C.1) in the
configuration space of N particles, we can write

IN
≡ δ(r− r′)5N=1

i=1 δ(ri − r′i)

≡ δ(r− r′)
∑
µ

9N−1
µ (r1, . . . , rN−1)

× 9?N−1
µ (r′1, . . . , r′N−1) (C.3)

where in the space of N−1 particles we have limited ourselves
to the subspace of the completely antisymmetric functions.
Projecting equation (C.1) onto the states 〈9N−1

α | on the left
and |9N−1

α′
〉 on the right and remembering equation (B.2) we

find, putting again k2
α = E − EN−1

α ,∑
β

[(∇2
r + k2

α −8Z(r))δαβ − Vαβ(r)]

× Gβα′(r, r′;E) = δ(r− r′)δαα′ (C.4)

or in matrix form

[(∇2
r −8Z(r))I+ k2

− V(r)]G(r, r′;E) = δ(r− r′)I (C.5)

where now I is the unit matrix in the channel space.
If we now drop the assumptions of distinguishable

particles, we have to insert an antisymmetrization operator at
each side of equation (C.2) for both the primed and unprimed
variables. Repeating the projection procedure onto states α
and α′ we obtain

(∇2
r + k2

α)G̃αα′(r, r′;E)

− (∇2
r + k2

α)
∑
β

∫
ραβ(r′′; r)G̃βα′(r

′′, r′;E)

−

∑
β

∫
V ′αβ(r, r′′)G̃βα′(r

′′, r′;E) dr′

= δ(r− r′)δαα′ (C.6)

where we have assumed the relation (90) so that, with h = 0,
V ′αβ is the interchannel potential defined in equations (92) and
(93). Notice that we have introduced the auxiliary function
G̃αα′(r, r′;E), which is related to the original Gαα′(r, r′;E)
by

G̃αα′(r, r′;E) =
∑
β

(
δα′β −

∫
ρβα′(r

′
; r′′)

)
× Gαβ(r, r′′;E) dr′′. (C.7)

This complication arises from the presence of the antisym-
metrizing operators acting also on the primed variables. In
these equations the density matrix ραβ(r; r′) can be obtained
by a self-consistent calculation, as outlined in section 3.3,
either for the ground state (in the case of electron–molecule
scattering) or for a relaxed state around a core hole (in the
case of photoemission or photoabsorption).
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