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Discrete spin variables and critical temperature in deterministic models with glassy behavior

Cristian Giardina`*
Dipartimento di Fisica dell’ Universita` di Bologna and INFN, Sezione di Bologna, via Irnerio 46, 40126 Bologna, Italy

~Received 12 November 1999!

The problem of the existence of a glassy phase transition in deterministic spin models is reconsidered,
examining an Ising model with general spins and nontranslationally invariant interaction. The discrete nature
of the spin variables is shown to allow the glass state.

PACS number~s!: 05.50.1q, 75.50.Lk
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I. INTRODUCTION

The spin-glass phase transition in infinite-range syste
@like Sherrington- Kirckpatrick~SK! model@1## has been ex-
plained in the framework of replica theory, associating
spin-glass phase with the breaking of symmetry for the r
lica solution @2#. The replica trick was introduced to trea
disorder, which is a key ingredient of the problem. The p
sibility of describing a glassy transition in the absence
disorder has been reconsidered in recent years by introdu
deterministicinfinite-range spin models with nontranslatio
ally invariant interactions@3–5#. The idea is that determinis
tic ~but highly and irregularly oscillating! couplings among
the spins enable to reproduce frustation, yielding a comp
landscape for the free energy of the system: one says
disorder is ‘‘selfinduced.’’ This scenario has been nume
cally confirmed in at least one case, thesine model@5#,
through the mapping of the original deterministic system
an appropriate random one. The Hamiltonian of this mode
defined by

H52
1

2 (
i , j 51

N

Ji j s is j ~1!

wheres i561, i 51, . . . ,N are scalar spin variables andJ
is a symmetric orthogonalN3N matrix

Ji j 5
2

A2N11
sinS 2p i j

2N11D , i , j 51, . . . ,N. ~2!

It has been observed@6# that the matrixJ coincides with the
imaginary part of the evolution operatorVA quantizing the
elliptic dynamical system given by the unit Hamiltonia
sympletic matrix

A5S 0 1

21 0D ~3!

acting over the 2-torus@7#. In this case, a glassy behavior h
been detected numerically and also the ground state is kn
for particularprime values of the integerN @5#. While it has
been shown using the replica formalism that the system d
actually exhibit the glassy behavior of the correspond
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random-coupling case, the mean-field equations obtained
resumming the high-temperature expansion do not determ
the critical temperature@8#. Another interesting case seem
to be the coupling matrix

Ji j 5CN

1

AN
cosF2p

N
~gi22 i j 1g j2!G ~4!

that corresponds to the real part of the propagatorVB quan-
tizing hyperbolic maps of the form@9#

B5S 2g 1

4g221 2gD , gPN. ~5!

Here,CN is an arbitrary phase factor,uCNu51. This time, the
critical temperature of a phase transition can be determi
by linearization around the largest eigenvalue ofJ and its
value is Tc;0.8 @10#. The transition is of glassy type be
cause the mean magnetization is zero for small values of
Edwards-Anderson parameter. We do not know whether
possibility of locate the transition temperature is only
mathematical chance or if there is a deeper physical rea
By the way, we observe that the dynamical system con
ered in the sine model is periodic and, sinceJ is orthogonal,
the eigenvalues are only61. In the second case the dynam
cal system is chaotic and, at the thermodynamical limitN
→` ~or equivalently at the classical limith→0), the spec-
trum is equidistributed in@21,1#.

It has been suggested by Parisiet al. that, unlike the ran-
dom case, where the long-ranged spherical model adm
critical temperature@11#, the glass transition in deterministi
spin models only exist for Ising-like variables. The nume
cal study of theXY case@12# ~where the spin variables ar
complex numbers of modulo 1! and the analytical one for the
spherical model@13# ~where the spin variables are allowed
be continuos functions subject to the constraint( i 51

N s i

5N) has strenghtened this conjecture, showing that th
systems are paramagnetic at all temperatures. In this pap
is actually shown that it is the discrete nature of the s
variables in deterministic model that generate a phase t
sition associated with a nontrivial thermodynamical beh
ior. We are going to generalize the dichotomic Ising ca
considering the general case of spins, so that the number o
configurations available for each spin is 2s11. For the sake
of space, we will treat only the ‘‘quadratic’’ coupling~4!.
3375 © 2000 The American Physical Society
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The calculation that will be given is essentially an adapt
of the calculation of Ref.@10#, part of their work has, how-
ever, been simplified.

II. ISING MODEL OF SPIN s

Consider a system ofN spins with only one componen
~the one along thez axis for example! of values, which can
be an integer or a halfinteger. The possible autostates of
spin are labeled by the quantum numbersz which ranges
from 2s to s in unit steps. The Hamiltonian~normalized to
the spin value! is

H52
1

2s2 (
i , j 51

N

Ji j sz~ i !sz~ j !2
1

s (
i 51

N

sz~ i !h~ i !. ~6!

The normalization is such that the maximal interaction
tween two parallel spins (↑↑) remains constant varying th
spin value. Ifs51/2 we recover Eq.~1!. The prefactor 1/2 is
conventional and is kept to compare with previous resu
The partition function @at site-dependent magnetic fie
h( i )50# is the trace of the Boltzmann factor

Z~b!5Tr @exp~2bH !#5(
$sz%

expF b

2s2 (
i , j 51

N

Ji j sz~ i !sz~ j !G .

~7!

Using standard formulas for gaussian integrations we
rewrite the previous expression as a theory ofN fields in zero
dimension

Z~b!5(
$sz%

1

det1/2~2pbJ!
E

RN
dx

3expF2
1

2b (
i , j 51

N

Ji j
21x~ i !x~ j !1

1

s (
i 51

N

sz~ i !x~ i !G .

~8!

The summation over thesz is now decoupled and can b
carried out; after some algebraic manipulations, we have

Z~b!5
1

det1/2~2pbJ!
E

RN
dx expS 2

1

2b (
i , j 51

N

Ji j
21x~ i !x~ j !

1(
i 51

N

logH sinh@~11~1/2s!x~ i !#

sinh@~1/2s!x~ i !# J D . ~9!

To obtain the mean-field equations, we resum the hi
temperature expansion for the Gibbs~i.e., magnetization de
pendent! free energy. We start, as usual, from the Helmho
free energy2bF(b)5 logZ(b), representing its expansio
in diagrammatic way. For the reader’s convenience, we
call the fundamental steps.

~1! In the diagrammatic representation we have to c
sider all the connected diagrams with the propagatorbJi j for
any link between two consecutives vertices.

~2! The vertices factors are now generalized for any v
tex with m links to the cumulantum ~i.e., themth coefficient
of Taylor expansion! of log $sinh@(11 1/2s)x# /sinh@(1/2s)x#%.
n

ch

-

s.

n

-

z

-

-

-

~3! Any diagram has to be divided by its order of symm
try. In the thermodynamical limit, due to the properties
quadratic Gauss sums, it can be shown~see Ref.@10# for a
rigorous proof! that the set of diagrams contributing in ord
N are just those of even ordern52p with p11 vertices and
p loops. Equivalently these are all the diagrams having t
vertices with two links~the extrema! andp21 vertices with
four links ~all the remaining ones!. At every order, Ref.@10#
tell us that couplings gives an amount ofN22p, the symme-
try factor is 2p11 and we only need to calculate the cum
lantsu2 andu4

u25
1

3

s11

s
, ~10!

u452
1

15

~s11!~2s212s11!

s3 . ~11!

Putting everything together, we can perform the summat
and obtain the Helmholtz free energy

2bF~b!5N log~2s11!1N(
p51

`

~u2!2~u4!(p21)
1

2p11

b2p

2p

5N log~2s11!1
5

6

s~s11!2b2

60s31~s11!~2s212s11!b2

5N log~2s11!1NG~b!. ~12!

To determine the Gibbs free energyF@b,m( i )#, we have to
put a magnetic fieldh( i ), repeat the previous expansion an
perform the Legendre transform

F@b,m~ i !#[F@b,h~ i !#1(
i

h~ i !m~ i ! ~13!

with m( i )52]F/]h( i ). The class of nonvanishing diagram
has the same weights as in theh( i )50 case but with an extra
factor of@12m2( i k)# for each vertexi k @14#. The hypothesis
of self-averaging Eq. @8#, namely m2( i )5q
[ limN→`1/N( im

2( i ) yields the same functionG(b) in Eq.
~12!, with b replaced byb(12q). In the final expression for
F@b,m( i )# we have to put by hand the usual terms given
the entropy of a set of noninteracting spins constrained
have magnetizationm( i ) and the ‘‘naive’’ mean field energy

2bF„b,m~ i !…52(
i

logH sinh@~11 1/2s!L s
21~m„i …!#

sinh@~1/2s!L s
21~m„i …!#

J
2m~ i !L s

21@m~ i !#

2
b

2 (
i j

Ji j m~ i !m~ j !2NG@b~12q!#,

~14!

where

Ls~y!5S 11
1

2sD cothF S 11
1

2sD yG2S 1

2sD cothF S 1

2sD yG
~15!
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is the so-called Langevin functions@15#, which is typical of
paramagnetism in nonmetallic solids. Having the express
for the Gibbs free energy, the mean field equations of
model ~that are presumably exact because of its infin
range! are given by direct differentiation of Eq.~14!. These
would be the analogous of TAP equations for SK mo
@16#. To see whether a ‘‘glass’’ phase transition exists
look for solutions of mean-field equations different from t
trivial oneq50. ForT nearTc the magnetizationsm( i ) and
also the eigenvectors corresponding to the largest eigenv
of Ji j are small so we can linearize inm( i ). Using

L s
21@m~ i !#5

3s

s11
m~ i !1

9

10

s~112s12s2!

~11s!3 m3~ i !

1o@m4~ i !# ~16!

the linearized equations read

3s

s11
m~ i !2bm~ i !12bG8~b!m~ i !. ~17!

With some tedious algebra one can rewrite the previ
equation as

05b5@~11s!3~112s12s2!2#2b4@3s~11s!2~112s

12s2!2#1b3@120s3~11s!2~112s12s2!#

2b2@40s4~11s!~14128s123s2!#

1b@3600s6#~11s!210800s7. ~18!

The critical temperatureTc is given by the zeros of Eq.~18!.
For fixed value ofs we numerically solved it; in Fig. 1 we
plot the critical inverse temperaturebc versus the spin value
s. The numerical fit is consistent with the following law:

bc;
10

3
2

3

s11
. ~19!

The inverse critical temperature grows with an inverse po
law for increasing s, approaching a constant value fo
s→`.

We have confirmed in this way that discreteness of s
variable allow the existence of a phase transition in de
n
e
e

l
e

lue

s

r

n
r-

ministic models. Its nature is ‘‘glassy’’~in the sense that the
pure magnetization states at zero temperature are neithe
romagnetic nor antiferromagnetic! by the same argument o
Ref. @10#: at T50 the averaged magnetization is zero b
cause it is proved that

lim
N→`

1

N (
i 51

N

m i50

if m i are the components of any normalized eigenvector
the matrixJ corresponding to the eigenvalue 1. Even thou
the ground state is degenerate, none of the magnetiza
states generates long-range order. One would ask if the
creteness of spin variable is a necessary condition to a g
state exist. To obtain this conclusion one would have to sh
that there is no transition in models with continuous symm
try ~like the XY or Heisenberg models!. This point goes be-
yond the aims of this paper and will be discussed elsewh
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FIG. 1. Plot of the inverse critical temperaturebc versus the
spin values. The solid line is the curvey5
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