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We investigate the phenomenon of drag reduction in a viscoelastic fluid model of dilute polymer solutions.
By means of direct numerical simulations of the three-dimensional turbulent Kolmogorov flow we show that
drag reduction takes place above a critical Reynolds number Rec. An explicit expression for the dependence of
Rec on polymer elasticity and diffusivity is derived. The values of the drag coefficient obtained for different
fluid parameters collapse onto a universal curve when plotted as a function of the rescaled Reynolds number
Re/Rec. The analysis of the momentum budget allows us to gain some insight on the physics of drag reduction,
and suggests the existence of a Re-independent value of the drag cofficient—lower than the Newtonian
one—for large Reynolds numbers.
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I. INTRODUCTION

When a viscous fluid is kept in motion by some external
driving, a mean flow is established: the ratio between the
work made by the force and the kinetic energy carried by the
mean flow is called thedrag coefficient, or friction factor.
This dimensionless number measures the power that has to
be supplied to the fluid to maintain a given throughput.
When the flow is laminar, the drag coefficient is inversely
proportional to the Reynolds number. Upon increasing the
intensity of the applied force the flow eventually becomes
turbulent, and the drag coefficient becomes approximately
independent of the Reynolds numberf1g, therefore substan-
tially larger than in the viscous case.

In 1949 the British chemist Toms reported that the turbu-
lent drag could be reduced by up to 80% through the addition
of minute amountssfew tenths of p.p.m. in weightd of long-
chain soluble polymers to water. This observation triggered
an enormous experimental activity to characterize this phe-
nomenonssee, e.g., Refs.f2–6gd. In spite of these efforts, no
fully satisfactory theory of drag reduction is available yet.
However, a recent breakthrough has been the observation of
drag reduction in numerical simulations of the turbulent
channel flow of viscoelastic fluidsf7g. Most of the features
of experimental flows of dilute polymer solutions are suc-
cessfully reproduced by these models, even at the quantita-
tive level f8g. Despite these advances, the understanding of
drag reduction in the experimentally relevant geometry of
pipe or channel flow is still hindered by the complexity of
these flows already at the Newtonian level, i.e., in the ab-
sence of polymersf9g. This consideration motivated us to
investigate simpler geometries in the hope that this may shed
some light on the basic physical mechanisms of drag reduc-
tion ssee, e.g., Ref.f10gd.

In this paper we present the results of an extensive nu-
merical investigation of the viscoelastic turbulent Kolmog-
orov flow. This system has several analogies with the turbu-
lent channel flow, while its main distinctive trait is the
absence of material boundaries. Notwithstanding this major
difference we will show that drag reduction takes place in the

Kolmogorov flow as well. Furthermore, we observe striking
quantitative similarities with experimental results in wall-
bounded flows: this points to the conclusion that the basic
physical mechanisms of drag reduction be substantially inde-
pendent of the detailed structure of the flow.

II. VISCOELASTIC KOLMOGOROV FLOW

To describe the dynamics of a dilute polymer solution we
adopt the linear viscoelastic modelsOldroyd-Bd f11g

]tu + su · = du = − = p + n0Du +
2h n0

t
= · s + F , s1d

]ts + su · = ds = s=udT · s + s · s=ud − 2
s − 1

t
+ kDs.

s2d

The velocity fieldu is incompressible, the symmetric matrix
s is the conformation tensor of polymer molecules, and its
trace trs is a measure of their elongation. The parametert is
the sslowestd polymer relaxation time. The matrix of velocity
gradients is defined ass=udi j =]iuj and 1 is the unit tensor.
The solvent viscosity is denoted byn0 andh is the zero-shear
contribution of polymers to the total solution viscosityn
=n0s1+hd. The parameterh is proportional to the polymer
concentration. The diffusive termkDs is added to prevent
numerical instabilities f12g. The constant forcing F
=fF cossz/Ld ,0 ,0g maintains the system in a statistically sta-
tionary state characterized by a mean flowkul. Due to the
symmetries ofF, the only nonzero component of the mean
velocity is kuxl: it depends on the shear coordinatez alone,
vanishes atz= ± sp /2dL, and is even under reflections
z→−z. Its value atz=0, kuxlz=0, will be denoted byU. Fi-
nally, we establish a short glossary between the Kolmogorov
flow and the channel flow:F plays the role of the pressure
gradient,pL is analogous to the channel height, andU is
equivalent to the centerline velocity.
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III. NUMERICAL EXPERIMENTS

In this framework, we have performed a series of numeri-
cal integrations of Eqs.s1d and s2d for a set of values of
forcing intensityF, at fixed n, both for the Newtonian and
the viscoelastic case. Comparing results at a givenF is
equivalent to keeping an imposed pressure gradient—
therefore a fixed wall-shear stress—in channel flow experi-
mentsssee, e.g., Ref.f13gd. Equationss1d and s2d are inte-
grated in a periodic cube of side 2p by means of a fully
dealiazed pseudospectral code with 643 collocation points.
The mean flow length scale isL=1 and the viscosity isn
=0.015 625. Starting from an initial configuration with a
small amount of energy on the smallest modes, after the
system evolved into a statistically stationary state, time av-
erages over 100–1000 eddy-turnover times have been per-
formed to obtain the mean profiles of several relevant ob-
servables. The latter include the average velocitykuxl, the
turbulent shear stresssReynolds stressd kuxuzl, and the mean
polymer stress 2n0ht−1ksxzl.

IV. RESULTS AND DISCUSSION

The mean flow is accurately described by the sinusoidal
profile kuxl=U cossz/Ld, both in the Newtonianssee Ref.
f15gd and in the viscoelastic flow. However, as shown in Fig.
1, in the viscoelastic case the centerline velocityU is defi-
nitely larger: this is the hallmark of drag reduction. It has to
be remarked that—at variance with wall-bounded flows
where drag reduction is always accompanied by a structural

change in the profilessee, e.g., Ref.f3gd—in the Kolmogorov
flow the increase in throughput takes place just by means of
an overall rescaling of the mean velocity. This is due to the
different boundary conditions: in channel flows, the profile in
the viscous sublayer is left unchanged upon polymer addition
while the bulk flow increases substantially. This requires a
reshaping of the mean profile, that takes actually place
through the increase of the extent of the buffer regionssee,
e.g., Ref.f13gd. In the Kolmogorov flow there is no con-
straint on velocity profiles, and drag reduction does not nec-
essarily entail their structural change.

To quantify the effect of viscoelasticity on the mean flow,
we have defined the drag coefficient as

f =
FL

U2 , s3d

and measured its dependence on the Reynolds number Re
=UL /n. It is natural to use the Reynolds number based on
solution viscosity: indeed, for the non-shear-thinning fluid
described by Eqs.s1d and s2d, n coincides with theskine-
maticd wall viscosity ssee, e.g., Refs.f7,8gd. It is also pos-
sible to define the equivalent of the friction Reynolds number
Ret, often used in experiments: here, Ret=ÎFL3/n2. In the
Newtonian case Ret~Re.

For Re,Î2 the flow is laminar with mean velocityU
=FL2/n, giving a drag coefficientf =Re−1. At Re*50 the
system is already in a fully developed turbulent state. For a
Newtonian fluid, numerical data show that the drag coeffi-
cient is approximately independent of Ressee Fig. 2d. This
behavior agrees with the following classical Kolmogorov ar-
gument: since the average energy inpute=FU /2 scales as
e=sb /2dU3/L in fully developed turbulence, Eq.s3d yields a
constant drag coefficientf =b. The Newtonian momentum
budget givesFx=]zkuxuzl sthe viscous contribution being

FIG. 1. sColor onlined Mean velocity profiles for a Newtonian
sh=0d and a viscoelastic simulationsh=0.3,El=0.019d at given
forcing amplitudeF=1.5. The measured profiles are undistinguish-
able fromkuxl=U cossz/Ld sfull linesd in both cases. The effect of
elasticity is to increase the peak valueU with respect to the New-
tonian case: in the present case this corresponds to a reduction of
the drag coefficient, defined in Eq.s3d, of about 40%. In the inset,
the profiles of the Reynolds stresskuxuzl=Ssinsz/Ld and the mean
polymer stress 2n0ht−1ksxzl=−T sinsz/Ld. In this case the Reynolds
stress is reduced upon polymer addition to approximately 70% of its
Newtonian value, consistently with experimental results at compa-
rable drag reductionf14g. The “missing” turbulent shear stress is
compensated by the contribution of the polymer stress: the sum ofS
andT is equal toF in both the Newtonian and viscoelastic case.

FIG. 2. sColor onlined The drag coefficient for different vis-
coelastic fluid parameters. Data have been collected from numerical
simulations at different forcing amplitudesF and viscoelastic pa-
rametersh , t , k. The statistical error in the determination off and
Re is of the order of the symbols’ size.
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negligibled and therefore a Reynolds stresskuxuzl
=S sinsz/Ld with S=bU2. For the turbulent Kolmogorov
flow, b.0.15.

When polymers are addedf may be reduced with respect
to its Newtonian value, depending on the polymer elasticity
El=nt /L2, the Schmidt number Sc=n /k, and the concentra-
tion h, as shown in Fig. 2. For the highest Reynolds number
we can attain in our simulations the friction factor is reduced
by 75%. Drag reduction is accompanied by changes in the
velocity field similar to those occurring in channel flow ex-
periments and simulations: the level of transverse fluctua-
tions kuz

2l is reduced while longitudinal fluctuationsŠsux

−kuxld2
‹ increase and high streamwise velocity streaks are

observedssee Fig. 3d. Incidentally, we notice that drag reduc-
tion is observed at Reynolds numbers definitely smaller than
the typical experimental values: this is possible thanks to the
relatively high value of elasticity utilized in our simulations.
Comparable parameters have been used in numerical simu-

lations of the channel flow as wellssee, e.g., Ref.f7gd, and
produced a similar effect on the threshold for drag reduction.

From the inspection of Fig. 2 we notice some systematic
trend: at moderate Reynolds numberssRe&200d viscoelastic
effects do not alter substantially the value of the drag coef-
ficient; at larger Re polymers with a higher elasticity are
more effective as drag-reducing agents; conversely, polymers
with higher diffusivity are less effective. To understand the
variation of the drag coefficient with fluid parameters, we
sought a dependence of the formf =wsRe/Recd where
RecsEl,Sc,hd is the critical Reynolds number for the onset
of drag reduction. To obtain an explicit expression for Rec
we need to extend the argument given by Ref.f16g to the
case of finite polymer diffusivity. The reasoning goes as fol-
lows: for polymers to be substantially elongated, stretching
must prevail over elastic relaxation and diffusivity. This ar-
gument is just a revised version of the Lumley’ss1969d
“time criterion.” Accordingly, at the onset, the terms appear-
ing in Eq. s2d must then satisfys¹udc,2/t+k /L2; since the
transition is incipient we can estimate the typical velocity
gradient assec/nd1/2, and utilizing the expressionec~Uc

3/L
we finally obtain

Rec ~ S 2

El
+

1

Sc
D2/3

. s4d

For vanishing diffusivity we recover the result by Ref.f16g.
In Fig. 4 we present the same data as in Fig. 2, now

plotted against the rescaled Reynolds number Re/Rec. The
good quality of the collapse supports the validity of the re-
lation f =wsRe/Recd. The functionw is universal with respect
to the choice of fluid parameters. Its shape will be derived in
the following, with the aid of simple assumptions, starting
from the equation for momentum conservationssee Ref.f17g
for a similar approach to wall-bounded flowsd.

Upon time averaging, Eq.s1d reduces toFx=−n0]z
2kuxl

+]zskuxuzl−2n0hksxzl /td. Utilizing the numerical observa-
tion that the Reynolds stressS=kuxuzl=S sinsz/Ld and the

FIG. 3. Snapshots of the isosurfacesuxsx,y,zd=U for a New-
tonian sleftd and a viscoelastic simulationsright, El=0.019, Sc
=0.016,h=0.5d. The Reynolds number is Re<350. The arrows
show the direction of the mean flow. Small-scale turbulent fluctua-
tions, responsible for kinetic energy dissipation, are suppressed in
the viscoelastic case. A high-speed streak in the form of a stream-
wise oriented tube is visible in the viscoelastic casesrightd.

FIG. 4. sColor onlined The drag coefficient plotted as a function
of the rescaled Reynolds number Re/Rec. Symbols as in Fig. 2. The
full line is Eq. s5d with b=0.15,g=0.2, andd=0.02.
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polymer stressT=2n0hksxzl /t=−T sinsz/Ld, we obtain the
momentum budgetF=n0U /L2+S/L+T/L. The contribution
n0U /L2 is relevant only in the laminar regime, and can there-
fore be neglected. The dependence of the stresses on the
rescaled Reynolds number is presented in Fig. 5. Below the
threshold the polymer stress is vanishingly small whereas the
Reynolds stress isS.bU2.FL in agreement with the ob-
servation of a Re-independent drag coefficient. Above Rec,
the polymer stress makes a significant contribution to the
momentum budget. At the largest Re we can attain, the elas-
tic stress reaches almost 50% of the total stress, not far from
experimental results by Ref.f18g. Rescaling the stresses with
the critical velocity squared shows that above the onsetS
tends to a constant valuegUc

2 fsee Fig. 5sbdg, and the poly-
mer stress follows the lawT=dU2 fFig. 5scdg. The physical
interpretation of these observations is that above the onset of
drag reduction an increasing fraction of the momentum in-
jected by the external force is sequestered by polymers,
which are, however, less effective in absorbing it than trans-
verse velocity fluctuationssd,bd. This results in an en-
hancement of the mean flow with respect to the Newtonian
case, i.e., drag reduction. Inserting the empirical expressions
for S and T, the momentum budget above the onset reads

F=gUc
2/L+dU2/L, and the resulting drag coefficient is

f = 5b for Re& Rec,

gSRec

Re
D2

+ d for Re* Rec.6 s5d

This expression is compared with numerical results in Fig. 4,
where the values of the parametersg and d have been ob-
tained from the data shown in Fig. 5. The agreement is ex-
cellent, except possibly for Re<Rec, where Eq.s5d predicts
an abrupt transition: from Fig. 5 this rather appears to be a
smooth crossover, whose actual shape cannot be extracted by
means of simple arguments. The actual values ofb , g, andd
are not of utmost importance since they are likely to depend
on the details of the driving force, and therefore on the shape
of the velocity profile. What is crucial to drag reduction is
that d,b, or—in plain words—that momentum is trans-
ferred with greater ease to velocity fluctuations than to elas-
tic ones. Understanding the reasons for this difference would
disclose the basic physical mechanisms of drag reduction.

Remarkably, Eq.s5d suggests the existence of a minimal
value for the drag coefficient in the limit of large Re. In this
ultimate regime momentum transfer would take place only
through polymer stresses. However, the present data do not
cover a sufficient span of values of Re to allow us to confirm
or reject this prediction.

We end up by addressing the issue of the role of polymer
concentration in the determination of the critical Reynolds
number. The results shown in Fig. 4 do show a very weak
dependence onh, compatible with the value Rec~ s1
+hd−2/3 than can be obtained from Eq.s4d. This result is at
variance with experimental findings in pipe and channel
flows, where Rec is a clearly decreasing function of the con-
centration. We argue that this discrepancy is due to the linear
character of the viscoelastic model adopted here. Indeed, fol-
lowing Ref.f19g, let us repeat the argument that leads to Eq.
s4d, now for a nonlinear elastic modelse.g., FENE-Pd with a
stress-dependent relaxation timet /gstr sd, whereg is an in-
creasing function of polymer elongation and equals unity in
the linear range. The time criterion in this case yields Rec

=El2/3fgstr sdg2/3 sthe dependence on diffusivity is omitted
for sake of simplicityd. At small concentrations the typical
polymer extension will be very large, since the feedback on
the velocity field is proportional toh. At larger concentra-
tions, smaller values of trs suffice to maintain the system in
a stationary state. In the linear phase, we have that trs
~h−1 for extended polymers. We expect that the typical
polymer extension would be a decreasing function ofh, and
therefore Rec an increasing function of concentration for
nonlinear models. The numerical verification of this expec-
tation lies beyond the scope of the present paper and will be
addressed in the near future.

To summarize, we have investigated the problem of tur-
bulent drag reduction by polymer additives in the context of

FIG. 5. sColor onlined sad: Peak values of the Reynolds stress
kuxuzl=S sinsz/Ld, and of the polymer stress 2hn0t−1ksxzl=
−T sinsz/Ld, nondimensionalized by the total stressFL. The sum
sS+Td / sFLd nearly equals unity for each couple of data points,
confirming that the viscousssolventd stressn0U /L2 is negligible at
the present Reynolds numbers.sbd The Reynolds stressSandscd the
polymer stressT nondimensionalized by the squared critical veloc-
ity Uc

2: The full lines are S/Uc
2=g sleft, horizontald, S/Uc

2

=bsRe/Recd2 sleft, obliqued, T/Uc
2=dsRe/Recd2 srightd. The nu-

merical parameters areb=0.15,g=0.2, andd=0.02.
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linear viscoelastic fluid models. For the turbulent Kolmog-
orov flow we have shown that the drag coefficient can be
expressed as a function of the rescaled Reynolds number
only, that this function is universal with respect to the fluid
characteristics, and that its shape can be derived by simple
phenomenological arguments. The analysis of the effect of
polymer diffusivity as well as the investigation of concentra-
tion dependence in nonlinear models will be the subject of
future work. Numerical simulations at higher resolution
should allow to settle these issues.
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