New CUORICINO results and the CUORE project

Oliviero Cremonesi INFN, Sezione di Milano and Università di Milano-Bicocca, Milano, Italia on behalf of the CUORE collaboration

Outline:

- CUORICINO
- CUORICINO construction
- CUORICINO detector performance
- CUORICINO results
- CUORICINO background
- Perspectives for CUORE

NOON2004 - 11th -15th February 2004, Tokyo Japan

The CUORE Collaboration

C. Arnaboldi, C. Brofferio, S. Capelli, F.Capozzi, L. Carbone, O. Cremonesi, E. Fiorini, A. Nucciotti, M. Pavan, G. Pessina, S. Pirro, E. Previtali, M. Sisti, and L.Torres Dipartimento di Fisica dell' Università and Sez. INFN di Milano- Milano – Italy J. Beeman, R.J. McDonald, E.E. Haller, E.B. Norman and A.R. Smith Lawrence Berkeley Laboratory, Berkeley - California- USA A. Giuliani, M. Pedretti, A. Fascilla and S.Sangiorgio Dipartimento di Scienze CC, FF e MM dell'Universita` dell' Insubria e Sez. INFN di Milano, Como -Italy M. Barucci, E. Pasca, E. Olivieri, L. Risegari, and G. Ventura Dipartimento di Fisica dell'Università and Sez. INFN di Firenze- Firenze- Italy G. Frossati and A. de Waard Kamerling Onnes Laboratory, Leiden University- Leiden -The Netherlands M. Balata, C. Bucci Laboratori Nazionali del Gran Sasso, INFN - L'Aquila – Italy D.R. Artusa, F.T. Avignone III, I. Bandac, R.J. Creswick, H.A. Farach and C. Rosenfeld Department of Physics and Astronomy, University South Carolina - Columbia S. C. - USA V. Palmieri Laboratori Nazionali di Legnaro, INFN - Padova - Italy S. Cebrian, P. Gorla, I.G. Irastorza, A. Morales, C. Pobes

Lab. of Nucl. and High En. Physics, University of Zaragoza - Zaragoza – Spain

Neutrinoless Double Beta Decay

 \diamond constraints on $\langle m_{\nu} \rangle$ can translate in constraints on m_{min}

Low Temperature Detectors (LTD)

Thermal Detectors Properties

- high energy resolution
- Iarge choice of absorber materials
- true calorimeters
- slow τ=C/G~1÷10³ ms

Detection Principle $\Delta T = E/C$ C thermal capacity Output Out

example: 760 g of TeO₂ @ 10 mK $C \sim T^3$ (Debye) $\Rightarrow C \sim 2 \times 10^{-9}$ J/K 1 MeV γ -ray $\Rightarrow \Delta T \sim 80 \mu$ K $\Rightarrow \Delta U \sim 10 \text{ eV}$

TeO2 LTD's

Calorimeters

- source \subseteq detector
 - ▲ large N_{nuclei}
 - high energy resolution ΔE
 - high efficiency
- measure E = E_{β1} + E_{β2}
 signature: a peak at Q_{ββ}

TeO, thermal calorimeters

- Active isotope ¹³⁰Te
 - natural abundance: a.i. = 33.9%
 - transition energy: $Q_{_{BB}} = 2529 \text{ keV}$
 - encouraging predicted half life $\langle m_{\nu} \rangle \approx 0.3 \text{ eV} \Leftrightarrow \tau_{1/2}^{0\nu} \approx 10^{25} \text{ years}$

Absorber material TeO₂

- Iow heat capacity
- large crystals available
- radiopure

$\tau_{1/2}^{0\nu}$ sensitivity measuring time [y] detector mass [kg] detector efficiency Mt_{meas} $\sum (\tau_{1/2}^{0\nu}) \propto \epsilon \cdot \frac{a.i.}{a.i.}$ $\Delta E \cdot bkg$ isotopic abundance atomic number energy resolution [keV] background [c/keV/y/kg]

The CUORE project

CUORE expected sensitivity

CUORE $\beta\beta(0\nu)$ sensitivity will depend strongly on the background level and detector performance. In five years:

B(counts/keV/kg/y)	$\Delta (\text{keV})$	$T_{1/2}(y)$	$ \langle m_{\nu} \rangle \text{ (meV)}$
0.01	10	1.5×10^{26}	23 - 118
0.01	5	2.1×10^{26}	19 - 100
0.001	10	4.6×10^{26}	13-67
0.001	5	$6.5{\times}10^{26}$	11-57

Pascoli and Petcov.: hep-ph/0310003

(SNO+salt, atmospheric, CHOOZ, KamLAND

CUORICINO

Slightly modified single CUORE tower

test:

- Iarge mass TeO₂ detectors
- tower-like structure of CUORE sub-elements
- background origin and reduction techniques

independent experiment:

- important results on
 - ¹³⁰Te Neutrinoless Double Beta Decay
 - WIMP Dark Matter

Laboratori Nazionali del Gran Sasso, Hall A same cryostat which hosted Mi-DBD 20 crystal array

CUORICINO tower

mixing chamber *T* ≈ 6 mK

roman Pb shielding (1 cm lateral) external shields:

- 10 cm Pb + 10 cm low act Pb
- neutron shield: B-polyethylene
- nitrogen flushed anti-radon box

CUORICINO tower (2)

central crystal has a 4π active shielding like in CUORE configuration ⇒ anti-coincidence for background reduction

- 11 modules with 4 detectors
 - 44 TeO₂ crystals
 - 5×5×5 cm³ ⇒ 790 g
 - ▶ TeO₂ mass \Rightarrow 34.76 kg

Total number of detectors: 62

- 2 modules with 9 detectors
 - 18 TeO₂ crystals
 - 3×3×6 cm³ ⇒ 330 g
 - ▶ TeO₂ mass \Rightarrow 5.94 kg
- 4 crystals are enriched
 - ▼ 2×¹³⁰TeO₂ + 2×¹²⁸TeO₂
 - total active mass
 ▷ TeO₂ → 40.7 kg
 ▷ ¹³⁰Te → 14.1 kg
 ▷ ¹²⁸Te → 0.54 kg

CUORICINO assembly

crystal surface cleaning

thermistor & heater gluing

- careful material selection
- careful cleaning of Cu and TeO₂ surfaces
- clean conditions for detector assembling
 - clean room
 - nitrogen atmosphere to avoid radon contaminations

CUORICINO assembly (2)

CUORICINO final assembly

Tower positioning system

Roman lead shield and suspension

Detector performance

Wiring system failure during cooldown

⇒ few detectors disconnected

330 g crystals: 16 working

- ► 3.96 kg of TeO₂
- 790 g crystals: 32 working
 - 25.28 kg of TeO₂

cool down: february 2003
start: april 19th, 2003
stop I: june 23rd, 2003 (LNGS temporary stop)
stop II:november 1st 2003 (wiring repair)

total working mass ¹³⁰Te: 10.4 kg
¹²⁸Te: 0.54 kg

average (FWHM) energy resolutions

- 790 g $\rightarrow \langle \Delta \boldsymbol{E}_{FWHM} \rangle \approx$ 7 keV
- 330 g $\rightarrow \langle \Delta \boldsymbol{E}_{FWHM} \rangle \approx$ 9 keV

2615 keV 208TI γ-line

- 3 days calibration
- ▶ external ²³²Th source

Detector response

Pulse shape

- raise time: tens msec
- decay time: hundreds msec

Pulse height (normalized to 1 kg of TeO2)

Detector performance: γ-source calibrations

Energy [KeV]

Background measurements: γ-region

Background measurements: α**-region**

Energy (keV)

Updated $\beta\beta(0\nu)$ **results**

Background model

Background sources

- bulk contaminations of setup materials
- cosmic rays
- Neutrons
- ► surface contaminations (e^{-λx}) of detector elements

Experimental measurements

- MiDBD I+II
- CUORICINO

Monte Carlo simulations

- GEANT4 (+decay chains generator)
- **FLUKA**
- ► COSMO

detailed description of

- Detector
- Cryogenic setup
- Radiatiopn shields

Background model: α peaks

U & Th (s.e.) **crystal** surface contaminations ($\lambda \sim 0.2-1 \ \mu m$) ²¹⁰**Po crystal** bulk contamination (5.4 MeV peak) ²¹⁰**Pb copper** surface contamination ($\lambda < 0.1 \ \mu m$) (5.3 MeV peak)

Background model: continuum

U & Th (s.e.) crystal surface contaminations (λ~0.2-1 μm)
 ²¹⁰Po crystal bulk contamination (5.4 MeV peak)
 ²¹⁰Pb copper surface contamination (λ< 0.1 μm) (5.3 MeV peak)
 U or Th or ²¹⁰Pb copper ("deep") surface contaminations (λ~10 μm)

Background results and CUORE perspectives

γ-region

- bulk contaminations of detector and cryogenic setup materials
 - required contamination levels in agreement with Ge detector measurements

α -region

- surface contaminations of detector materials (crystal & mounting structure)
 - exponential density profile (e^{- λx}: λ =0.1-10 µm)
 - required contamination levels (when considered as distributed over a thin surface layer) are 2-3 orders of magnitude larger than the bulk values of the corresponding materials
- preliminary HR ICPMS measurements of CUORICINO copper samples seem to confirm both contamination levels and density profiles
- Surface cleaning procedure can be improved

 $\beta\beta$ (0v) Monte Carlo evaluations based of CUORICINO background results and available bulk contamination limits from Ge measurements:

bulk	$3.8 imes10^{-3}$	couns/keV/kg/y		
surface (TeO2)	2 imes 10 ⁻²	couns/keV/kg/y		
surface (Copper)	5 × 10-2	couns/keV/kg/y		
UORE sensitivity goal can be reached				

CUORE time schedule

Summary

CUORICINO: 19st April 2003 \rightarrow

- successfully operating independent experiment on ¹³⁰Te $\beta\beta(0\nu)$
 - ► 40.7 kg of TeO₂, $B_{\beta\beta(0\nu)}$ = 0.19 ± 0.04 c/keV/kg/y, ΔE = 8keV
 - ► $\tau_{1/2} \ge 7.5 \times 10^{23}$ years at 90% C.L. ($\langle m_{,} \rangle \le 0.32 \div 1.68$ eV)
 - ► $S^{1\sigma}_{3 \text{ years}} \ge 6 \times 10^{24} \text{ years} \langle m_{\gamma} \rangle \le 0.11 \div 0.60 \text{ eV}$
- good technical performance
 - reproducibility, stability, energy resolution
 - Problems with wiring system now repaired
- good knowledge of the background contributions
- good control of the surface cleaning procedures
- tower-like large mass LTD's (CUORE) are feasible
 - CUORE proposal: http://crio.mib.infn.it/wig/Cuorepage/proposal-040119.pdf