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A B S T R A C T   

Diabetic Retinopathy is a retina disease caused by diabetes mellitus and it is the leading cause of blindness 
globally. Early detection and treatment are necessary in order to delay or avoid vision deterioration and vision 
loss. To that end, many artificial-intelligence-powered methods have been proposed by the research community 
for the detection and classification of diabetic retinopathy on fundus retina images. This review article provides a 
thorough analysis of the use of deep learning methods at the various steps of the diabetic retinopathy detection 
pipeline based on fundus images. We discuss several aspects of that pipeline, ranging from the datasets that are 
widely used by the research community, the preprocessing techniques employed and how these accelerate and 
improve the models’ performance, to the development of such deep learning models for the diagnosis and 
grading of the disease as well as the localization of the disease’s lesions. We also discuss certain models that have 
been applied in real clinical settings. Finally, we conclude with some important insights and provide future 
research directions.   

1. Introduction 

Diabetes Mellitus is a serious public health problem, affecting 463 
million people worldwide and this number is projected to rise to 700 
million by 2045 [1]. At least one third of diabetics also suffer from an 
eye disease which is related to diabetes, of which diabetic retinopathy 
(DR) is the most common one [2]. DR is characterized by progressive 
vascular disruptions in the retina caused by chronic hyperglycemia and 
can be developed by any diabetes patient, regardless of its severity [3]. It 
is the leading cause of blindness among working age adults around the 
world and it is estimated that there are approximately 93 million people 
with DR worldwide [4]. These numbers are expected to rise even more, 
mainly because of the rising prevalence of diabetes in emerging Asian 
countries such as India and China [5, 6]. 

Although diabetic retinopathy is largely asymptomatic in the early 
stages, neural retinal damage and clinically invisible microvascular 
changes progress during these early stages [7]. Thus, there is a need for 
regular eye screening for patients with diabetes, as timely diagnosis and 
subsequent management of the condition is essential [8]. Since the only 
preventive strategy is the control of hyperglycemia, hyperlipidemia and 
hypertension early detection of DR becomes even more essential [7]. In 
addition, regarding its treatment, currently available interventions, such 
as laser photocoagulation, significantly decrease the likelihood of 
blindness in proliferative retinopathy and diabetic maculopathy in up to 
98%, if the eyes are treated at an early stage of the disease [9]. It be
comes evident that the key to the delay or even prevention of blindness 
from diabetic retinopathy is due to early detection and appropriate 
treatment [10]. 
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Although initial diagnosis of DR may be based on functional changes 
in electroretinography (ERG), retinal blood flow and retinal blood vessel 
calibre [11], in clinical practice early diagnosis is based on fundus ex
amination [12]. Fundus photography is a rapid, non-invasive, well-
tolerated and widely available imaging technique [13] that constitutes 
one of the most used methods to assess the extent of DR. Utilizing fundus 
images, ophthalmologists observe retina lesions at high resolution in 
order to diagnose diabetic retinopathy and assess its severity. However, 
manually diagnosing DR from fundus images demands a high level of 
expertise and effort by a professional ophthalmologist, especially in 
densely populated or remote areas like in India and Africa, where the 
number of people with diabetes and DR is projected to increase 
dramatically in the next years, while the number of ophthalmologists is 
disproportionally low [14–17]. This has motivated the research com
munity to develop computer-aided diagnosis systems, which will reduce 
the cost, time and effort needed by a medical expert to diagnose DR. 

Recent advancements in Artificial Intelligence (AI) and the increase 
of computational resources and capabilities have created the opportu
nity to develop Deep Learning (DL) applications for accurate DR 
detection and classification. In this review article, recent DL-based 
methods, i.e. published after 2016, the detection and classification of 
DR presented and critically discussed. Although some review articles 
regarding the application of deep learning methods on DR have been 
published during the past few years [18–22], most of them focus only on 
specific aspects of the data analysis and modeling pipeline, as is pre
sented in Fig. 1, which in some cases is limited to the reporting of the 
model’s performance [21, 22], or in the commonly used preprocessing 
methods [19, 20], while in Ref. [22], a detailed account of the publicly 
available datasets is not included. These fragmented efforts call for a 
more detailed and integrated effort to review the technical imple
mentations and progress in this really active research area. To this end, 
we present a novel holistic overview of the analysis pipeline (Fig. 1), in 
which apart from presenting comparative technical information 
regarding the development of published DL models for the classification 
and segmentation of fundus images, we also include a thorough analysis 
of the publicly available datasets, the commonly used preprocessing 
pipelines, as well as a presentation of models that have been applied in 
real clinical settings. 

In particular, this article provides a thorough analysis regarding the 
whole analysis pipeline, starting from the data preparation and pre
processing methods presented in Section 5, followed by the data analysis 
stage employing deep learning models. Regarding the latter, we include 
two distinct sections of artificial intelligence in the context of diabetic 
retinopathy. The first focuses on the evaluation of strengths and weak
nesses of published efforts to develop deep learning models for the 
classification of DR’s grading in Section 6, while the second provides a 
similar analysis, regarding efforts to develop deep learning models for 
the automatic segmentation of lesions that are related to DR, such as 

exudates (EX), microaneurysms (MA) and haemorrhages (HE), in Sec
tion 7. As for the remaining sections of this article, Section 2 and Section 
3 include introductory information regarding Diabetic Retinopathy and 
Deep Learning respectively. In Section 4 we provide a detailed 
description and assessment of the various public datasets that can be 
used for DL development, discussing several critical characteristics of 
such datasets (e.g. class balancing, grading protocol used, etc.). It is 
worth mentioning that the reviewed datasets target both the classifica
tion and segmentation tasks. We also provide information regarding 
several DL models that have been applied in a real clinical setting or 
have been approved by regulatory agencies for use in clinical decision 
processes in Section 8. Finally, we conclude this article with an elaborate 
discussion of our main findings and proposals for future research, in 
Section 9 and Section 10 respectively. 

2. Diabetic retinopathy 

During the early stages of diabetic retinopathy microaneurysms can 
be observed on the retina, and are caused by degeneration and loss of 
pericytes, leading to capillary wall dilatation [8, 23]. When the wall of a 
capillary or microaneurysm is ruptured, intraretinal haemorrhages 
occur. Other lesions of non-proliferative diabetic retinopathy include 
soft and hard exudates, intraretinal microvascular abnormalities 
(IRMA), venous beading and venous loops or reduplication [8, 23]. 
According to Stitt et al. [24], IRMAs appear as large calibre tortuous 
vessels in areas of ischemia and may represent attempted vascular 
remodelling. Finally, the distinction between non-proliferative and 
proliferative diabetic retinopathy is based on the presence of neo
vascularization, which essentially refers to the growth of new retina 
vessels due to ischemia to preexisting ones. Fig. 2 presents some lesions 
on an indicative fundus image of a retina. 

At any stage of diabetic retinopathy, diabetic macular edema (DME) 
can occur, an endpoint which constitutes the most common cause of 
blindness [25]. The presence of edema is accompanied by abnormalities 
such as exudates within one disc diameter of the centre of the fovea, 
exudates within the macula, retinal thickening within one disc diameter 
of the centre of the fovea and microaneurysms or haemorrhages within 
one disc diameter of the centre of the fovea [26]. 

Regarding the clinical grading protocols of DR, although the gold 
standard is the Early Treatment Diabetic Retinopathy Study (ETDRS) 
grading scheme [27], its use in everyday clinical practice has not proven 
to be easy or practical. Several alternative scales have been proposed in 
an effort to improve the screening of patients and communication 
among caregivers [28]. The development of such simplified diabetic 
retinopathy severity scales in several countries [29–31], had not led to a 
single international severity scale so far. To that end, the Global Diabetic 
Retinopathy Project Group has proposed the International Clinical 

Fig. 1. Analysis pipeline of fundus images.  Fig. 2. Indicative DR lesions on a fundus image.  
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Diabetic Retinopathy Disease Severity Scale [28], which classifies DR in 
5 severity scales, as shown in Table 1. 

3. Deep learning 

Deep Learning (DL) is a class of Artificial Intelligence (AI) methods 
inspired by the structure of human brain and is based on artificial neural 
networks. Essentially, DL refers to methods learning the mathematical 
representation of the latent and intrinsic relations of the data in an 
automatic manner. Unlike traditional machine learning methods, deep 
learning ones require much less human guidance, since they are not 
based on the generation of hand-crafted features, a task that can be very 
laborious and time consuming, but instead learn appropriate features 
directly from the data. In addition, DL methods scale much better than 
traditional ML methods as the amount of data increases. In this section, a 
short overview of some key DL concepts is provided. 

3.1. Neural networks 

The simplest form of a neural network refers to an Artificial Neural 
Network (ANN), which consists of 3 layers of neurons, one input layer, 
one hidden layer and a final output layer. Such networks are known as 
Shallow (Feed-Forward) Neural Networks, because they only have one 
hidden layer. In contrast, a Deep (Feed-Forward) Neural Network (DNN) 
consists of more than two hidden layers. Each hidden and output layer 
consists of several artificial neurons and every input node and hidden 
neuron node is connected to each neuron in the next layer through a 
connection link. In addition, these networks accept a one-dimensional 
array as their input and thus cannot be directly used with imaging data. 

3.2. CNN architectures in fundus analysis 

3.2.1. Traditional CNN 
Convolutional Neural Networks (CNN), which unlike shallow neural 

networks accept 2D arrays as their input, were inspired by human vision 
and their concept is based on a fundamental mathematical operation, 
namely “convolution”. The main difference of a CNN from a DNN is that 
for the latter all the neurons at a given layer contribute to the compu
tation of the output of every neuron at the next layer, which is not the 
case for a CNN. Instead, a CNN utilizes filters or kernels to compute 
convolutions by sliding over a part of the original image to produce a 
feature map. Thus, if the size of the filter is x × x, then only a window of 
x2 pixels will play role in computing the value of each unit of the next 
layer’s feature map, which directly impacts the receptive field that is 
defined as the region in the input space that a particular CNN’s feature is 

affected by. Finally, the convolutional part is often referred to as “the 
feature extraction part” of the network, while the rest is referred to “the 
classification part”. The former learns the imaging features that are then 
reduced to a one-dimensional array and fed through the latter, which 
essentially is a Deep Neural Network, in order to classify the input image 
based on the generated features. 

3.2.2. UNet 
UNet [32] architectures are more suitable for semantic segmentation 

than traditional CNNs, because of their ability to preserve the structural 
integrity of the image. In particular, they consist of a contracting path to 
capture the relevant context and a symmetric expanding path, enabling 
precise and accurate segmentation. In addition, a UNet architecture has 
less parameters and is faster than traditional CNNs due to the fact that it 
processes the image in one pass, rather than processing multiple patches 
in a sliding window approach, as a CNN would, and that is why such 
architectures are called “Fully Convolutional Networks” (FCN). Finally, 
it requires much less data than traditional CNNs to perform a segmen
tation task, which is crucial for medical image analysis, where the 
number of available data is much smaller than in other fields of com
puter vision. 

3.2.3. Attention modules 
It is well known that human vision and perception relies on attention 

mechanisms to focus on specific parts of a scene or an object instead of 
processing the whole scene at once [33–35]. On the other hand, tradi
tional CNNs have yet to fully and successfully incorporate such a 
mechanism. To that end, many studies have recently proposed such 
mechanisms, called attention modules, in order to improve the perfor
mance and robustness of the models [36–39]. 

3.2.4. Generative Adversarial Networks 
Finally, another important class of convolutional neural networks 

regards the Generative Adversarial Network (GAN) [40]. A traditional 
GAN consists of two separate models, the generative network which 
generates candidate samples based on the original data distribution and 
the discriminator which tries to distinguish the generated candidate 
samples from the true data distribution. Following such a training 
strategy, the generator is able to produce candidate samples that are 
closely related to the true data distribution. Application domains of 
GANs include image super-resolution (i.e. generate high resolution 
versions of the input image), creating art and image-to-image translation 
(e.g. transform a day image to its night equivalent) [41]. 

3.3. Transfer learning 

Training a deep neural network is very demanding in terms of 
computational resources and data required. The world’s largest object 
detection database, ImageNET [42], consists of over 14 million real life 
images, such as animals, devices, food, people, vehicles, etc. On the 
other hand, the largest dataset reviewed in this article consists of a little 
more than 80.000 fundus images. That difference is based on the fact 
that unlike images of everyday objects, medical images are very hard to 
obtain due to the necessary curation, annotation and legal issues 
involved. 

Thus, training robust and accurate models can be quite difficult when 
it comes to medical problems. It is possible, however, to leverage models 
that are trained on large datasets, such as ImageNet, by transferring the 
obtained knowledge to another model, even if the application field 
differs. Transfer Learning does exactly that, i.e. improve the learning in 
one task by transferring knowledge from another task that is already 
learned [43]. Transferring knowledge from ImageNet to a medical im
aging domain ultimately makes the network able to easier detect low 
level features of the image (i.e. edges, contours, etc.). In order to actually 
detect DR, one has to fine-tune (i.e. retrain) the model on the new task (i. 
e. new dataset), a process that, however, will be much faster and more 

Table 1 
International clinical DR disease severity scale (ICDRDSS).  

Disease Severity 
Level 

Findings upon Dilated Ophthalmoscopy 

0 = No DR No abnormalities 
1 = mild DR Micro-aneurysms only 
2 = Moderate DR More than micro-aneurysms but less than NPDR 
3 = Severe DR Any of the following and no signs of proliferative 

retinopathy:  
1. More than 20 intraretinal haemorrhages in each of four 

quadrants  
2. Definite venous beading in two or more quadrants  
3. Prominent IRMA in one or more quadrants 

4 = Proliferative DR One or both of the following:  
1. Neovascularization  
2. Vitreous/preretinal haemorrhage 

IRMA = intraretinal microvascular abnormalities; NPDR = Non-Proliferative 
Diabetic Retinopathy; PDR = Proliferative Diabetic retinopathy Note: (1) Any 
patient with two or more of the characteristics of severe NPDR is considered to 
have very severe NPDR. (2) PDR may be classified as high-risk and non-high- 
risk. 
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accurate than training it from scratch. 

3.4. Ensemble learning 

Another very important topic of research in AI regards Ensemble 
Learning, which refers to the exploitation of multiple models (i.e. base 
models) to produce stronger predictive results than those produced by 
the individual models. This learning strategy aims at reducing the 
generalization error of the model and is a promising technique to fuse 
data from multiple modalities. In ensemble learning modeling infra
structure, a diverse set of base models is operated on the same dataset, or 
on a subset of the given available data, towards providing single pre
dictions from a combination of their individual outputs. There are 
several ensemble techniques that can be used with all the possible 
models, given that the task at which each individual model has been 
trained on is the same across all models. Such methods comprise majority 
voting, averaging, bagging, stacking and boosting. 

An intuitive example of majority voting regards a classification 
problem, where each individual classifier produces an outcome, and the 
final prediction is made based on which outcome has concentrated the 
most votes. Averaging is used for regression problems, based on which a 
weighted or not average of the individual predictions are combined for 
the final outcome. In bagging, many models are trained each on only a 

subset of the original dataset, and then their outputs are combined either 
by majority voting, averaging or another strategy to produce the final 
prediction outcome. Furthermore, in stacking a separate meta-model is 
trained on the output predictions of the individual models, in order to 
produce the final prediction. Ensemble methods based on boosting aim 
at incorporating models that are trained multiple times based on the 
performance errors of previously trained and poorly performing models. 
Then a weighted average of the predictions is computed based on the 
predictive performance of the individual models. 

3.5. Other learning paradigms 

Other important concepts and learning strategies include Multitask 
Learning, Multimodal Learning and Active Learning. A simple illustra
tion of the discussed strategies is presented in Fig. 3. By Multitask 
Learning one can predict the outcome for two different tasks utilizing a 
single data encoding network. Multimodal Learning is mostly seen in 
biology, pathology and radiology domains, where multiple imaging and 
non-imaging source (e.g. MRI, CT, molecular and clinical data) are 
combined for data analysis [44]. Each data modality is firstly processed 
by its dedicated model and then the fused features are used for training 
the common model. Finally, Active Learning regards the process of 
training the model on a small labelled subset of the data, produce the 

Fig. 3. Learning Strategies - (a) Simple DL 
model based on a single data source and 
predicting a single outcome, (b) Multi-task 
learning model based on a single data 
source and predicting two outcomes, (c) 
Multi-modal learning model based on two 
data sources for predicting a single outcome, 
(d) Transfer learning schema, in which the 
parameters of a source model trained on one 
dataset are copied to a target model for 
further fine-tuning purposes on another 
dataset, and (e) Active learning schema, 
where a user is queried to label new data 
based on a prioritization score.   
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predictions for the rest of the unlabelled subset of the data, prioritize 
them based on a given strategy and query a user for the ground truth 
labels of a proportion of the unlabelled data based on the prioritization 
score [45]. Then the model is trained on the new labelled subset of the 
data [45]. Active learning is mostly used in application domains where 
the amount of data is too large to be labelled and a priority should be 
given to label the data. 

4. Diabetic retinopathy datasets 

In this section we present various retina fundus datasets for devel
oping and benchmarking Deep Learning Systems (DLS) in the context of 
diagnosing Diabetic Retinopathy. Table 2 presents details of all datasets 
regarding their size, resolution, Field of View (FoV) and the annotation 
protocol used. Table 3 presents details regarding the class-wise distri
bution of the severity gradings and the grading protocol used for each 
classification dataset. Table 4 presents similar information regarding the 
datasets used for segmentation purposes. 

4.1. Kaggle EyePACS 

Kaggle EyePACS is the most used and largest public dataset for 
Diabetic Retinopathy classification, containing more than 80.000 
fundus images and was provided by the EyePACS platform for the Dia
betic Retinopathy Detection competition which was sponsored by the 
California Healthcare Foundation [46]. It consists of a large number of 
high-resolution fundus images of the retina of both eyes, which were 
obtained under a variety of imaging conditions by various devices at 
multiple primary care sites throughout California and elsewhere. How
ever, due to such variability, both the data (e.g. artifacts, blurring, 
focusing and exposure problems) and the ground truth labels exhibit 
noise, which was an intended goal in order to better simulate a real 
world scenario. The images were graded by a trained professional ac
cording to the ICDRDSS scale [28]. 

4.2. Kaggle APTOS 2019 

Kaggle APTOS 2019 Challenge [47] dataset was collected by Aravind 
Eye Hospital in India’s rural areas, in an effort to build powerful tools to 
automatically diagnose Diabetic Retinopathy and improve the hospital’s 
ability to identify potential patients. It is the third largest dataset, con
sisting of 5590 images. However, one of its limitations is the large class 
imbalance, especially for Severe NPDR class, which has only 193 images. 
Just like Kaggle EyePACS dataset, due to them being collected in a real 
world multicentre environment, APTOS dataset also exhibits variations 

due to different camera settings across centres and noise both in the data 
(i.e. artifacts, focus problems, be under/overexposed) and the labels. 

4.3. Messidor & messidor 2 

The Messidor dataset [48] consists of 1200 retina fundus images 
which were collected by 3 ophthalmology departments, in France, be
tween 2005 and 2006. Pupil dilation was used prior to capturing 800 
images, while the rest 400 were captured without pupil dilation. Mes
sidor 2 dataset [48, 49] contains 1058 of the images of the original 
Messidor dataset, as well as 690 additional images that were collected 
between 2009 and 2010 in the Ophthalmology department of Brest 
University Hospital, France. 

Unlike Kaggle EyePACS dataset, the images of both datasets have 
very good quality, without any form of noticeable noise in them. The 
datasets contain an image-level medical diagnosis for each of the im
ages, regarding the severity of Diabetic Retinopathy, but not any pixel- 
wise lesion segmentation information. However, their custom grading 
system was not consistent with the widely used ICDRS protocol, which 
limits its validity and applicability. 

4.4. IDRiD 

The IDRiD [50] dataset consists of 516 high-quality images collected 
at an ophthalmology clinic in Nanded, India, using a Kowa VX - 10α 
fundus camera. Both eyes of all subjects were dilated prior to the image 
capture procedure. It provides image-level grading about the severity of 
Diabetic Retinopathy according to the ICDRS scale and grading 
regarding the risk of Diabetic Macula Edema (DME) for all 516 images. It 
also provides pixel-wise annotations of the relevant lesions (i.e. Hard & 
Soft Exudates, Microaneurysms and Haemorrhages) and the optical-disc 
structure for 81 images of the dataset. 

4.5. DDR 

The DDR [51] dataset is the second largest dataset when considering 
the classification task, consisting of 12522 images, but it is a fairly new 
dataset and hasn’t been used widely yet. The data were collected be
tween 2016 and 2018 across 147 hospitals in China’s 23 provinces and 
annotated by multiple professionals according to the ICDRDSS scale 
using a majority voting schema. In addition, a sixth grade was provided 
in order to distinguish poor quality images into a single category. 
However, there is a great imbalance between the healthy/moderate DR 
classes and the rest, i.e. mild, severe and proliferative DR, which can 
lead to overfitting. Regarding the relevant DR lesions, 757 images of the 

Table 2 
Retina fundus image datasets.  

Name Size Resolution Annotations FoV Tasks Multiple Experts 

EyePACS [46] 88702 Varying Image Level – DR Grading No 
APTOS 2019 [47] 5590 Varying Image Level – DR Grading No 
Messidor [48] 1200 1440 × 960 

2240 × 1488 
2304 × 1536 

Image Level 45◦ DR Grading 
Risk for DME 

Yes 

Messidor 2 [48, 49]] 1748 Varying Image Level 45◦ DR Grading Yes 
IDRiD [50] 516 4288 × 2848 Image & Pixel Level 50◦ DR Grading 

Lesion Segmentation 
Yes 

DDR [51] 12.522 Varying Image & Pixel Level 45◦ DR Grading 
Lesion Segmentation 

Yes 

E-Ophtha [52] 463 Varying Pixel Level 50◦ Healthy vs Diseased 
Exudates and 
Microaneurysms Detection 

Yes 

DiaRetDB1 [54] 89 1500 × 1152 Pixel Level 50◦ Lesion Segmentation Yes 
DRiDB [55] 50 768 × 584 Pixel Level 45◦ MAS, HMs, HEs, SEs, 

OD and Macula Detection and Vessel Extraction 
Yes 

ROC [56] 100 768 × 576 
1058 × 1061 
1389 × 1383 

Detection Level 45◦ Haemorrhages and 
Microaneurysms Detection 

Yes  
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dataset were annotated at a pixel-level for lesion segmentation purposes, 
as well as bounding boxes around them were also provided for lesion 
detection purposes. 

4.6. E-ophtha 

The E-Ophtha [52] dataset consists of 463 images, of which 268 
regard healthy subjects, 148 patients with microaneurysms or other 
small red lesions and 47 with exudates. It has been used for automatic 
prediction of DR in a binary task (healthy vs diseased) [53]. However, 
due to the low number of images contained in the dataset compared to 
the larger datasets (Kaggle and Messidor), it is mostly used in the 
literature for developing segmentation algorithms, and not for classifi
cation ones. 

4.7. DiaRetDB1 

DiaRetDB1 [54] consists of 89 fundus images which were collected at 
Kuopio university under a controlled environment and were graded by 4 
experts. However, their distribution does not reflect a typical popula
tion, since not only the data sample is small and from a single clinical 
site, but also all the images were captured under a controlled environ
ment without significant variations in the capturing procedure [54]. 

4.8. DRiDB 

DRiDB [55] consists of 50 fundus images and included annotations 
regarding the structure of the retina’s optic disc and vessels, any present 
pathologies, neovascularizations and disease grading, all of which were 
determined by multiple experts. Although it is a fairly small dataset, it is 
also the most informative. 

4.9. Other datasets 

Additional retina fundus datasets, such as STARE [57], DRIVE [58], 
ORIGAlight [59], CHASE_DB1 [60], HRF [61] and others do exist. 
However, they are not discussed in this paper, since their main objective 
regards other purposes, such as retina vessel segmentation, which are 
out of scope of the present review. 

5. Preprocessing 

As discussed in Section 4, capturing fundus images using a variety of 
hardware devices, under a variety of environmental conditions induces 
noise to the final image. In order to reduce such heterogeneity, which 
ultimately affects the performance of the classification model, as well as 
to highlight some fine details of the images, pre-processing of the images 
is usually a necessary step in most of the studies reviewed. In this sec
tion, we discuss several such techniques used in the reviewed literature. 

5.1. Contrast enhancement 

To begin with, contrast enhancement is a common preprocessing 
technique used for highlighting the foreground from the background, in 
any image processing or analysis pipeline. A simple method for contrast 
enhancement in fundus images is the histogram equalization [62–65], 
which increases the global contrast of the image, but neglects the local 
variations across the image. A more advanced algorithm for contrast 
adjustment, which takes into consideration the local variations around a 
specific area of each pixel, is Adaptive Histogram Equalization. How
ever, regarding fundus imaging, Contrast Limited Adaptive Histogram 
Equalization (CLAHE) is more commonly used by the research com
munity [66–69]. CLAHE solves the issue of over-amplifying the contrast 
in near-constant areas of the image, in contrast to the original Adaptive 
Histogram Equalization algorithm. By adjusting the contrast of the 
image, which all of the previously mentioned methods achieve, the 
subtle structures of the retina become more visible and easier to detect. 
An example of each method is illustrated in Fig. 4. Other researchers 

Table 3 
Details of the datasets used for classification.   

Classes   

Datasets Subsets 0 1 2 3 4 Total/set Total Grading Standard 

Kaggle EyePACS Training 25810 2443 5292 873 708 35126 88702 ICDRDSS  
Testing 39533 3762 7861 1214 1206 53576   

Kaggle APTOS 2019 Training 1805 370 999 193 295 – 3662 ICDRDSS 
Messidor Whole 546 153 247 254 – – 1200 Custom 
Messidor 2 Training – – – – – – 1748 Custom 
IDRiD Training 134 20 136 74 49 413 516 ICDRDSS  

Testing 34 5 32 19 13 103   
DDR Whole 6266 630 4477 236 913 – 12522 

(1151 ungradable)  
ICDRDSS  

Table 4 
Details of the datasets used for segmentation.   

Classes 

Datasets Healthy EX MA HE Total 

E-Ophtha 268 47 148 – 463 
DiaRetDB1 5 48 Hard 

36 Soft 
80 54 89 

IDRiD – 81 Hard 
40 Soft 

81 80 81 

ROC – – – – 100  

Fig. 4. A mosaic of preprocessed fundus images. Each figure illustrates the 
result of applying the corresponding preprocessing method to the original 
fundus image. a) original image, b) converting it to grayscale and applying 
CLAHE, c) applying CLAHE on each of the RGB channels and d) subtracting the 
local average color. 
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[70–78] subtract the local average color from each pixel and map it to 
50% grayscale, to reduce differences in the lightning conditions across 
the images and highlight the subtle lesions, as in Fig. 4. 

5.2. Denoising & normalization 

Non-Local Means Denoising (NLMD) is applied by Refs. [68, 79] in 
order to remove potential noise in the image. However, it should be 
noted that although the stronger the denoising algorithm is, the more 
noise it will eliminate, it will also degrade the fine details of the image (i. 
e. the image becomes blurry). 

Also, image intensity normalization is applied in order to avoid 
introducing bias and high training times to the network as well as to 
standardize the data to a particular scale (e.g. each image having a mean 
value of 0 and standard deviation of 1, regarding its pixels’ intensity) 
[53, 63, 68, 72, 77, 79–86]. 

5.3. Color space transformation 

Apart from contrast enhancement, normalization and noise reduc
tion, transforming the color image into another color model or even 
simply utilizing only one of the RGB channels, have increased the 
model’s performance. Lin et al. [81] transformed the data to entropy 
images, which led to the DLS outperforming the models which were 
trained on standard datasets. In addition, the extraction of the green 
channel out of the fundus color image is commonly applied, due to its 
rich information and high contrast in comparison with the other two 
color channels [64, 67, 77, 78, 87–95]. Similarly, Pao et al. [96] com
bined the entropy images of the grayscale image and the green channel 
of the original fundus image into a dual-path CNN for DR classification, 
effectively outperforming a CNN trained on a standard dataset. 

5.4. Cropping and resizing 

Furthermore, the datasets may contain images that vary in terms of 
resolution and aspect ratio. The images could also contain uninforma
tive black space areas. In order to standardize the image size and to 
remove such black space areas, the images may be cropped, rescaled and 
resized to a specific resolution [51, 53, 62–64, 66, 70, 71, 73–75, 79–86, 
97–101]. Bravo et al. [74] conducted their experiments using two 
different cropping techniques. In particular, in one experiment they crop 
the images so that the retina incircles the cropped image, whereas in the 
second experiment they cropped the largest square image inscribed in 
the retina. 

5.5. Vessel & optic disc segmentation 

Orlando et al. [102], Chudzik et al. [88] and Appan et al. [103] 
observed that, regarding lesion detection in a fundus image, many 
false-positive samples are caused by vascular branching and vessel 
segments misclassification. Yu et al. [92] segmented and removed the 
vessel structures out of the green channel of the raw image in order to 
enhance exudate detection, by utilizing an opening morphological 
operation. Chudzik et al. also utilized Otsu’s thresholding [104] on the 
green channel of the image to segment the vessel structures, as well as 
morphological operations to remove noisy regions of the image. Imani 
et al. [89] also segmented the vessel structures, with the MCA algorithm 
[105], Shift Invariant Shearlet Transform (SIST) [106] and Non Sub
sampled Contourlet Transform (NSCT) [107] based on the structural 
differences in the morphology of the vessels (curved-like structures) and 
the exudates (spot-like structures). Morphological operations, such as 
opening and closing, were also used in order to refine either the vessel 
[102] or the lesion segmentation [89, 92]. Finally, Adem et al. [65] used 
the Canny Edge detector and a Circular Hough Transform method to 
segment the Optic Disc from retina fundus images. By removing such a 
complex anatomical structure, which is also similar to exudates, the 

performance of lesion detection improved. 

5.6. Augmentation 

Although DL has been proven to work well in an end-to-end manner, 
where the raw data is fed into a single-model pipeline, it has also been 
reported, that applying certain preprocessing techniques, such as those 
reported in this section, leads to performance improvement [66, 81, 96], 
especially for fundus images. In addition, due to the lack of rich and 
balanced datasets and in order to enhance the model’s robustness and 
accuracy, data augmentation techniques are also used. In case of im
aging datasets such techniques can refer to rotating, shifting (trans
lation), rescaling, shearing and flipping the images, color and brightness 
augmentation [73, 80, 83, 84, 108], as well as the use of Generative 
Adversarial Networks for image synthesis [78, 109]. Regarding the 
reviewed articles, most utilize some augmentation method in order to 
increase the number of the available images and thus accelerate the 
training of the model. 

6. Diabetic retinopathy classification 

The main objective of DR classification is on the detection of diabetic 
retinopathy and its grading using fundus images of the retina. As 
described in Section 1, DR is graded by physicians with respect to a 5- 
class protocol. In this section we present information regarding pub
lished deep learning models that detect and grade the disease’s severity 
on the image level. 

6.1. Grading scale 

In Section 2 we presented the common 5-class grading scale that 
ophthalmologists utilize in order to grade a fundus image regarding the 
DR disease. However, there are cases in which researchers decided to 
classify them differently, by ultimately merging several classes together. 
In particular, authors in Ref. [66] conducted experiments regarding DR 
grading with respect to a 2-class (i.e. detecting the presence of the dis
ease), 3-class (i.e. no DR, mild DR and severe DR) and a 4-class (i.e. no 
DR, mild DR, moderate DR and severe DR) classification. They defined 
referable (i.e. the patient should be referred to an ophthalmologist) DR 
when at least moderate NPDR lesions are observed and vision threat
ening DR when at least severe NPDR or PDR lesions are observed. In 
Ref. [62], the authors created a 4-class scale in order to encode similar 
clinical manifestation between the different stages of the traditional 
scaling protocol (ICDRS), among other reasons. Islam et al. [71] devel
oped two binary classification models, one for detecting the presence of 
the disease (healthy vs diseased) and one for grading its severity (grade 
0,1 vs 2,3,4). Li et al. [51] used an additional class (6 in total) to classify 
ungradable images as well. Table 5 summarizes the different classifi
cation strategies utilized in the reviewed literature grouped with the 
corresponding references. Binary classification (i.e. detection of refer
able DR) is commonly formulated as classifying grades ‘0,1 vs 2,3,4′ or 
grades ‘0 vs 1,2,3,4’. Most reviewed articles utilize the ‘0,1 vs 2,3,4′

grading schema regarding the binary classification task, due to the ‘mild 
DR’ misclassification problems, which are discussed further below in 

Table 5 
Classification strategies.  

Classification 
Strategy 

Reference 

2-class [53, 62, 66, 70, 71, 73, 75, 79] 
[85, 86, 97, 98, 100, 110, 111] 

3-class [66, 75, 112] 
4-class [62, 66, 108] 
5-class [63, 64, 72, 74, 79–84] 

[86, 97–99, 101, 113–117] 
6-class [51]  
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Section 6.3.5. 

6.2. Performance evaluation metrics 

The performance of a binary classification model can be represented 
by the confusion matrix [118]. Each measure in the confusion matrix is 
calculated based on the predictions and the ground truth. Based on these 
measures, some more specialized metrics are defined, such as Sensi
tivity, Specificity, Accuracy, Precision, F1_score and Cohen’s Kappa. In 
addition, the Receiver Operating Characteristic (ROC) curve presents 
the performance of a binary classifier by plotting its Sensitivity against 
its Specificity at various thresholds settings regrading the classification 
outcome (i.e. at which probability a given sample is considered as a 
positive or negative outcome). Finally, Area Under the Curve (AUC) 
measures the area underneath the entire ROC curve, providing an 
aggregate performance measure across all classification thresholds. 

6.3. Approaches for model development 

In this section, the various DL methods for DR classification are 
presented. Table 6 presents the well-established architectures (either 
using their pre-trained versions or not) that were used as the backbone 
of each proposed classification model. The most utilized architectures 
are VGG16, the Inception family and ResNet. We urge the reader to read 
an in-depth analysis of the popular architectures for deep learning based 
image analysis, which was recently published by Alzubaidi et al. [119]. 

6.3.1. Generic DL approaches 
Pratt et al. [82] published one of the first studies employing a CNN 

based model for the quinary classification of DR (5-class – similarly to 
the clinical grading protocol). The authors used a class-weighted strat
egy to update the parameters during backpropagation, for every batch, 
in order to compensate for the class imbalance in the dataset and reduce 
over-fitting. 

Islam et al. [71] converted the quinary (5-class) classification prob
lem to a regression problem, in order to better predict NPDR and PDR 
cases. In addition, the authors developed a blending network, by 
combining the feature vectors of the CNN for each eye, in an attempt to 
improve the performance of the model. Similarly, Torre et al. [101] 
developed a CNN model, which analyzed the images of both eyes and 
effectively combined those representations, in order to perform the 
classification. They also proposed using small convolutions, and adap
tations to the network’s architecture in order to have a final receptive 
field as similar as possible to the original image’s size. Raju et al. [84] 
also reported that when using smaller (4x4) filters in the Conv2D layers, 
the DR classification performance was better, due to the smaller sized 
lesions, such as microaneurysms. Inception modules have also been 
utilized in Refs. [66, 70, 110] in order to extract features at different 
resolutions, in an attempt to capture relevant lesion marks, which in 
turn vary in size. 

Gulshan et al. [110] utilized a pre-trained InceptionV3 model for DR 
and DME classification on a dataset consisting of 128.175 images, which 

were retrospectively obtained from EyePACS in the US and 3 eye hos
pitals in India, and of which 33.246 were referable, while they tested 
their model on two external datasets. The images were graded between 
three and seven times by a pool of 54 US licensed ophthalmologists and 
ophthalmology senior residents for the quality of image and the pres
ence and severity of DR and DME. Firstly, the effects of training the 
model on subsets of dataset with varying size were examined, with the 
performance reaching a plateau with the training size at around 60.000 
images (with 17.000 referable). Secondly, a second subsampling 
experiment was performed, regarding the existence of multiple ground 
truth grades per image, which indicated that the performance benefited 
from a majority voting on those multiple grades per image. On the other 
hand, Krause et al. [115] determined how the use of an adjudication 
grading system for the development of the ground-truth labelling affects 
the algorithm’s training performance. They used the pre-trained model 
by Gulshan et al. [110], fine-tuning it on a small dataset, on which an 
adjudication grading protocol was applied. The authors reported that 
even a small set of adjudicated images, allowed a slight performance 
improvement when using adjudication as the ground truth development 
standard compared to majority voting. 

Attention modules have also been utilized for improving the detec
tion performance of CNNs. Zhao et al. [63] utilized an attention mech
anism and a bilinear strategy, in order to train a CNN and improve the 
classification performance on subtle regions. Wang et al. [116] also 
utilized an attention mechanism to generate attention maps, which were 
then used by a Crop-Network, which zoomed in the highest attention 
regions to further improve the classification accuracy. Li et al. [85] 
proposed a novel architecture, which focused on jointly detecting DR 
and DMR, by utilizing attention modules to explore inter-disease cor
relations. Lin et al. [120] developed a deep learning pipeline for lesion 
detection, which is then used in par with the original fundus image for 
DR severity classification. During the detection phase, a lesion clustering 
method was used in order to decrease the impact of missing lesion an
notations. The lesions maps from the detection model are fused with the 
feature maps of the classification model by the Attention Fusion 
Network, which also weights the importance of each lesion area. Finally, 
Zhou et al. [121] proposed a collaborative weakly-supervised learning 
model to improve the performance of DR’s grading and lesion segmen
tation with an attention mechanism from image-level annotated data. 

Furthermore, one would want to train the model with very high 
resolution fundus images, in order for small lesions to be easier detected. 
However, the computational complexity as well as the vanishing/ex
ploding gradient problem of deep CNNs forbid this. On the other hand, 
directly downsampling the images leads to a huge information loss. 
Zhou et al. [113] developed a novel architecture, Multi-Cell Multi-Task 
CNN (M2 CNN), consisting of an Inception-ResNet-V2 stage connected to 
a Multi-Cell stage, which gradually increases the depth and the kernel 
size of the network along with the input image’s resolution, in order to 
capture high-resolution details. Finally, a Multi-Task stage is applied, 
during which both a classification and a regression score are computed. 
Doing so, the authors formulated a more appropriate training loss 
function, based on the consideration that DR is a gradually progressing 
disease and thus discrete labelling can be misleading. 

Li et al. [114] experimented with several image resolutions, 
concluding that the performance of the model increases logarithmically 
with respect to higher input image resolutions. However, as the input 
image resolution increases, the complexity of the network also increases 
exponentially. Thus, given the complexity constraints, the optimal im
age’s resolution was 896 × 896, which boosted the performance of the 
algorithm especially for the correct classification of the mild DR case, 
which depends on extracting subtle features. 

6.3.2. Transfer learning approaches 
A major issue regarding deep learning and especially DL applied on 

medical imaging regards the availability of sufficient data to train the 
models. As discussed in Section 3, it is possible to overcome this issue by 

Table 6 
Established CNN architectures used in literature.  

Architectures Reference 

ResNet [51, 62, 63, 72, 97, 120] 
AlexNet [63, 66, 99] 
VGG16 [51, 63, 66, 98, 99, 117] 
GoogLeNet [51, 63, 66] 
InceptionV3 [62, 70, 72, 99, 110] 
InceptionV4 [74, 80, 117] 
Xception [62, 72] 
Inception-ResNet [62, 116] 
DenseNet [51, 62, 72] 
SE-BN-Inception [51]  
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transferring knowledge from one field where there is plenty of data (i.e. 
computer vision), to another with limited data (i.e. medical imaging). 
Many of the reviewed articles have utilized a transfer learning approach 
to develop their classification models [51, 62, 66, 72, 74, 75, 80, 83, 86, 
99, 100, 110, 117]. 

Wan et al. [83] compared several pre-trained models, which were 
fine tuned on the Kaggle EyePACS dataset. They reported the best results 
for VGGNet-s architecture, achieving an accuracy of 95.68%, specificity 
of 97.43%, sensitivity of 86.47% and an AUC of 0.979, outperforming 
other more complex architectures. Hagos et al. [70] used transfer 
learning by utilizing an ImageNet pre-trained InceptionV3 model. The 
authors fine-tuned the classifier on a small balanced subset of Kaggle 
EyePACS dataset. Wang et al. [99] also reported that the InceptionV3 
model achieved the best results (63% Accuracy), when transfer learning 
was applied on a dataset of 166 images of Kaggle EyePACS dataset. 
Others [51, 66], have also reported the best results when using a 
pre-trained Inception backbone network (GoogLeNet, InceptionV3, 
InceptionV4). 

6.4. Ensemble learning approaches 

Ensemble learning has also played an important role in developing 
robust and powerful AI frameworks for DR classification, by combining 
the advantages of several classifiers [53, 63, 70, 72, 73, 80, 100]. 
Ensemble learning has been reported to perform better than the 
respective standalone models due to the information gain caused by 
their complementarity. That indicates that the different base models can 
implicitly learn different levels of semantic representations, either 
because of the differences in their architecture as in Refs. [62, 100], or 
the training procedure as in Ref. [73]. 

Zhang et al. [62] developed two ensemble models, one for the 
identification of the disease (binary classification) and one for the 
grading of the disease (quinary classification). The individual models 
were based on several pre-trained networks, which acted as the feature 
extraction part, and a custom standard dense neural network, which 
acted as the classifier. The ensemble models outperformed the individ
ual ones in both tasks, achieving a sensitivity of 98.10% and specificity 
of 98.56%. The authors also note that, the ‘stronger’ the base learner was 
(pre-trained network), the higher the performance was, in general. In 
addition, a dual ensemble (ensemble of the ensembles) performed better 
than a single ensemble in some cases. 

Jiang et al. [100] developed an ensemble model, using the Adaboost 
classifier on 3 models, which were based on the InceptionV3, ResNet152 
and Inception-Resnet-V2 architectures. they trained the model on a 
private dataset, which was developed in collaboration with Beijing 
Tongren Eye Centre. The ensemble model outperformed the individual 
models, achieving a Sensitivity = 85.57%, Specificity = 90.85%, Ac
curacy = 88.21% and AUC = 0.946. However, InceptionV3 performed 
better in terms of Specificity, which was 91.46%. 

Quellec et al. [73] trained a CNN model, which was exported at 
multiple iterations during the training procedure, because as the authors 
claim, each unique lesion type is optimally detected at different training 
iterations. Subsequently, they combined the saved models using 
ensemble learning (Random Forest Classifier) to predict DR’s severity 
score. 

6.4.1. Interpretable DL approaches 
Although deep learning has been proven to be very effective and 

accurate in analyzing medical images, even surpassing human perfor
mance in some tasks [110], its clinical use has yet to be widely accepted. 
The main reason for that regards the fact that deep learning models 
produce a prediction without explaining the reasoning behind it, which 
is a crucial step in gaining the clinician’s trust. Regarding the scope of 
this review article, there have been several attempts to develop an 
interpretable model for predicting DR. 

Quellec et al. [73] utilized a modification of the sensitivity criterion 

[122] in order to produce a heatmap, visualizing the contribution that 
each pixel had in the prediction of the output. Moreover, by analyzing 
the classification results and the heatmaps produced, the authors report 
that the performance trajectory experiences some leaps roughly at the 
time that it learns to identify the different lesion types. It should be 
noted that the most obvious lesions are detected earlier in the training 
loop, while the more subtle lesions later. 

Jiang et al. [100] build an interpretable ensemble classifier, by uti
lizing the Class Activate Maps (CAMs) [123] technique for each indi
vidual model as well as for the ensemble model. Similarly, Torre et al. 
[101] introduced a receptive field score distribution model, which 
scores the importance of each pixel of the input image in the final 
classification prediction. 

Sayres et al. [117] evaluated the performance of ten ophthalmolo
gists, under 3 conditions: (a) the physicians were provided with the raw 
fundus images, (b) the grading results of the DLS were also made 
available to them and (c) the grading results and an interpretable 
heatmap were also provided. The heatmaps regarded the pixel-wise 
contribution to the final prediction, which in turn indicates possible 
lesions. They measured three primary outcomes: diagnosis accuracy, 
subjective confidence in DR grading and time spent grading. They found 
a trend toward higher accuracy and confidence, but also higher grading 
times, with model assistance. As readers gained more familiarity with 
model assistance, there was a trend toward increased accuracy and 
decreased grading time. An increased sensitivity was also observed 
without a significant impact on specificity. Across all images, their re
sults indicated that the grades-only condition provided a stronger 
benefit than grades plus heatmap. 

6.4.2. Mild DR misclassification 
Lam et al. [66] developed several classification models regarding 

binary, ternary and quinary labelling tasks. Although they achieved high 
performance, with respect to sensitivity and specificity, regarding the 
‘no DR′ or ‘severe DR′ cases, they achieved only 7% sensitivity for the 
‘mild DR′ case. They managed to increase that percentage to almost 30% 
by preprocessing the images, with the cost of dropping the performance 
for the other 2 classes by an amount of 10%. Others also noted that the 
misclassification was more common for mild DR than the other classes 
[51, 53, 63, 72, 79, 82], which confirms that mild DR detection is a very 
challenging problem and the intricate details of the disease are harder 
identified, because their size and number are very small (1% of image) 
[53]. 

6.5. Evaluation performance of published models 

Table 7 summarizes the performance results at the highest sensitivity 
point of the ROC curve of the classification methods as they were re
ported in the corresponding papers. 

7. Diabetic retinopathy lesions segmentation & detection 

While classification models are essential in detecting and grading 
DR, which effectively accelerates DR screening, detecting and seg
menting relevant lesions at the pixel level is also a crucial stage of a 
screening pipeline. Identifying such diseased areas on the retina plays a 
significant role in diagnosing and treating diabetic retinopathy, as those 
are the main findings an expert ophthalmologist observes, as discussed 
in the introductory section. Thus, in this section we present information 
regarding published deep learning methods focused on the automatic 
segmentation of lesions that are related to DR, such as exudates, 
microaneurysms and haemorrhages. 

7.1. Performance evaluation metrics 

When considering a segmentation problem, the ground truth infor
mation relates to every pixel of the image instead of the entire image, as 
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Table 7 
Performance of the reviewed classification models.  

Reference Classification 
(Dataset) 

Best 
Architecture 

Accuracy Sensitivity Specificity Precision AUC F1 Kappa QWK 

[66] 2-class 
(EyePACS) 

GoogLeNet – 95% 96% – – – – – 

5-class 
(EyePACS) 

– 29%–85% – – – – – – 

[70] 2-class 
(EyePACS) 

Inception 
V3 

90.9% – – – – – – – 

[124] 2-class 
Referable DR 
(Private) 

Ensemble – 92.2% 92.5% – 0.97 – – – 

2-class 
Vision 
Threatening 
DR (Private) 

– 96.2% 98.9% – 0.987 – – – 

[53] 2-class 
(EyePACS) 

Custom 
CNN 
& 
Decision 
Tree 

– 94% 98% – 0.97 – – – 

2-class 
(Messidor2) 

– 90% 87% – 0.94 – – – 

2-class 
(E-Ophtha) 

– 90% 94% – 0.95 – – – 

[79] 2-class 
(EyePACS) 

Custom 
CNN 

95% – – – – – – – 

5-class 
(EyePACS) 

85% 39.5%– 
95% 

– 36.5%– 
88.2% 

– – 0.754 – 

[82] 5-class 
(EyePACS) 

Custom 
CNN 

75% 30% 95% – – – – – 

[111] 2-class 
(EyePACS) 

Custom 
CNN 

94.5% – – – – – – – 

[83] 5-class 
(EyePACS) 

VGGNet 95.68% 86.47% 97.43% – 0.979 – – – 

[71] 2 Diseased 
(EyePACS) 

Custom 
CNN 

– 94.5% 90.2% – – – – – 

2 Risk 
(EyePACS) 

– 98% 94% – – – – – 

5-class 
(EyePACS) 

– – – – 0.844 0.743 – 0.851 

[97] 2-class 
(FINDeRS) 

Custom 
CNN 

95.71% 76.92% 100% – – – – – 

3-class 
(FINDeRS) 

60.28% 65.40% 73.37% – – – – – 

[72] 5-class 
(EyePACS) 

Inception 
V3 

– 80% – 76% – 0.77 – 0.64 

[98] 2-class 
(EyePACS) 

Modified 
VGGNet 

– 92% 72% – 0.923 – – – 

2-class 
(Messidor) 

– 99% 71% – 0.967 – – – 

[99] 5-class 
(EyePACS) 

Inception 
V3 

63.23% – – – – – – – 

[73] 2-class 
Referable DR 
(EyePACS) 

Custom 
CNN 

– – – – 0.954 – – – 

[100] 2-class 
(Private) 

Ensemble 88.21% 85.57% 90.85% – 0.946 – – – 

[51] 6-class 
(DDR) 

ResNet 4%– 
95.74% 

– – – – – 0.65 – 

[108] 4-class 
(Messidor-2) 

IDx-DR – 96.8% 87% – 0.98 – – – 

[117] 5-class 
(Custom 
EyePACS) 

Inception 
V4 

– 91.55% 94.69% – – – – – 

[112] 2-class 
Referable 
(Private) 

Modified 
VGGNet 

– 90.5% 91.6% – 0.936 – – – 

2-class 
Vision 
Threatening 
(Private) 

– 100% 91.1% – 0.958 – – – 

[101] 2-class 
(Messidor-2) 

Custom 
CNN 

91% 91.1% 90.8% 88.4% – 0.896 – – 

5-class 
(Messidor-2) 

– – – – – – – 0.832 

[110] 2-class (EyePACS) Inception V3 – 97.5% 93.4% – – 0.991 – – 
2-class (Messidor-2) – 96.1% 93.9% – – 0.990 – – 

[115] 2-class Moderate or Worse (EyePACS) Inception V3 – 97.1% 92.3% – 0.986 – – – 

(continued on next page) 
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in a classification task. Because in most cases the background of the 
image (i.e. healthy part of retina) prevails the foreground (i.e. actual 
lesions), utilizing the traditional metrics at the pixel-level, i.e. accuracy, 
sensitivity, specificity, etc., would be misleading. This is due to the fact 
that since most of the ground truth image refers to the healthy part of the 
retina and only a small proportion of the pixels refer to lesions. Hence, 
the pixel-wise accuracy of a segmentation algorithm would continuously 
be almost perfect, without necessarily correctly detecting the relevant 
lesions, just because the background is mostly matched with it self. Thus, 
the following metrics are most suitable to evaluate the performance of a 
segmentation model, instead of the traditional classification-oriented 
ones. 

A metric that is commonly used in segmentation problems is the 
Intersection-over-Union (IoU), which is computed by dividing the 
overlapping area by the area of union between the predicted (P) and 
ground truth (G) segmentation areas, IoU = P∩G

P∪G. Its value ranges from 
0 to 1, with 1 signifying perfect match, and 0 meaning completely 
disjoint. The evaluation metric is then calculated by averaging the IoUs 
of every class. Another metric is the DICE coefficient, which is computed 
by dividing the double overlapping area between P and G by the total 
number of pixels in both areas, DICE =

2∗|P∩G|
|P|+|G| . Its value is also equal to 

the value of the F1score metric. The DICE coefficient is similar to the 
IoU, also ranging from 0 to 1. As a matter of fact, DICE and IoU are 
positively correlated, meaning that although their value may not be the 
same, they will indicate towards the same result. What this means is that 
when one metric indicates that a classifier A is better than another 
classifier B, the other metric does it too. However, their difference 
emerges when quantifying how much better is one classifier from 
another. Based on these metrics, one can calculate the lesion-level 
detection accuracy, sensitivity, specificity and other classification- 
related metrics of a segmentation model by setting a threshold for 
each of the IoU and DICE metrics, above or below which a true positive 
or a false negative detected lesion is counted. 

Free-response Receiver Operating Characteristic (FROC) curve is a 
graphical representation of the model’s performance at all decision 
thresholds. It is similar to ROC curves, but in FROC’s case a threshold 

definition is needed regarding a detected region to be considered as true 
or false positive/negative. For example, one could set a 50% overlap 
between the annotated and detected regions to indicate a true positive. 

In addition, there are also other metrics for evaluating a segmenta
tion method, such as the Hausorff Distance (HD) [126] and its variants, 
i.e. Average Hausorff Distanec (AHD) and Hausdorff quantile method, 
the Euclidean Distance Difference between the centre of masses of the 
two segmentation masks (ΔCMD), the Surface Distance, etc. However 
these metrics will not be covered in depth in this review, because none of 
them are mentioned or used in the reviewed papers. We urge the reader 
to study the following articles for more in-depth information of these 
metrics [127–129]. 

It should be noted that many of the reviewed studies report their 
evaluation results using metrics that are most suitable for a classification 
task, as reported in Section 6.2. Although we discussed the problems of 
such metrics in a segmentation task at the beginning of this section, we 
included those studies in our review, but we recommend caution when 
interpreting their results. 

7.2. Approaches for model development 

7.2.1. Generic DL approaches 
Xue et al. [130] proposed a deep membrane system for multitask 

segmentation of microaneurysms and exudates. In particular, they uti
lized Mask R-CNN [131] for implementing each new hybrid membrane 
structure, which were a combination of tissue-like [132] and cell-like 
[133] membrane systems. Guo et al. [134] proposed LWENet, a light
weight segmentation network utilizing an encoder-decoder architecture 
and having 10 times fewer parameters than other popular architectures, 
i.e. DeepLab v3+ [135], FCRN [136] and HED [137]. At the same time, 
pre-training the encoder on the DDR classification dataset, helped in
crease the F1score at the segmentation task by almost 10%. 

Guo et al. [138] also proposed L-Seg network in order to simulta
neously segment all four DR related lesions in a fundus image, i.e. 
Soft/Hard Exudates, Haemorrhages and Microaneurysms. Their model’s 
output consists of 4 individual segmentation maps, one for each lesion 
type. They also propose a multi-channel bin loss function that combines 

Table 7 (continued ) 

Reference Classification 
(Dataset) 

Best 
Architecture 

Accuracy Sensitivity Specificity Precision AUC F1 Kappa QWK 

2-classMild or worse (EyePACS) – 97% 91.7% – 0.986 – – – 
5-class (EyePACS) – – – – – – 0.84 – 

[63] 5-class (EyePACS) Custom ResNet 
CNN 

– – – – – 0.5436 – – 

[116] 5-class (EyePACS) Custom CNN – – – – – – 0.865 – 
5-class (Messidor) – – – – – – 0.854 – 

[84] 5-class (EyePACS) Custom CNN – 80.28% 92.29% – – – – – 
[85] 2-class (Messidor) Custom CNN 92.6% 92% – 90.6% 0.963 0.912 – – 
[75] 2-class (EyePACS) VGG16 83.68% 54.47% 93.65% – – – – – 
[64] 5-class (EyePACS) Custom CNN – – – – – – – 0.3996 
[86] 2-class (Private) Inception V3 – 2/2 92% 12% – – – – 
[81] 5-class (EyePACS) Custom CNN 86.10% 73.24% 93.81% – 0.92 – – – 
[80] 5-class (EyePACS) Ensemble 80.8% 51.5% 86.72% 63.85% 0.97 0.5374 – – 
[120] 5-class (Private) Custom CNN– 87.3% – – – – – 0.875 – 

5-class (EyePACS) – – – – – – 0.859 – 
[121] 5-class (IDRiD) Custom CNN 91.3% – – – – – 0.905 – 

5-class (EyePACS) 89.1% – – – – – 0.872 – 
[102] Healthy vs Diseased (Messidor) Ensemble – 89.3% – – 0.911 – – – 

Referable DR (Messidor) – 93.5% – – 0.972 – – – 
[125] Referable DR (Private) EyeArt – 95.7% 54.5% – – – – – 
[62] Healthy vs Diseased (Private) Ensemble 97.67% 97.64% 98% 97.6% 0.9862 0.9769 0.953 – 

5-class (Private) 95.46% 98.11% 97.99% 95.29% – 0.9542 0.9318 – 
[74] Healthy vs Diseased (EyePACS) Inception V4 72.41% – – – – – – – 

Referable DR (EyePACS) 86.25% – – – – – – – 
Healthy vs Mild DR (EyePACS) 62.86% – – – – – – – 
Healthy vs Mild vs Higher (EyePACS) 72.18% – – – – – – – 
Moderate vs Severe vs Proliferative 
(EyePACS) 

69.75% – – – – – – – 

5-class (EyePACS) 45% – – – – – – –  
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all four outputs, to avoid class- and loss-imbalance issues. They utilized 
several feature maps of the network to incorporate multi-scale analysis 
and handle lesions of different sizes, as well as a weighted fusion module 
to integrate all this information and effectively analyze complex lesions. 
In order to properly up-sample each feature map, a deconvolution layer 
is used, in par with a hidden loss function to avoid gradient vanishing, 
which is known as deep supervision. Although they report very good 
results in terms of AUC in contrast to other competing networks, they 
also state that there is a serious misclassification problem in small le
sions, such as microaneurysms, etc. 

Otalora et al. [139] proposed a model that was based on Active 
Learning to train a CNN for exudate detection in loosely labelled fundus 
images. In particular, the images were cropped into several smaller 
patches, of which only a few have relevant ground-truth information. 
The rest unlabelled patches are ranked based on their “interestingness”, 
as the authors mention, which essentially encodes how much informa
tion the patch has regarding the specific lesion. In order to initially train 
the network, they use the labelled part of the dataset and, subsequently, 
they iteratively use a portion of unlabelled ranked patches, starting from 
the most interesting one, in order to train a network, while asking a 
medical professional to annotate only those specific patches. The 
training is stopped when the network has converged, even if not all 
images were fed to the model, which ultimately ensures that only the 
most informative ones are actually used during the training. 

Khojasteh et al. [140] compared the performance of a CNN, a 
Discriminative Restricted Boltzmann Machines and the deep features 
extracted out of a Resnet-50 CNN in combination with several Machine 
Learning classifiers for detecting exudates in fundus images. The best 
results were achieved using the deeply learnable features with an SVM 
classifier. Orlando et al. [102] combined the deep features of a CNN with 
hand-crafted features into a Random Forest Classifier for detecting early 
lesions of DR. 

7.2.2. Model training with patches 
Although segmentation CNNs can be applied on the image at its 

original resolution, it is very resource-heavy and inefficient. Thus, 
instead of training the model on the entire image, many researchers crop 
it in smaller patches instead of just resizing the image at a lower reso
lution [78, 116, 141–143]. This is necessary when the computational 
resources are limited or when larger spatial resolution is required, at the 
expense of a smaller field of view. In Zheng et al. [78], a standalone 
UNet was trained on fundus patches in order to segment the relevant DR 
lesions from the images. Two different partitioning approaches were 
examined for the creation of patches. The first was based on randomly 
selecting a pixel that was part of an exudate lesion, and taking a patch of 
48x48 pixels around it. This approach ensured that the selected patches 
contained an exudate, but the exudates in several patches may overlap 
with each other. The second approach was based on iteratively cropping 
discrete patches out of the image. Although there were no overlapping 
areas among the various patches, the percentage of them containing an 
exudate was very small. The model achieved the best F1score of 92.8%, 
when trained with a mixture of 75% patches from the first approach and 
25% from the second one. 

7.2.3. Segmentation based on probabilistic output 
Several other authors have trained a traditional CNN to generate 

probabilistic maps, in order to indicate where the lesions are located. In 
order to avoid redundant boundaries and cluttered pixels around the 
segmented signs, Khojasteh et al. [76] applied three morphological 
operations, i.e. closing, opening and finally erosion. However, due to the 
fact that they generated three output probabilistic maps, one for each of 
the lesions, it is probable that some pixels will probably belong to more 
that one lesion. In order to overcome this obstacle, they assigned the 
pixel with the most probable class, i.e. the one with the highest proba
bility among the three lesions. Both Lam et al. [141] and Benzamin et al. 
[143] computed the probability of each pixel belonging to each lesion 

type by scanning each image using a sliding window approach and a 
traditional CNN. Saha et al. [144] utilized an Encoder-Decoder CNN to 
segment DR lesions using probabilistic maps. They also included an 
additional class corresponding to Optic Disc (OD) in order for the 
network to be able to better differentiate it from exudates. 

7.2.4. UNets 
As discussed in Section 3, UNets have played a major role in 

advancing semantic segmentation in many fields. Regarding the fundus 
imaging and especially Diabetic Retinopathy, several published archi
tectures and AI models have been proposed that are based on a UNet 
architecture. Yan et al. [145] developed a mutual Global-Local U-Net for 
segmenting DR related lesions on fundus images. A Global Net and a 
Local Net are mutually trained using the entire image and its patches 
respectively, in order for the complete framework to incorporate both 
local and global information. Sambyal et al. [146] proposed a modified 
UNet architecture, which utilized a pre-trained ResNet34 as the encoder. 
For the decoder, 4 UNet blocks with sub-pixel convolutional upsampling 
with periodic ICNR shuffling [147], which is used to alleviate any 
checkerboard noise induced by the upsampling procedure. 

7.2.5. Segmentation based on attention maps 
Gondal et al. [148] used Class Activation Maps in order to visualize 

possible lesion areas that played a significant role in predicting the 
severity grade of DR using a classification CNN model. Although 
attention maps can designate DR lesions, the generated attention maps 
cannot segment the lesions in detail due to the fact that the main purpose 
of those networks is to classify the image for its severity. In contrast, 
such rough estimation of the lesion areas can be interpreted or consid
ered as an estimate of where the network is focusing in order to make its 
decision. Linking those highlighted areas with true lesions is based on 
how medical professionals diagnose DR, which is performed by exam
ining the presence of those lesions. However, proving that the model is 
actually learning such intrinsic characteristics of the data is an open 
issue, referring to Interpretability and Explainability issues of deep 
learning models, and cannot be inferred directly. Although attention 
maps can not be considered accurate and reliable segmentation maps, a 
very interesting fact was mentioned by Quellec et al. [73], who reported 
that their classification network managed to optimally detect the 
various lesions at different training iterations of the model. In particular, 
the networks (regardless of their architecture) detected the more 
obvious lesions, i.e. hard and soft exudates, earlier during the training 
iterations than the more subtle ones, i.e. haemorrhages and then 
microaneurysms. 

7.2.6. DL approaches based on GANs 
In an effort to generate synthetic images and enlarge their fundus 

dataset, many have been utilizing Generative Adversarial Networks 
(GANs) [78, 103, 109, 149]. A conditional Generative Adversarial 
Network (cGAN) based on a UNet, was developed in Zheng et al. [78] in 
order to tackle the problem of the limited and severly imbalanced fundus 
imaging datasets. By doing so, the authors managed to increase the 
F1score up to approximately 4% for lesion segmentation. Zhou et al. [109] 
proposed a GAN model to generate high resolution fundus images that 
can be manipulated with arbitrary grading and lesion information, 
which can be used to train both a classification and a segmentation 
network. GANs have also been used for the segmentation task, apart 
from the data augmentation. Xiao et al. [68] incorporated a Discrimi
nator network into the pipeline of a traditional segmentation CNN, 
namely HEDNet, to refine its segmentation, by also minimizing the 
Discriminator’s loss, which was added to the original loss of the CNN. 

7.2.7. Per lesion model performance model 
Although a similar number of models for segmenting each lesion 

have been developed, i.e. 19 for exudates [65, 68, 73, 76, 78, 92–94, 
121, 130, 134, 138, 140, 143–146, 148, 150] 18 for microaneurysms 
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[68, 73, 76, 88, 91, 95, 102, 121, 130, 138, 144–146, 148, 150–153], 12 
for haemorrhages [68, 73, 76, 94, 102, 121, 138, 144, 145, 148, 150, 
151] and 1 for all lesions combined in a 2-class segmentation task [141], 
their performance is not the same across all lesion types. In particular, 
the mean accuracy and AUC of the segmentation models regarding the 
exudate lesions are 97.98 ± 2.35 and 0.684 ± 0.263 respectively. On the 
other hand, the mean accuracy and AUC regarding the microaneurysms 
are 92.15 ± 10.17 and 0.565 ± 0.337, while for the haemorrhages these 
metrics are 93 ± 4.24 and 0.56 ± 0.307 respectively. It becomes evident 
that exudates are the easiest of the three lesion types to be detected. This 
is something that can be partly explained by the fact that exudates have 
a much bigger size than microaneurysms and a distinct yellow color 
compared to both the haemorrhages and microaneurysms whom color is 
similar to the retina’s vessels’ color, as seen in Fig. 2. 

7.2.8. Pixel-level imbalancing 
Tan et al. [154] noticed that the number of pixels in their dataset that 

were related to healthy parts of the retina (background) were signifi
cantly higher than those related to lesions (29 m background points vs 
300k lesion points). Thus, their training procedure was split into 2 
phases. During the first phase a smaller but balanced subset of the 
training set was used (6.4k-9k points each class) to initially train the 
network, while a much larger one (120k points each class) was used to 
train the network during phase 2. Eftekhari et al. [152] proposed a 
2-stage pipeline for MA detection. In the first stage, the input image is 
passed through a CNN model to produce a probability map of possible 
MA regions. Combining that map with the original image, a second CNN 
detects specific MA and non-MA spots. The authors claim that by doing 
so, they overcome the serious challenges of the imbalanced datasets, 
which results in the decrease of the model’s false positive rate. 

7.2.9. Evaluation performance of published models 
Table 8 summarizes the performance results of the segmentation 

methods as they were reported in the corresponding papers. It should be 
noted that although we questioned the use of classification-oriented 
metrics for evaluating the performance of a segmentation model in 
Section 7.1, we included the performance results of the works using 
them. 

8. Application of DL models in real life clinical settings 

Contrary to the findings of a recent review article [20], which clames 
that “there are not many methods based on deep learning, and advanced 
deep learning techniques must be developed in order to solve this problem”, 
our analysis indicates that a significant number of DL models has been 
developed to date and that several of them have actually been employed 
in the context of clinical decision making in real life environments. What 
is even more important is that some of them have successfully gone 
through the regulatory process, having gained approval by relevant in
ternational regulatory agencies, such as FDA [108, 155]. 

Abramoff et al. [108] reported the performance of IDx-DR X2.1 de
vice, which is equipped with a non-mydriatic retinal camera and an 
automated system for the detection of DR based on CNNs. Although it 
does not grade the severity of the disease, the system recommends a 
follow-up with an ophthalmologist regarding the referable DR cases and 
a 1-year follow-up screening for the non-referable DR cases. In a pro
spective clinical study, the system was tested on 900 patients on 10 sites 
[156], and reported a sensitivity of 87.2% and a specificity of 90.7% for 
more-than-mild DR detection. That led to IDx-DR X2.1 being the first 
commercial AI device which got the US Food & Drug Administration 
(FDA) approval in April 2018 [157]. 

Another FDA-approved commercial AI software for diabetic reti
nopathy screening is EyeArt [155], which as they claim achieves a 
sensitivity of 96% and a specificity of 88% for detecting more than mild 
diabetic retinopathy and a sensitivity of 92% and a specificity of 94% for 
detecting vision-threatening diabetic retinopathy. EyeArt was also 

validated on multi-centre dataset of 30405 images from the English 
Diabetic Eye Screening Programme, achieving high sensitivity for 
referable DR detection and an acceptable specificity score [125]. 

Ting et al. [112] proposed a DL-based model to detect referable DR 
and vision-threatening DR as well as other eye-related diseases. The 
model was trained and validated on 500.000 images, which were ob
tained from Singapore National Integrated Diabetic Retinopathy 
Screening Programme (SiDRP). Their primary objective was to compare 
the results of their model to several trained and experienced pro
fessionals, achieving an AUC of 0.936, sensitivity of 90.5% and speci
ficity of 91.6%, close to that of the professionals who achieved 
sensitivity of 91.2% and specificity of 99.3% for detecting referable DR. 
As far as the vision-threatening DR is concerned, the DL-based model 
achieved an AUC of 0.958, sensitivity of 100% and specificity of 91.1% 
against the professionals who achieved a sensitivity of 88.5% and a 
specificity of 99.6%. The model achieved comparable or greater per
formance in terms of sensitivity but struggled compared to the experts in 
terms of specificity. In another clinical validation study, Raumviboonsuk 
et al. [158] reported higher sensitivity but lower specificity scores 
compared to medical professionals as well. Thus, it is argued that a 
human-supervised deployment of such a model would be preferable, in 
order to utilize its high sensitivity but also compensate for its low 
specificity with the expert’s second diagnosis. 

Bellemo et al. [159] trained an ensemble of CNNs for diabetic reti
nopathy grading on fundus images of more than 13.000 patients who 
had participated in the Singapore Integrated Diabetic Retinopathy 
Program. Their model was validated through a clinical study on 1574 
patients in five urban centres in the Copperbelt province of Zambia. The 
model achieved clinically acceptable performance in detecting referable 
DR, vision-threatening DR and diabetic macular edema. These results 
show that the adoption of a deep learning system for detecting DR is 
possible and can help developing countries, such those in Africa, where 
there is lack of expertise and resources, even if the model is trained on a 
different population. However, their model is trained to detect only the 
severe non-proliferative and proliferative diabetic retinopathy, leaving 
out any milder stage of the disease. As they state, a future study which 
would incorporate all of the stages of diabetic retinopathy is needed, 
especially because it is equally as important to detect the milder stages 
of the disease in order to prevent it from deteriorating and ensure early 
treatment. 

9. Discussion 

9.1. Data quality and diversity 

Many datasets, such as Messidor, IDRiD, etc. consist of high-quality 
images which were captured under controlled, non-standard condi
tions (i.e. similar environmental and hardware conditions across cap
tures). Thus, it can be argued that the algorithms trained on such 
datasets will perform poorly under typical practical situations, where 
the images may not be directly comparable and the environmental and 
hardware details may differ. On the other hand, although Kaggle Eye
PACS and APTOS datasets address these issues and closely resemble a 
real world scenario, since they consist of images which were captured 
from a variety of camera models, under various non-typical conditions, 
the noise which is present due to those variations makes it very difficult 
for the algorithms to accurately and effectively perform the analysis. 
However, taking into account those poor-quality images that reflect the 
actual data, one can develop robust algorithms which can be effective in 
the clinical practice. 

In addition, some datasets, including the large Kaggle EyePACS and 
APTOS 2019 [46, 47], have been graded by only one expert, which can 
lead to an annotation bias. Several other datasets either focusing on the 
DR severity classification [48, 50, 51] or on lesions segmentation [52, 
54, 55, 160] have proposed a more complex grading method (majority 
voting or adjudication on multiple gradings), in order to remove such a 
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Table 8 
Performance of the reviewed segmentation models.  

Reference Dataset Architecture Lesion Accuracy Sensitivity Specificity F1/DICE IoU AUC 

[76] DiaretDB1 & e-Ophtha Custom CNN Exudate 98% 96% 98% – – – 
Haemorrhage 90% 84% 92% – – – 
Microaneurysm 94% 85% 96% – – – 
Healthy 96% 95% 97% – – – 

[130] IDRiD CNN based on ResNet Exudate 99.2% 77.9% 99.6% – – – 
Microaneurysm 99.7% 76.4% 99.8% – – – 

e-Ophtha Exudate 98.4% 84.6% 98.8% – – – 
Microaneurysm 99.2% 67.2% 99.8% – – – 

[141] Kaggle EyePACS Inception-V3 All Combined 96% – – – – – 
[144] IDRiD Encoder-Decoder based on 

VGG16 
Soft Exudates – – – – – 0.182 
Hard Exudates – – – – – 0.550 
Microaneurysms – – – – – 0.006 
Haemorrhages – – – – – 0.083 

[154] IDRiD Custom CNN Healthy – 95.7% 75.8% – – – 
Exudates – 87.6% 98.7% – – – 
Microaneurysms – 62.6% 98.9% – – – 
Haemorrhages – 46% 98% – – – 

[88] ROC Custom UNet Microaneurysms – 48.5% – – – – 
DiaretDB1 – 64.1% – – – – 
e-Ophtha – 85.9% – – – – 

[143] IDRiD Custom CNN Hard Exudates 96.6% 98.3% 43.4% – – – 
[92] e-Ophtha Custom CNN Exudates 91.9% 88.9% 96% 0.926 – – 
[93] DRiDB Custom CNN Exudates – 78% – 0.78 – – 
[151] DiaretDB1 Custom UNet Red Lesions – 66.9% 99.8% 0.598 – – 
[148] DiaretDB1 Custom CNN Haemorrhages – 72% – – – – 

Hard Exudates – 47% – – – – 
Soft Exudates – 71% – – – – 
Microaneurysms – 21% – – – – 

[140] DiaretDB1 e-Ophtha ResNet Exudates 98.2% 99% 96% – – –  
97.6% 98% 95% – – – 

[73] DiaretDB1 Custom CNN Hard Exudates – – – – – 0.735 
Soft Exudates – – – – – 0.809 
Microaneurysms – – – – – 0.5 
Haemorrhages – – – – – 0.614 

[102] DiaretDB1 Handcrafted & Deep Features Red Lesions – 48.8% – – – – 
DiaretDB1 & ROC Small Red Lesions – 36.8% – – – – 

[78] e-Ophtha Custom UNet Exudates 99.97% 90.94% 99.99% 0.928 – 0.999 
DiaRetDB1  99.97% 93.94% 99.98% 0.925 – – 
MESSIDOR  99.96% 95.93% 99.99% 0.943 – – 

[94] IDRiD UNet Haemorrhages – 79.6% 99.9% 0.796 0.67 – 
Hard Exudates – 84.7% 99.8% 0.815 0.698 – 

[152] ROC Custom CNN Microaneurysms – 76.9% – – – 0.660 
e-Ophtha   – 77.1% – – – 0.637 

[153] DiaretDB1 & Messidor CNNs Ensemble Microaneurysms 69.4% 64.6% 88% – – 0.834 
[95] ROC Custom CNN Microaneurysms – 39.4% – – – – 
[68] IDRiD Custom cGAN For Every Lesion – – – 0.43–0.46 – – 
[150] Kaggle EyePACS Custom CNN Microaneurysms – 70.3% – – – – 

Haemorrhages – 84.3% – – – – 
Exudates – 90.8% – – – – 

[145] ISBI Custom UNets Hard Exudates – – – – – 0.889 
Soft Exudates – – – – – 0.679 
Microaneurysms – – – – – 0.525 
Haemorrhages – – – – – 0.703 

[138] IDRiD Custom CNN Hard Exudates – – – – – 0.795 
Soft Exudates – – – – – 0.711 
Microaneurysms – – – – – 0.463 
Haemorrhages – – – – – 0.637 

DDR Hard Exudates – – – – – 0.555 
Soft Exudates – – – – – 0.265 
Microaneurysms – – – – – 0.105 
Haemorrhages – – – – – 0.359 

e-Ophtha Hard Exudates – – – – – 0.417 
Microaneurysms – – – – – 0.169 

[121] IDRiD Custom UNet Soft Exudates – – – – – 0.9936 
Hard Exudates – – – – – 0.9935 
Microaneurysms – – – – – 0.9828 
Haemorrhages – – – – – 0.9779 

[134] IDRiD Custom CNN Hard Exudates – 78% – 0.782 – – 
e-Ophtha – 51.5% – 0.496 – – 

[91] DiaretDB1 Custom CNN Microaneurysms 87.62% 86.52% 88.73% 0.8742 – 0.9341 
DiaretDB1 (Transfer 
Learning) 

91.4% 91.2% 91.6% 0.913 – 0.962 

[65] DiaretDB1 Custom CNN Exudates – 100% 98.4% – – – 
[146] e-Ophtha + IDRiD Custom UNet Exudates & MAs 99.9% 99.9% 99.9% – – –  
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bias and develop a robust and accurate ground truth information for 
those datasets. Gulshan et al. [110] also proposed that the collected data 
should be graded multiple times from different professionals, to increase 
the robustness of the ground truth and in turn the accuracy of the model. 
Towards that direction, a uniform reference standard should be estab
lished to mitigate graders’ disagreements [115]. The latter study, 
showed that an adjudication grading standard was more rigorous, 
especially in detecting artifacts and missed microaneurysms, than a 
majority decision protocol. 

Poor image quality of the data can affect the training procedure as 
well as the performance of the model. Subtle signs of retinopathy at an 
early stage can be easily masked on a low contrast or blurred image. 
Rakhlin et al. [98] proposed a quality assessment module in their 
diagnostic pipeline, which discards ungradable images from the dataset. 
Subsequently, these images are referred to a professional ophthalmol
ogist for examination. Jiang et al. [100] also rejected the low quality 
images from the final dataset. Li et al. [51] defined the classification as a 
(6-class) scenary grading problem; the first 5 classes referred to the ICDR 
grading scale protocol and the 6-th class referred to ungradable images, 
effectively incorporating the quality assessment module into the deep 
learning model. 

Tan et al. [154] utilized a dataset collected at 11 different clinical 
sites, using a variety of fundus cameras, and was used to train and test a 
single CNN model for DR lesion segmentation. During their normaliza
tion step, they calculated an Ascore to assess the quality of the image. Its 
value was calculated based on the amount of grey pixels, which emerged 
during normalization of the areas of the image that have little to no 
illumination. Such dark areas do not provide any meaningful informa
tion regarding any anatomical feature of the retina, when they are 
brightened up, and thus such images were discarded from both the 
training and the testing set. 

On the other hand, Quellec et al. [73] reports that their ensemble 
model’s performance was not largely affected by the image’s quality. 
Nevertheless, increasing the uniformity and consistency among the data, 
either by controlling the camera’s settings and the environmental con
ditions during the capture or by excluding low-quality images, can 
improve the model’s performance or at least facilitate the training 
procedure. 

Finally, the development of large training and evaluation datasets is 
one of the many necessary steps towards the development of robust and 
accurate AI models. However, most of the aforementioned datasets lack 
sufficient data or suffer from imbalance between their classes. With that 
in mind, there are several ways to overcome this issue by employing 
augmentation techniques or generate synthetic data using GANs [109], 
as well as utilize transfer learning to leverage the knowledge of trained 
models on large datasets, such as ImageNET [42]. It is also important to 
increase the diversity of the data regarding their demographics, in order 
to ensure the model’s generazability [53, 86, 110]. Gargeya et al. [53] 
also proposed to incorporate additional patient metadata, such as ge
netic factors, duration of diabetes, hemoglobin A1C value, and other 
clinical data that may influence their risk for developing retinopathy. It 
also may be of interest to include specific information related to explicit 
lesion features within the classification models [110]. Doing so, the AI 
model may yield insightful correlations into underlying DR risk factors 
and potentially increasing the diagnostic performance. 

9.2. AI acceptance and clinical integration 

Artificial Intelligence (AI)- and especially Deep Learning (DL)-based 
methods hold promise for improving and accelerating healthcare. 
However, there are several key constraints that need to be addressed in 
order to facilitate AI’s adoption in clinical settings [161]. Apart from the 
traditional methods that are used to assess the model’s performance, i.e. 
accuracy metrics, several others are proposed as important elements 
towards the acceptance of AI models through regulatory processes 
[162]. The progress from traditional machine learning approaches to 

deep learning ones, although it has improved the performance of such 
analyses, has also been accompanied by a lack of explainability and 
transparency. The interpretability of such models is however a crucial 
element affecting their acceptance and integration in the clinical prac
tice. The clinical operator needs to understand the model’s decision 
process which should ideally provide explanations regarding its pre
dictions (e.g. why these predictions were made and what alternatives 
were considered). Regarding DR, several researchers have generated 
evidence heatmaps, in an attempt to aggregate the importance of each 
pixel to the prediction across the several network’s layers [73, 100, 
117]. Such visualizations allow the clinicians to determine whether the 
model bases its prediction on relevant clinical features, which in the case 
of DR would include exudates, microaneurysms and haemorrhages as 
previously discussed. In addition, two other crucial elements regarding 
the robustness and reliability of the models, need to be properly 
addressed prior to clinical integration. These terms ultimately refer to 
the need of the models to consistently perform accurately across ex
pected variations encountered in the clinical environment, including 
variations regarding data collected from multiple centres or machines 
from various vendors. 

10. Conclusion 

Diabetic retinopathy is a serious complication of diabetes mellitus, 
leading to progressive damage and even blindness of the retina. Its early 
detection and treatment is important in order to prevent its deterioration 
and the retina’s damage. The interest in applying deep learning in 
detecting diabetic retinopathy has increased during the past years and as 
several DL systems evolve and become integrated into the clinical 
practice, they will enable the clinicians to treat the patients in need more 
effectively and efficiently. This article presents the current state of 
research regarding the application of deep learning in diagnosing dia
betic retinopathy. Although deep learning has paved the way for more 
accurate diagnosis and treatment, further improvements are still 
necessary regarding performance, interpretability and trustworthiness 
from ophthalmologists. 
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channel states and symport/antiport rules, IEEE Trans. NanoBioscience 15 (6) 
(2016) 555–566. 

[134] Song Guo, Tao Li, Kai Wang, Chan Zhang, Hong Kang, A lightweight neural 
network for hard exudate segmentation of fundus image, in: International 
Conference on Artificial Neural Networks,, Springer, 2019, pp. 189–199. 

[135] Liang-Chieh Chen, Yukun Zhu, Papandreou George, Florian Schroff, 
Hartwig Adam, Encoder-decoder with atrous separable convolution for semantic 
image segmentation, in: Proceedings of the European Conference on Computer 
Vision (ECCV), 2018, pp. 801–818. 

[136] Juan Mo, Lei Zhang, Yangqin Feng, Exudate-based diabetic macular edema 
recognition in retinal images using cascaded deep residual networks, 
Neurocomputing 290 (2018) 161–171. 

[137] Saining Xie, Zhuowen Tu, Holistically-nested edge detection, in: Proceedings of 
the IEEE International Conference on Computer Vision, 2015, pp. 1395–1403. 

[138] Song Guo, Tao Li, Hong Kang, Li Ning, Yujun Zhang, Kai Wang, L-seg: an end-to- 
end unified framework for multi-lesion segmentation of fundus images, 
Neurocomputing 349 (2019) 52–63. 
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