

 ISTITUTO NAZIONALE DI FISICA NUCLEARE

 INFN-14-19/CCR
 16th December 2014

JOB PACKING: OPTIMIZED CONFIGURATION FOR JOB SCHEDULING
Stefano Dal Pra1

1) INFN-CNAF, Viale Berti Pichat, 6/2, I-40127 Bologna, Italy

Abstract

The default behaviour of a batch system is to dispatch jobs to nodes having the lower
value of some load index. Whilst this causes jobs to be equally distributed among all the
nodes in the farm, there are cases when different types of behaviour may be desirable, such as
having a completely full node before dispatching jobs to another one, or having similar jobs
dispatched to nodes already running jobs of the same kind. This work defines the packing
concept, different packing policies and useful metrics to evaluate how good the policy is. A
simple farm simulator has been written to evaluate the expected impact on a farm of different
packing policy. The simulator is run against a sequence of real jobs, whose parameters have
been taken from the accounting database of INFN-Tier1. The effectiveness of two packing
policies of interest, namely relaxed and exclusive, are compared. The exclusive policy proves
to be better, at the cost of unused cores in the farm, whose number is estimated. The
possibility of implementing the exclusive policy on a specific batch system, LSF 7.06, is
exploited. Relevant configurations are shown and an overall description of the mechanism is
presented.

 CCR-49/2014/P Pubblicato da SIDS–Pubblicazioni
 Laboratori Nazionali di Frascati

1 INTRODUCTION

1.1 The problem
When dispatching a job, the batch system selects the lesser loaded candidate and

adequate node in the computing farm.
Candidate: The node has free computation slots and is adequate

adequate: The node has suitable resources for the job to run

lesser loaded: According to a given metric (usually the system load)

We want to modify the node selection according to one or more known job characteristics,
such as its queue, group or other known property.

1.2 Motivation
A number of side effects of a different scheduling policy may be of interest:
Power saving: having jobs packed together into a small set of nodes may enable to turn

the unused ones to a state of standby.

Isolating risk: at times, a family of unstable jobs may damage the stability of the node
where they are running. Healthy jobs in the same node may get damaged in turn. Keeping
them together would be of benefit for other jobs.

MPI jobs: MPI jobs would be more efficient if they were dispatched to the smallest
possible set of nodes.

WnoDeS: When WNoDeS [2] is installed on top of a batch system, jobs are dispatched
to virtual machines, no matter which hypervisor has instantiated them. A packing policy may
enable to reduce latencies due to the copy of the physical vm image.

2 PACKING POLICIES
Although a rather wide number of different strategies may be defined, we shall focus

our attention on the following:
• PACKING_RELAXED

◦ Aggregation: a job with a property C(J==True) or C–job should prefer nodes with
jobs having the same property already running in it, whenever possible. Jobs
without the property are dispatched as usual.

• PACKING_EXCLUSIVE

◦ Concentration: C–jobs should prefer nodes where other C–jobs are already running
in it, whenever possible. However, jobs without the property must avoid nodes
where C–jobs are running.

• PACKING_NONE

◦ Spreading: C–jobs should prefer nodes without C–jobs running in it.

2

3 THE FARM SIMULATOR
A simple farm simulator has been built to ease the evaluation of what an impact should

be expected from a given packing policy, if adopted on the production farm. This enables for
quick and safe evaluation of how a new scheduling policy would impact on a production
farm, if adopted.

Two synthetic indicators have been defined in order to measure how well a packing
policy works:

• Packing Index: PI = Needed nodes / Used nodes

This ratio indicates how good C–jobs are packed together (PI @ 1) or spread (PI @ 0)

• Fill factor: FF = Used slots / Available slots

This ratio, when lower than one, indicates sub–optimal farm utilization, due to unused
slots in the farm. This may happen when using the PACKING_EXCLUSIVE policy,
which actually realizes a node reservation.

The simulator has been implemented with python, using specialized libraries for
numerical and graphical applications (matplotlib, numpy).

A dataset of real data have been used to run the simulations, taken from the accounting
database of the INFN-Tier1. The only data of interest are: Start Time, End Time, queue name.
We restrict ourselves to Cj–jobs where the condition is decided by the queue name of the job.
The first condition always indicates the default condition, i.e. no special policy at all.

For example: we want to simulate RELAXED_PACKING for jobs having queuename
== ams and jobs having queuename == cms. Then C1 becomes: “the job is neither a
ams nor a cms job”, similarly is: “the job is a ams job” and is: “the job is a cms job”. When
apply to a job it is labeled as belonging to the other queue.

3

 Fig. 1: The farm simulator. Job arrival is taken from an accounting dataset or simulated. V1
enqueues jobs with no special requirements, V2,...,Vk for those requiring a packing policy. The F
matrix represents the status of each computation slot, the L matrix represents the “load” status.

3.1 Simulator description
The arrival of jobs is obtained by reading entries from the dataset or emulating them as

a random process where each queue name has its own statistical description, modeled after
the real data or customly crafted by the user. It must be noted that the timestamps collected in
the dataset are not reporting the submission time; the absolute Start time (hence after the
dispatching) and the End time are available, hence the job duration and, implicitly, the arrival
order.

Arriving jobs are routed to the V1,...,Vk queues, according to the matching condition
C1,...,Ck defined by the user.

Although the farm simulator implements a much simplified model of a computational
center, it is expressive enough to evaluate the described packing policies. Moreover,
implementing new ones is quite simple and adding them to the simulator is straightforward.

The “farm status” that we are interested to track simply comes from the status of every
slot on each node at a given time. Assuming that all the nodes are equal, we can represent the
farm with a matrix F, having one column per node and one row per slot. The status of the i–th
slot in the n–th node is represented by the f i , n cell of the matrix whose value is zero when
free. A job in a cell is simply represented by the timestamp T e of its end time: f i , n=T e

An auxiliary matrix L represents the “load” of the farm, indicating how many jobs of
each family V1,...,Vk are running on each node. The 0–th row holds the sum of the values
from the other rows, thus representing the number of busy slots in a node.

The scheduler implements the desired policy. Its status is an internal “clock” used as the
absolute time who rules the farm. Each absolute timestamp read from the dataset is adjusted
according to the scheduler's time. This occurs because of the different size between the
simulated farm and the real one: a smaller farm has a lower throughput, thus the absolute

4

timestamp from the dataset only makes sense on the real farm where it was collected; of
course runtimes and arrival order however maintains consistency.

3.2 Scheduling and dispatching
The simulator dispatches one job per cycle, as follows:

1. the elements where f i , n>T s , are set to zero. These are in fact finished jobs.
2. A job is selected for dispatch. It is the one having the lower start time on the

queues V1,...Vk.
3. The current policy is enforced: an ordered list of eligible slots is computed and

the first one satisfying the constraints is the selected one. If no eligible slots are found:
• The farm is saturated: there are no empty slots. We need to wait for some

job to finish. This is simply done by setting: T s=min(F)+1 , and continuing
to step 1.

• The policy prevents dispatching: the free slot only accepts jobs from a
queue V l ,l>1 . We check the V l queue for entries and select from there
the job to be dispatched, if possible. Otherwise we move time forward:
T s=min(F)+1 and continue to step 1.

4. The job is dispatched to the selected slot: f i , n=T s+R , with R being the
runtime.

The simulation is started by executing a command line, specifying which packing policy
is being simulated, which queues are subjected to the packing policy (any other queuename is
then renamed to other). If reading job arrivals from a histfile, a date time can also be
specified, to have the simulation starting with data collected after a given time.

While running, the simulator displays pictorial representions of the farm status. These
are updated every iterations, being specified at command line. Optionally, each frame is then
saved into a file for subsequent use.

4 SIMULATION RESULTS AND COMMENTS
The simulator have been used to compare the two packing policies relaxed and

exclusive, described in the previos section, applying them on an initially empty farm made of
800 nodes, 8 slots each. The job submission sequence is exactly the same in both cases. The
farm status can be represented by a 80x80 matrix. Each row represents 8 consecutive slots of
ten consecutive nodes, and each color represents the slot status: free, running a generic job,
or a packing one.

At first the dynamic appears to be almost the same: jobs are dispatched uniformly across
all the nodes. An early small difference can be observed (Fig. 1) when a single packing job is
dispatched.

5

The two policies behave almost equally until farm saturation, i.e. until “general
purpose” free slots are no more available (Fig 2). From then on, the relaxed policy fails in
maintaining jobs packed together. This is because no reservation is enforced on the free slots.
Conversely, the exlusive policy exhibits a satisfactory Packing Index, at the cost of a
suboptimal Fill Factor. This means that we have to accept a number of unused slots, i.e. a
slower throughput of the farm (Fig 3,4,5,6). The percentage entity of this slowdown can be
measured (Fig. 7) by averaging the Fill Factor difference between the two policies and turns
out to be around 1%. It must be noted that this values strongly depends on the job arrival
sequence. From a theoretical point of view, a specific job arrival sequence could be forged to
force a “farm deadlock”.

For example, if we have a single free slot on each node, and a pending sequence of
exactly one packing job per node, then they would be scheduled one per node, with the result
of having reserved every node to packing jobs only. If only non-packing ones are submitted,
we turn out with a “locked farm”, where no job could be dispatched, because of the exclusive
policy, until a node ends all of its running jobs. Although this is an extreme example, it helps
to make clear how the arrival order matters and how an extreme impact the job submission
pattern could affect the overall farm throughput. The deadlock risk can be removed by

6

introducing a “Time To Live” parameter on the node: a reserved node declares itself
“unreserved” after TTL seconds without receiving new packing jobs. It can be noted that
when TTL=0 produces the relaxed policy, while TTL→∞ gives the exclusive one.

7

5 IMPLEMENTATION
This section describes how the policies can be implemented on a real scheduler. We

specifically refer to LSF 7.06 as this is the production batch system at INFN-T1.
The overall configuration follows three main steps:

1. Define one or more custom dynamic resource. These are an external load indexes,
whose meaning and behaviour is configured by the LSF administrator.

2. Write an elim script. This will run on each node in the farm, cyclically reporting the
value of the aforementioned load index to the Load Information Manager (LIM).

3. Write an esub script. This will run on the submission host at submission time for each
job. It will add Resource Requirements based on the custom load indexes, thus
applying the “packing policy” as needed by that specific job. These will be then
evaluated bu the scheduler at dispatch time, influencing the host selection. A “packing
job” is recognized by its usergroup.

8

5.1 Defining External Load Index
Two configuration files are to be edited

5.1.1 lsf.shared

Begin Resource

RESOURCENAME TYPE INTERVAL INCREASING DESCRIPTION

two resources to exploit Job Packing

 pkyes Numeric 15 Y (Pack)

 pknone Numeric 15 N (no Pack)

5.1.2 lsf.cluster.<clustername>

Begin ResourceMap

 RESOURCENAME LOCATION

 pkyes [default]

 pknone [default]

9

The configuration changes, are the activated running: lsadmin reconfig ;; badmin mbdrestart.

5.2 Writing the elim script
The elim script is executed on each node by the local LIM. It must be located under the

$LSF_SERVERDIR path and its name must be of the form elim.name.
It runs an endless loop, computing one or more values that are printed at regular times

to standard output on a single line. For example:

[root@wn-­xyz ~]# ./elim.jp
2 pkyes 1 pknone 0

The general output format is:
<number of values> <name_1> <value_1> … <name_n> <value_n>

The elim script must be able to determine how many jobs are running on the node, how many
of them are “packing jobs” and how many are not.
It is important to not retrieve the list of the running jobs by querying the batch system. That
would generate heavy traffic and excessive load on the Master batch daemon. Since running
jobs are launched by the sbatchd, they can be retrieved using the ps command instead:

ps -­o pid -­-­ppid `pidof sbatchd`

Then, the usergroups of the running jobs must be determined. Again, this is achieved with a
ps command, passing the process id of the running jobs:

ps -­o group -­p pid1,...,pidn
The value for pkyes and pknone is finally computed by mapping and counting usergroup
names to the two external indexes.

5.3 Writing the esub script
This is a shell script executed at submission time. It can be written by the batch system

administrator to enforce a packing policy to a category of jobs.
Here is a dimostrative example script: jobs submitted to the pk1 queue are modified to

require nodes having the higher possible value for the pkyes external index. Any other job
will require pkyes==0, i.e. nodes without packing jobs.

#!/bin/sh
if test "$LSB_SUB_PARM_FILE" != ""
then
 . $LSB_SUB_PARM_FILE
 if [$LSB_SUB_QUEUE = "pk1"] ;; then
 eval echo 'LSB_SUB_RES_REQ=\
"\"select[pkyes > 0 || pkyes == 0]\""' > $LSB_SUB_MODIFY_FILE
 else
 eval echo 'LSB_SUB_RES_REQ=\
"\"select[pkyes == 0]\""' > $LSB_SUB_MODIFY_FILE
 fi
fi

The esub script must be named $LSF_SERVERDIR/esub.<name> and it must be
declared as LSB_ESUB_METHOD=<name> in lsf.conf.

10

The configuration changes, are the activated running: lsadmin reconfig ;; badmin mbdrestart.

5.4 Checking the setup.
The configuration of the external indexes can be checked before having written the esub

script:
#find nodes with packing jobs
lsload -­I pkone -­R "select[pkyes>0 || pkyes==0]"

#find nodes without packing jobs
lsload -­I pkyes -­R "select[pkyes==0]"

Packing and non-packing jobs can be manually submitted this way

bsub -­q pk1 -­R "select[pkone > 0 || pkone == 0]” 'sleep 3600'
bsub -­q pk2 -­R "select[pkone == 0]” 'sleep 3600'

and the effect can be checked after a while using lsload:

[root@lsf ~]# lsload -­I pkyes:pknone
HOST_NAME status pkyes pknone
wn-­104-­03-­01-­08 ok 0.0 1.0
wn-­104-­03-­01-­12 ok 0.0 0.0
wn-­104-­03-­01-­06 ok 2.0 0.0

6 CONCLUSIONS
A set of scheduling policies has been defined and a family of packing policies has been

selected as a case study. To quickly and safely evaluate their impact on a computing farm, a
simulator has been built and applied to compare exclusive and relaxed packing policies. The
simulation demonstrates how the exclusive policy is more effective, at the cost of a lower
throughput of the farm. The average loss of computing power has been estimated by
comparing results from the simulator. An example configuration to implement exclusive
packing with the LSF batch system has been described and tested. The mechanism adopted
for the implementation, based on esub and elim custom scripts and external load index is quite
general and more applications may be investigated. One usecase of interest for further study is
given by multicore jobs. In this case an exclusive policy should guarantee multicore jobs to
have a fair number of nodes with the needed number of free slots for them to run.

7 REFERENCES

(1) http://www-304.ibm.com/support/customercare/sas/f/plcomp/platformlsf.html (Platform
LSF admin guide)

(2) Accessing Scientific Applications through the WNoDeS Cloud Virtualization
Framework

Elisabetta Ronchieri, Marco Verlato, Davide Salomoni, Gianni Dalla Torre, Alessandro Italiano,
Vincenzo Ciaschini, Daniele Andreotti, Stefano Dal Pra, Wouter Geert Touw, Gert Vriend,
Geerten W. Vuister; proceeding of: The International Symposium on Grids and Clouds
(ISGC), PoS, At Academia Sinica, Taipei, Taiwan

11

(3) https://indico.cern.ch/event/220443/session/5/contribution/9 (Job packing: optimized
configuration for job scheduling; talk, HEPiX Spring 2013 Workshop).

12

