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Abstract
When approaching the design of a multipole magnet, such as a dipole, quadrupole, sex-
tupole, and so on, it is highly advantageous to initiate the process by establishing the
fundamental parameters. These parameters include conductor size, current density, inner
and outer radius of the iron yoke, and more. This preliminary dimensioning enables the
acquisition of the necessary specifications for the design. Within this report, analytical
expressions for the magnetic field, Lorentz forces, and stored energy of multipole mag-
nets with the cos(nθ) and sector coil configurations, both with and without the presence of
an iron yoke, are derived. These derivations are based on the vector potential of a current
line.
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1 Multipole cos(nθ) without iron yoke

Figure 1: a) Representation of a current line, b) Dipole representation in cosθ configura-
tion.

The vector potential in cylindrical coordinates (r, θ, z) of a current line I directed
along the z axis and located at (a, ϕ) (see Figure 1a) is the initial point for the calculation
of the magnetic field in the aperture and conductors, Lorentz forces, and stored energy.
The only non-zero component of the vector potential, Az, is expressed as:

Az(r, θ) =
µ0I

2π

∞∑
n=1

1

n

(
r

a

)n

cos(n(ϕ− θ)) for r < a (1)

Az(r, θ) =
µ0I

2π

[
ln
(
r

a

)
+

∞∑
n=1

1

n

(
a

r

)n

cos(n(ϕ− θ))

]
for r > a (2)

where n represents the index of the series expansion. The magnetic field can be computed
using the following two relationships:

Br =
1

r

∂Az

∂θ
; Bθ = −∂Az

∂r
(3)

For r < a:

Br(r, θ) =
µ0I

2πa

∞∑
n=1

(
r

a

)n−1

sin(n(ϕ− θ)) (4)

Bθ(r, θ) = −µ0I

2πa

∞∑
n=1

(
r

a

)n−1

cos(n(ϕ− θ)) (5)
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For r > a:

Br(r, θ) =
µ0I

2πa

∞∑
n=1

(
a

r

)n+1

sin(n(ϕ− θ)) (6)

Bθ(r, θ) = −µ0I

2πr
+

µ0I

2πa

∞∑
n=1

(
a

r

)n+1

cos(n(ϕ− θ)) (7)

As shown in Figure 1b) for the dipole case, a perfect cos(mθ) multipole is visualized as a
cylindrical shell with an inner radius of a1 and an outer radius of a2. This shell features a
current density distribution denoted as J = J0 cos(mϕ), where m represents the multipole
index (m = 1 for the dipole). To compute the resulting magnetic field, it is necessary to
integrate the field generated by a current line over the entire cylindrical shell, with the
substitution I −→ J0 cos(mϕ) a da dϕ.
For an accurate representation, it’s crucial to distinguish between the magnetic field inside
the aperture and inside the conductor.

1.1 Magnetic field in the aperture

The magnetic field in the bore is given by:

Br(r, θ) =
µ0J0
2π

∞∑
n=1

∫ a2

a1

(
r

a

)n−1

da
∫ 2π

0
sin(n(ϕ− θ))cos(mϕ) dϕ

= −µ0J0
2

rn−1

(
a2−n
2 − a2−n

1

2− n

)
sin(nθ) (8)

Bθ(r, θ) = −µ0J0
2π

∞∑
n=1

∫ a2

a1

(
r

a

)n−1

da
∫ 2π

0
cos(n(ϕ− θ))cos(mϕ) dϕ

= −µ0J0
2

rn−1

(
a2−n
2 − a2−n

1

2− n

)
cos(nθ) (9)

where the integral over the angle is nonzero only if m = n.
To convert from cylindrical coordinates to Cartesian coordinates, one can proceed as fol-
lows:

Bx = Br cosθ − Bθ sinθ (10)

By = Br sinθ +Bθ cosθ (11)

For n = 1:
Br = −µ0J0

2
(a2 − a1) sinθ (12)

Bθ = −µ0J0
2

(a2 − a1) cosθ (13)
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|B| = µ0J0 (a2 − a1)

2
(14)

For n = 2:
Br = −µ0J0

2
r ln

(
a2
a1

)
sin(2θ) (15)

Bθ = −µ0J0
2

r ln
(
a2
a1

)
cos(2θ) (16)

|B| = µ0J0
2

r ln
(
a2
a1

)
(17)

To derive these equations with n = 2, the following limit was solved:

lim
n→2

a2−n
2 − a2−n

1

2− n
= ln

(
a2
a1

)
(18)

and the gradient can be calculated as follows:

G =
∂B

∂r
=

µ0J0
2

ln
(
a2
a1

)
(19)

1.2 Magnetic field in the conductor

In the conductor, if the point is located at (r, θ), the integral must be split into two parts:

B(r, θ) =
∫ 2π

0

∫ r

a1
Br>a a dϕ da +

∫ 2π

0

∫ a2

r
Br<a a dϕ da (20)

Following a similar approach as in the previous paragraph, the magnetic field can be
calculated as:

Br(r, θ) = −µ0J0
2

(
a2−n
2 − r2−n

2− n
rn−1 +

r2+n − a2+n
1

2 + n

1

rn+1

)
sin(nθ) (21)

Bθ(r, θ) = −µ0J0
2

(
a2−n
2 − r2−n

2− n
rn−1 − r2+n − a2+n

1

2 + n

1

rn+1

)
cos(nθ) (22)

For n = 1:

Br(r, θ) = −µ0J0
2

(
a2 −

2

3
r − 1

3

a31
r2

)
sinθ (23)

Bθ(r, θ) = −µ0J0
2

(
a2 −

4

3
r +

1

3

a31
r2

)
cosθ (24)

By definition, the peak field inside the conductor refers to the maximum value of the
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magnetic field modulus. For symmetry reasons, it is situated at θ = π/2n, and for the
dipole configuration, this corresponds to θ = π/2, where:

|B(r)| = µ0J0
2

(
a2 −

2

3
r − 1

3

a31
r2

)
(25)

The maximum value can be determined by setting the first derivative of |B(r)| to zero,
resulting in the equation in terms of r:

−2

3
+

2

3

a31
r3

= 0 (26)

The solution of this equation is r = a1 for a dipole magnet in cosθ approximation, as
shown in the Ansys simulation (Fig. 2).

Figure 2: Simulation with Ansys of the magnetic field produced by a dipole in cosθ
configuration.

Using this value for (r, θ), one can find:

Bpeak = −µ0J0 (a2 − a1)

2
(27)
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This value is equal to the field in the aperture for continuity.

For n = 2:

Br = −µ0J0
2

[
r
(
ln
(
a2
r

)
+

1

4

)
− 1

4

a41
r3

]
sin(2θ) (28)

Bθ = −µ0J0
2

[
r
(
ln
(
a2
r

)
− 1

4

)
+

1

4

a41
r3

]
cos(2θ) (29)

For symmetry reasons, the peak field inside the conductor is situated at θ = 45◦ and
r = r(a1, a2) for a quadrupole magnet in cos(θ) approximation, as shown in the Ansys
simulation (Fig. 3).

Figure 3: Simulation with Ansys of the magnetic field produced by a quadrupole in cos2θ
configuration.

It can be demonstrated that the r peak is a function of a1 (internal radius) and w (coil

8



width) as follows:

r(a1, w) = (a1 + w) c1 exp

[
1

4
W

(
ϵ1(a1)

(ϵ2(a1) w + ϵ3(a1))4

)]
(30)

Where W is the Lambert W function, and the parameter c1 = 0.47237 is a constant,
while ϵ1,2,3 are functions of a1. For an internal radius of a1 = 75 mm: ϵ1 = 60.25661,
ϵ2 = 0.01333 1

mm
, ϵ3 = 1. For instance, with a fixed coil width of 30 mm, a value of r is

obtained, which is equal to 82.59279 mm. The peak magnetic field is given by:

Bpeak(w) = −µ0J0
2

[
r(w)

(
ln

(
a2

r(w)

)
+

1

4

)
− 1

4

a41
r(w)3

]
(31)

In the thin coil limit (w −→ 0), it is located at θ = 45◦ with r = a1, and for continuity, it
coincides with the expression in equation (17).

1.3 Stored energy

The expression for the vector potential inside the conductor is as follows:

Az(r, θ) =
∫ 2π

0

∫ r

a1
Ar>a a dϕ da+

∫ 2π

0

∫ a2

r
Ar<a a dϕ da (32)

where Ar>a is defined in equation (2) and Ar<a is defined in equation (1). Integrating in
cylindrical coordinates:

Az(r, θ) =
µ0J0
2n

[
a2−n
2 − r2−n

2− n
rn +

r2+n − a2+n
1

2 + n

1

rn

]
cos(nθ) (33)

The stored energy per unit length [J/m] is calculated as:

E

l
=

1

2

∫
conductor

A⃗ · J⃗ dS (34)

with J = J0 cos(mϕ). Then, integrating over the surface of the conductor:

E

l
=

πµ0J
2
0

4n(4− n2)

[
a41 + a42 −

n

2
(a42 − a41)− 2 a2+n

1 a2−n
2

]
(35)

For n = 1:
E

l
=

πµ0J
2
0

24

(
a42 + 3 a41 − 4 a31a2

)
(36)
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For n = 2:
E

l
=

πµ0J
2
0

64

[
a42 − a41 + 4 a41 ln

(
a1
a2

)]
(37)

Here, the following limit was used:

lim
n→2

a41 + a42 − n
2
(a42 − a41)− 2 a2+n

1 a2−n
2

4− n2
=

1

8

[
a42 − a41 + 4 a41 ln

(
a1
a2

)]
(38)

1.4 Lorentz forces

A conducting element carrying a current density J [A/mm2] is subject to a force density
fL [N/m3] given by:

f⃗L = J⃗ × B⃗ (39)

If the current density is J⃗ = (0 , 0 , J0 cos mθ) and the magnetic field is B⃗ = (Br , Bθ , 0),
the components of the force density are:

fr = −J0 cos(mθ) Bθ

fθ = +J0 cos(mθ) Br

fz = 0

Utilizing the previously calculated Bθ and Br values from section 1.2 and taking into
account that n becomes equal to m after the integrations, the complete forms can be
derived as follows:

fr(r, θ) = −µ0J
2
0

2
cos2(nθ)

(
r2+n − a2+n

1

2 + n

1

rn+1
− a2−n

2 − r2−n

2− n
rn−1

)
(40)

fθ(r, θ) = −µ0J
2
0

2
cos(nθ)sin(nθ)

(
r2+n − a2+n

1

2 + n

1

rn+1
+

a2−n
2 − r2−n

2− n
rn−1

)
(41)

By integrating over the cross-section, one can obtain the total forces per unit of longitu-
dinal length F [N/m] in 1/2n symmetry as follows:

Fr =
∫ π/2n

0

∫ a2

a1
fr r drdθ ; Fθ =

∫ π/2n

0

∫ a2

a1
fθ r drdθ (42)

The radial force per unit length is:

Fr = −πµ0J
2
0

8n

(
4

3

a32 − a31
4− n2

− a2+n
1 a1−n

2 − a31
(2 + n)(1− n)

− a32 − a1+n
1 a2−n

2

(1 + n)(2− n)

)
(43)

and the angular one is:

Fθ = −µ0J
2
0

4n

(
−2n

3

a32 − a31
4− n2

− a2+n
1 a1−n

2 − a31
(2 + n)(1− n)

+
a32 − a1+n

1 a2−n
2

(1 + n)(2− n)

)
(44)
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For n = 1:

Fr = −πµ0J
2
0

8

(
4

3

a32 − a31
3

− a31
3

ln
(
a2
a1

)
− a32 − a21a2

2

)
(45)

Fθ = −µ0J
2
0

4

(
−2

3

a32 − a31
3

− a31
3

ln
(
a2
a1

)
+

a32 − a21a2
2

)
(46)

where the following limit was used:

lim
n→1

a2+n
1 a1−n

2 − a31
1− n

= a31 ln
(
a2
a1

)
(47)

For n = 2:

Fr = −πµ0J
2
0

16

(
−a32 − a31

36
+

a31
3

ln
(
a2
a1

)
+

a41 − a31a2
4 a2

)
(48)

Fθ = −µ0J
2
0

8

(
7
a32 − a31

36
− a31

3
ln
(
a2
a1

)
+

a41 − a31a2
4 a2

)
(49)

where the following limits were used:

lim
n→2

(
4

3

a32 − a31
4− n2

− a32 − a1+n
1 a2−n

2

(1 + n)(2− n)

)
= − 1

36

(
a32 − a31

)
+

1

3
a31 ln

(
a2
a1

)
(50)

and

lim
n→2

(
−2n

3

a32 − a31
4− n2

+
a32 − a1+n

1 a2−n
2

(1 + n)(2− n)

)
=

7

36

(
a32 − a31

)
− 1

3
a31 ln

(
a2
a1

)
(51)
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2 Multipole cos(nθ) with iron yoke

Figure 4: Schematic representation of the iron yoke (in green).

In this section, we follow the same procedures as in the previous section, but this
time, we take into account the effects introduced by an iron yoke with linear permeability.
It’s important to note that this is applicable when magnetic fields are below 1.5 − 2 T,
remaining within the range of iron’s magnetic saturation. If we consider an iron yoke with
inner radius R1, outer radius R2, and a relative permeability of µr, as illustrated in Figure
4, the only non-zero component of the vector potential, denoted as Az, corresponding to
a current line I oriented along the z-axis and positioned at (a, ϕ), is as follows:

Az(r, θ) =
µ0I

2π

∞∑
n=1

1

n

(
r

a

)n
[
1 + kn

(
a

R1

)2n
]
cos(n(ϕ− θ)) for r < a (52)

Az(r, θ) =
µ0I

2π

[
ln
(
r

a

)
+

∞∑
n=1

1

n

[(
a

r

)n

+ kn

(
r

a

)n ( a

R1

)2n
]
cos(n(ϕ− θ))

]
for r > a

(53)
where

kn =
µr − 1

µr + 1

1−
(
R1

R2

)2n
1−

(
µr−1
µr+1

)2 (
R1

R2

)2n (54)

Utilizing equation (3), the magnetic field generated by a current line is expressed as fol-
lows:
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for r < a:

Br(r, θ) =
µ0I

2πa

∞∑
n=1

(
r

a

)n−1
[
1 + kn

(
a

R1

)2n
]
sin(n(ϕ− θ)) (55)

Bθ(r, θ) = −µ0I

2πa

∞∑
n=1

(
r

a

)n−1
[
1 + kn

(
a

R1

)2n
]
cos(n(ϕ− θ)) (56)

for r > a:

Br(r, θ) =
µ0I

2πa

∞∑
n=1

[(
a

r

)n+1

+
(
r

a

)n−1

kn

(
a

R1

)2n
]
sin(n(ϕ− θ)) (57)

Bθ(r, θ) = −µ0I

2πr
+

µ0I

2πa

∞∑
n=1

[(
a

r

)n+1

−
(
r

a

)n−1

kn

(
a

R1

)2n
]
cos(n(ϕ− θ)) (58)

Therefore, by applying the superposition principle, the magnetic field remains identical to
the field without iron, except for the additional term introduced by the iron’s permeability.
Now, in the case of a perfect cosθ multipole featuring a current density distribution ex-
pressed as J = J0 cos(mϕ), with m representing the multipole index, the magnetic field
within both the aperture and the conductor can be calculated.

2.1 Magnetic field in the aperture, including iron yoke

The integration over both the angle and the radius results in the magnetic field within the
aperture, where r < a:

Br(r, θ) = −µ0J0
2

rn−1

(
a2−n
2 − a2−n

1

2− n
+

kn
R2n

1

a2+n
2 − a2+n

1

2 + n

)
sin(nθ) (59)

Bθ(r, θ) = −µ0J0
2

rn−1

(
a2−n
2 − a2−n

1

2− n
+

kn
R2n

1

a2+n
2 − a2+n

1

2 + n

)
cos(nθ) (60)

For n = 1:

Br = −µ0J0
2

(
a2 − a1 +

k1
R2

1

a32 − a31
3

)
sinθ (61)

Bθ = −µ0J0
2

(
a2 − a1 +

k1
R2

1

a32 − a31
3

)
cosθ (62)

|B| = µ0J0
2

(
a2 − a1 +

k1
R2

1

a32 − a31
3

)
(63)

For n = 2:

Br = −µ0J0
2

r

[
ln
(
a2
a1

)
+

k2
R4

1

a42 − a41
4

]
sin(2θ) (64)
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Bθ = −µ0J0
2

r

[
ln
(
a2
a1

)
+

k2
R4

1

a42 − a41
4

]
cos(2θ) (65)

|B| = µ0J0
2

r

[
ln
(
a2
a1

)
+

k2
R4

1

a42 − a41
4

]
(66)

G =
∂B

∂r
⇒ G =

µ0J0
2

[
ln
(
a2
a1

)
+

k2
R4

1

a42 − a41
4

]
(67)

2.2 Magnetic field in the conductor, including iron yoke

When (r, θ) is located inside the conductor, the magnetic field within the conductor in-
cludes both the original field without the presence of iron, denoted as Br, no iron, and an
additional contribution due to the permeability µr:

Br = Br, no iron +Br, iron (68)

where Br, no iron is defined in eq.(21), and the extra term is given by:

Br, iron =
µ0J0
2π

∞∑
n=1

∫ a2

a1

(
r

a

)n−1

kn

(
a

R1

)n−1

da
∫ 2π

0
sin(n(ϕ− θ))cos(mϕ) dϕ (69)

Then, following the necessary integrations and calculations, one can derive:

Br = −µ0J0
2

[(
a2−n
2 − r2−n

2− n
+

kn
R2n

1

a2+n
2 − a2+n

1

2 + n

)
rn−1 +

r2+n − a2+n
1

2 + n

1

rn+1

]
sin(nθ)

(70)
and likewise:

Bθ = −µ0J0
2

[(
a2−n
2 − r2−n

2− n
+

kn
R2n

1

a2+n
2 − a2+n

1

2 + n

)
rn−1 − r2+n − a2+n

1

2 + n

1

rn+1

]
cos(nθ)

(71)

For n = 1:

The peak of the dipole field occurs at an angle θ = π/2 and a radius r = a1, which
is the solution for ∂Br/∂r = 0 with an index set to 1.

Bθ = 0 ; Br = −µ0J0
2

(
a2 − r +

k1
R2

1

a32 − a31
3

+
r3 − a31
3r2

)
(72)

Replacing r with a1, the peak field is:

|Bmax| =
µ0J0
2

(
a2 − a1 +

k1
R2

1

a32 − a31
3

)
(73)
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For n = 2:

The peak of the quadrupole field occurs at an angle θ = π/4 and a radius r(a1, a2),
which is the solution for ∂Br/∂r = 0 with an index set to 2.

Bθ = 0 ; Br = −µ0J0
2

[
r

(
ln
(
a2
r

)
+

k2
R4

1

a42 − a41
4

)
+

r4 − a41
4r3

]
(74)

The radius that corresponds to the maximum field can be obtained by solving this
following equation:

ln
(
a2
r

)
+

3

4

(
a41
r4

− 1

)
+

k2
R4

1

(
a42 − a41

4

)
= 0 (75)

A numerical estimate, with a1 = 75 mm, a2 = a1 + w (where w = 30 mm is the
coil width), R1 = a2+20mm, R2 = R1+W (where W = 30mm is the iron yoke
width) and µr = 10, results in a radius of r = 84.30302 mm.

2.3 Stored energy, including iron yoke

Using the superposition principle, the vector potential inside the conductor is found as a
sum of two terms:

Az = Az, no iron + Az, iron (76)

where Az, no iron is defined in eq.(33), and the extra term due to iron is given by:

Az, iron =
µ0J0
2n

kn
R2n

1

a2+n
2 − a2+n

1

2 + n
rn cos(nθ) (77)

Then, combining the two terms:

Az(r, θ) =
µ0J0
2n

[(
a2−n
2 − r2−n

2− n
+

kn
R2n

1

a2+n
2 − a2+n

1

2 + n

)
rn +

r2+n − a2+n
1

2 + n

1

rn

]
cos(nθ)

(78)
The stored energy per unit length [J/mm] is:

E

l
=
(
E

l

)
no iron

+
πµ0J

2
0

4n

∫ a2

a1

kn
R2n

1

a2+n
2 − a2+n

1

2 + n
rn+1 dr

=
(
E

l

)
no iron

+
πµ0J

2
0

4n

kn
R2n

1

(
a2+n
2 − a2+n

1

2 + n

)2

(79)

where (E/l)no iron is defined in eq.(35) .
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For n = 1:

E

l
=

πµ0J
2
0

4

a42 + 3a41 − 4a31a2
6

+
k1
R2

1

(
a32 − a31

3

)2
 (80)

For n = 2:

E

l
=

πµ0J
2
0

8

a42 − a41 + 4a41 ln
(
a1
a2

)
8

+
k2
R4

1

(
a42 − a41

4

)2
 (81)

2.4 Lorentz forces, including iron yoke

The force densities fr and fθ in [N/m3] are given by:

fr(r, θ) = −J0 cos(nθ) Bθ = (82)

= −µ0J
2
0

2
cos2(nθ)

[
r2+n − a2+n

1

2 + n

1

rn+1
−
(
a2−n
2 − r2−n

2− n
+

kn
R2n

1

a2+n
2 − a2+n

1

2 + n

)
rn−1

]

fθ(r, θ) = +J0 cos(nθ) Br = (83)

= −µ0J
2
0

2
cos(nθ)sin(nθ)

[
r2+n − a2+n

1

2 + n

1

rn+1
+

(
a2−n
2 − r2−n

2− n
+

kn
R2n

1

a2+n
2 − a2+n

1

2 + n

)
rn−1

]
Following the same path of the previous paragraphs, the total radial force per unit length,
Fr [N/m], is:

Fr = Fr, no iron +
πµ0J

2
0

8n

kn
R2n

1

a2+n
2 − a2+n

1

2 + n

a1+n
2 − a1+n

1

1 + n
(84)

and the total angular force per unit length, Fθ [N/m], is:

Fθ = Fθ, no iron −
µ0J

2
0

4n

kn
R2n

1

a2+n
2 − a2+n

1

2 + n

a1+n
2 − a1+n

1

1 + n
(85)

where Fr, no iron and Fθ, no iron are defined respectively in eq.(43) and in eq.(44) .

For n = 1:

Fr = −πµ0J
2
0

8

(
4

3

a32 − a31
3

− a31
3

ln
(
a2
a1

)
− a32 − a21a2

2
− k1

R2
1

a32 − a31
3

a22 − a21
2

)
(86)

Fθ = −µ0J
2
0

4

(
−2

3

a32 − a31
3

− a31
3

ln
(
a2
a1

)
+

a32 − a21a2
2

+
k1
R2

1

a32 − a31
3

a22 − a21
2

)
(87)
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For n = 2:

Fr = −πµ0J
2
0

16

(
−a32 − a31

36
+

a31
3

ln
(
a2
a1

)
+

a41 − a31a2
4 a2

− k2
R4

1

a42 − a41
4

a32 − a31
3

)
(88)

Fθ = −µ0J
2
0

8

(
7
a32 − a31

36
− a31

3
ln
(
a2
a1

)
+

a41 − a31a2
4 a2

+
k2
R4

1

a42 − a41
4

a32 − a31
3

)
(89)

It’s important to specify that if the magnetic field is high, above 1.5 − 2 T , the iron
becomes saturated and non-linear, and these formulas are no longer valid.
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3 Sector coil

To describe the current distributions of the sector coil type, a similar approach can be used
as previously discussed for the cosθ configurations. The key difference lies in the integrals
over the angle dϕ, given that the current distribution changes from J = J0 cos(mϕ) to
J = J0.
The focus will be on the cases of dipole and quadrupole configurations, with the iron yoke
term being incorporated from the beginning.

3.1 Sector dipole

For a sector coil dipole, let’s start by considering 4 current lines placed as in Figure
5. In this context, the magnetic field is composed of four separate contributions, each
corresponding to one of the current lines and distinguished by their angular components.

Figure 5: Schematic representation of a dipole with 4 current lines, two positive and two
negative, all with their pair of angular coordinates.

For Br , the four angular contributions are:

sin(n(ϕ− θ)) + sin(n(−ϕ− θ))− sin(n(π − ϕ− θ))− sin(n(π + ϕ− θ))

= − 4 cos(nϕ) sin(nθ) with n odd

while for Bθ, they are:

cos(n(ϕ− θ)) + cos(n(−ϕ− θ))− cos(n(π − ϕ− θ))− cos(n(π + ϕ− θ))

= + 4 cos(nϕ) cos(nθ) with n odd

In the case of a sector dipole with an angle α, as shown in Figure 6, the magnetic field

18



Figure 6: Schematic representation of a sector dipole.

within the aperture is given by:

Br(r, θ) =
µ0J0
2πa

∞∑
n=1

∫ a2

a1

(
r

a

)n−1
[
1 + kn

(
a

R1

)2n
]
a da

∫ α2

α1

(−4) cos(nϕ) sin(nθ) dϕ

(90)

Bθ(r, θ) =
µ0J0
2πa

∞∑
n=1

∫ a2

a1

(
r

a

)n−1
[
1 + kn

(
a

R1

)2n
]
a da

∫ α2

α1

(+4) cos(nϕ) cos(nθ) dϕ

(91)
The component proportional to kn, which is defined in equation (54), is attributed to the
presence of the iron yoke. After computation, the magnetic field can be expressed as an
infinite series of terms as follows:

Br = −2µ0J0
π

∞∑
n odd

rn−1

n

(
a2−n
2 − a2−n

1

2− n
+

kn
R2n

1

a2+n
2 − a2+n

1

2 + n

)
×

× sin(nθ) [sin(nα2)− sin(nα1)] (92)

Bθ = −2µ0J0
π

∞∑
n odd

rn−1

n

(
a2−n
2 − a2−n

1

2− n
+

kn
R2n

1

a2+n
2 − a2+n

1

2 + n

)
×

× cos(nθ) [sin(nα2)− sin(nα1)] (93)

In order to determine the contribution of each harmonic component, it is possible to eval-
uate the following integral at a fixed radius, denoted as r = Rref and called reference
radius, which is typically defined as 2

3
a1.

Bn =
1

π

∫ 2π

0
Bθ (Rref , θ) cos(nθ)dθ (94)
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The first harmonic, without iron contribution, is:

B1 = −2µ0J0w

π
(sinα2 − sinα1) (95)

while, with the contribution of iron, it is:

B1 = −2µ0J0
π

[
w +

k1
R2

1

a32 − a31
3

]
(sinα2 − sinα1) (96)

The high-order harmonics, without iron contribution, are:

Bn>1 = −
2µ0J0R

n−1
ref

πn(n− 2)

(
1

an−2
1

− 1

an−2
2

)
[sin(nα2)− sin(nα1)] (97)

where n must be odd, while, with the contribution of iron, they are:

Bn>1 = −
2µ0J0R

n−1
ref

πn

(
a2−n
2 − a2−n

1

2− n
+

kn
R2n

1

a2+n
2 − a2+n

1

2 + n

)
[sin(nα2)− sin(nα1)]

(98)
In the case of the magnetic field inside the conductor, the integration over the angle
remains the same, while the results of the integration over the radius have been previously
discussed in the context of the cosθ configuration.

Br(r, θ) = −
∞∑

n odd

2µ0J0
nπ

[
rn−1

(
a2−n
2 − r2−n

2− n
+

kn
R2n

1

a2+n
2 − a2+n

1

2 + n

)
+

+
r2+n − a2+n

1

2 + n

1

rn+1

]
sin(nθ) [sin(nα2)− sin(nα1)] (99)

Bθ(r, θ) = −
∞∑

n odd

2µ0J0
nπ

[
rn−1

(
a2−n
2 − r2−n

2− n
+

kn
R2n

1

a2+n
2 − a2+n

1

2 + n

)
+

− r2+n − a2+n
1

2 + n

1

rn+1

]
cos(nθ) [sin(nα2)− sin(nα1)] (100)

In order to compute the stored energy, the potential vector within the conductor must be
determined, namely:

Az(r, θ) =
∫ α2

α1

∫ r

a1
Ar>a a dϕ da +

∫ α2

α1

∫ a2

r
Ar<a a dϕ da (101)

where Ar>a is defined in equation (53) and Ar<a is defined in equation (52). After per-
forming the integration:

Az(r, θ) =
∑
n odd

2µ0J0
n2π

[
rn
(
a2−n
2 − r2−n

2− n
+

kn
R2n

1

a2+n
2 − a2+n

1

2 + n

)
+
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+
r2+n − a2+n

1

2 + n

1

rn

]
cos(nθ) [sin(nα2)− sin(nα1)] (102)

Now, the stored energy per unit length [J/mm] can be expressed as:

E

l
=

1

2

∫
conductor

A⃗ · J⃗ dS =
1

2
· 4
∫ α2

α1

∫ a2

a1
AzJ0 r dr dθ = (103)

=
∑
n odd

4µ0J
2
0

n3π

a42(2− n) + a41(2 + n)− 4a2+n
1 a2−n

2

2(4− n2)
+

kn
R2n

1

(
a2+n
2 − a2+n

1

2 + n

)2
×

× [sin(nα2)− sin(nα1)]
2 (104)

Finally, the Lorentz forces acting on the coil can be expressed starting from the force
density f⃗L = J⃗ × B⃗, in [N/m3], with J⃗ = (0, 0, J0) and B⃗ = (Br, Bθ, 0).

fr(r, θ) = −
∞∑

n odd

2µ0J
2
0

nπ

[
r2+n − a2+n

1

2 + n

1

rn+1
− rn−1

(
a2−n
2 − r2−n

2− n
+

+
kn
R2n

1

a2+n
2 − a2+n

1

2 + n

) ]
cos(nθ) [sin(nα2)− sin(nα1)] (105)

fθ(r, θ) = −
∞∑

n odd

2µ0J
2
0

nπ

[
r2+n − a2+n

1

2 + n

1

rn+1
+ rn−1

(
a2−n
2 − r2−n

2− n
+

+
kn
R2n

1

a2+n
2 − a2+n

1

2 + n

) ]
sin(nθ) [sin(nα2)− sin(nα1)] (106)

fz = 0 (107)

The total forces per unit of longitudinal length F [N/m] can be obtained as:

Fr =
∫ α2

α1

∫ a2

a1
fr r drdθ ; Fθ =

∫ α2

α1

∫ a2

a1
fθ r drdθ (108)

then:

Fr = −
∞∑

n odd

2µ0J
2
0

n2π
[sin(nα2)− sin(nα1)]

2

[
4

3

a32 − a31
4− n2

− a2+n
1 a1−n

2 − a31
(2 + n)(1− n)

+

− a32 − a1+n
1 a2−n

2

(1 + n)(2− n)
− kn

R2n
1

a2+n
2 − a2+n

1

2 + n

a1+n
2 − a1+n

1

1 + n

]
(109)
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Fθ = +
∞∑

n odd

2µ0J
2
0

n2π
[sin(nα2)− sin(nα1)] [cos(nα2)− cos(nα1)]

[
− 2n

3

a32 − a31
4− n2

+

− a2+n
1 a1−n

2 − a31
(2 + n)(1− n)

+
a32 − a1+n

1 a2−n
2

(1 + n)(2− n)
+

kn
R2n

1

a2+n
2 − a2+n

1

2 + n

a1+n
2 − a1+n

1

1 + n

]
(110)

The first term of the series (n = 1) can be calculated using the limit already solved in eq.
(47) and is equal to:

Fr, n=1 = −2µ0J
2
0

π
[sin(α2)− sin(α1)]

2

[
4

3

a32 − a31
3

− a31
3
ln
(
a2
a1

)
+

−a32 − a21a2
2

− k1
R2

1

a32 − a31
3

a22 − a21
2

]
(111)

Fθ, n=1 =
2µ0J

2
0

π
[sin(α2)− sin(α1)] [cos(α2)− cos(α1)]

[
− 2

3

a32 − a31
3

− a31
3
ln
(
a2
a1

)
+

+
a32 − a21a2

2
+

k1
R2

1

a32 − a31
3

a22 − a21
2

]
(112)

All these formulas are applicable as long as the iron is not saturated, meaning the magnetic
field remains below approximately 1.5− 2 T .
Before moving on to the quadrupole, it is important to specify that the series index n
indicates the order of the harmonic, but since the sector dipole is not a perfect dipole, it
has all the terms of the series, not just the first one.

3.2 Sector quadrupole

In the case of the sector coil quadrupole, the analysis is initiated with 8 current lines
arranged as illustrated in Figure 7. This configuration results in 8 distinct contributions to
the magnetic field, each associated with one of the current lines, which vary in terms of
their angular components.
For Br , the eight angular contributions, through trigonometric operations, give:

− 8 cos(nϕ) sin(nθ) with n = 2(2ñ− 1) , where ñ is a positive integer. (113)

while for Bθ, they give:

+ 8 cos(nϕ) cos(nθ) with n = 2(2ñ− 1) , where ñ is a positive integer. (114)

The magnetic field in the aperture for a sector quadrupole with angle α, illustrated in
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Figure 7: Schematic representation of a quadrupole with 8 current lines, four positive and
four negative, all with their angular coordinate.

ñ 1 2 3 4 5
n = 2(2ñ− 1) 2 6 10 14 18

Table 1: The first five values of this infinite sequence.

Figure 8, is expressed as follows:

Br(r, θ) =
µ0J0
2πa

∞∑
n=2,6,..

∫ a2

a1

(
r

a

)n−1
[
1 + kn

(
a

R1

)2n
]
a da

∫ α2

α1

(−8) cos(nϕ) sin(nθ) dϕ

(115)

Bθ(r, θ) =
µ0J0
2πa

∞∑
n=2,6,..

∫ a2

a1

(
r

a

)n−1
[
1 + kn

(
a

R1

)2n
]
a da

∫ α2

α1

(+8) cos(nϕ) cos(nθ) dϕ

(116)
where n = 2(2ñ−1) with ñ = 1, 2, 3, .. . Similarly to the dipole, the term proportional to
kn, which is defined in eq. (54), is due to the iron yoke. After performing the calculations,
an infinite series of terms is obtained. The first term in the series expansion corresponds
to n = 2 (obtained by ñ = 1), the second term corresponds to n = 6 (obtained by ñ = 2),
and so on (refer to Table 1). Therefore, the magnetic field in the aperture can be expressed
as:

Br = −4µ0J0
π

∞∑
n=2,6,..

rn−1

n

(
a2−n
2 − a2−n

1

2− n
+

kn
R2n

1

a2+n
2 − a2+n

1

2 + n

)
×

× sin(nθ) [sin(nα2)− sin(nα1)] (117)

Bθ = −4µ0J0
π

∞∑
n=2,6,..

rn−1

n

(
a2−n
2 − a2−n

1

2− n
+

kn
R2n

1

a2+n
2 − a2+n

1

2 + n

)
×
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Figure 8: Schematic representation of a sector quadrupole.

× cos(nθ) [sin(nα2)− sin(nα1)] (118)

specifying that for the first term n = 2 the limit already performed in eq.(18) must be
applied. To compute the harmonics of the bore magnetic field, it’s possible to use the
equation (94), which, in this case, gives as the first harmonic (n = 2) B2:

B2 = −2µ0J0Rref

π
[sin(2α2)− sin(2α1)]

[
ln
(
a2
a1

)
+

k2
R4

1

a42 − a41
4

]
(119)

where Rref is the reference radius, often defined as 2
3
a1, and R1 is the inner radius of the

ferromagnetic yoke. The resulting gradient is:

G =
B2

Rref

= −2µ0J0
π

[sin(2α2)− sin(2α1)]

[
ln
(
a2
a1

)
+

k2
R4

1

a42 − a41
4

]
(120)

The higher-order harmonics (n = 6, 10, 14, ..) are:

Bn = −
4µ0J0R

n−1
ref

πn
[sin(nα2)− sin(nα1)]

(
a2−n
2 − a2−n

1

2− n
+

kn
R2n

1

a2+n
2 − a2+n

1

2 + n

)
(121)

The magnetic field inside the conductor can be calculated as already seen in the sector
dipole, considering the variations just illustrated between dipole and quadrupole:

Br(r, θ) = −
∞∑

n=2,6,..

4µ0J0
nπ

[
rn−1

(
a2−n
2 − r2−n

2− n
+

kn
R2n

1

a2+n
2 − a2+n

1

2 + n

)
+

+
r2+n − a2+n

1

2 + n

1

rn+1

]
sin(nθ) [sin(nα2)− sin(nα1)] (122)
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Bθ(r, θ) = −
∞∑

n=2,6,..

4µ0J0
nπ

[
rn−1

(
a2−n
2 − r2−n

2− n
+

kn
R2n

1

a2+n
2 − a2+n

1

2 + n

)
+

− r2+n − a2+n
1

2 + n

1

rn+1

]
cos(nθ) [sin(nα2)− sin(nα1)] (123)

Similarly, the stored energy per unit length [J/mm] can be expressed as:

E

l
=

∑
n=2,6,..

16µ0J
2
0

n3π

[
a42(2− n) + a41(2 + n)− 4a2+n

1 a2−n
2

2(4− n2)
+

+
kn
R2n

1

(
a2+n
2 − a2+n

1

2 + n

)2 ]
[sin(nα2)− sin(nα1)]

2 (124)

where for the first term (n = 2) the limit is already been made in eq.(38).
The total forces per unit of longitudinal length [N/m] which act on the coil is given by:

Fr = −
∞∑

n=2,6,..

4µ0J
2
0

n2π
[sin(nα2)− sin(nα1)]

2

[
4

3

a32 − a31
4− n2

− a2+n
1 a1−n

2 − a31
(2 + n)(1− n)

+

− a32 − a1+n
1 a2−n

2

(1 + n)(2− n)
− kn

R2n
1

a2+n
2 − a2+n

1

2 + n

a1+n
2 − a1+n

1

1 + n

]
(125)

Fθ =
∞∑

n=2,6,..

4µ0J
2
0

n2π
[sin(nα2)− sin(nα1)] [cos(nα2)− cos(nα1)]

[
− 2n

3

a32 − a31
4− n2

+

− a2+n
1 a1−n

2 − a31
(2 + n)(1− n)

+
a32 − a1+n

1 a2−n
2

(1 + n)(2− n)
+

kn
R2n

1

a2+n
2 − a2+n

1

2 + n

a1+n
2 − a1+n

1

1 + n

]
(126)

remembering that n = 2(2ñ − 1) with ñ = 1, 2, 3, 4, 5, ... . The first term of the series
(n = 2) can be calculated using the limits already solved in eq. (50)-(51), and is equal to:

Fr, n=2 = −µ0J
2
0

π
[sin(2α2)− sin(2α1)]

2

[
− 1

36

(
a32 − a31

)
+

+
a31
3
ln
(
a2
a1

)
+

a41 − a31a2
4a2

− k2
R4

1

a42 − a41
4

a32 − a31
3

]
(127)

Fθ, n=2 =
µ0J

2
0

π
[sin(2α2)− sin(2α1)] [cos(2α2)− cos(2α1)]

[
7

36

(
a32 − a31

)
+

− a31
3
ln
(
a2
a1

)
+

a41 − a31a2
4a2

+
k2
R4

1

a42 − a41
4

a32 − a31
3

]
(128)

In conclusion, it should be noted that the angles α1 < α2, which delimit the angular size
of the sector, can take values between 0◦ and 45◦ in the sector quadrupole, while they can
assume values between 0◦ and 90◦ in the sector dipole.
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3.3 Multiple sector dipole

In the previous section, the single-sector dipole was studied: a configuration that ap-
proaches the cos-theta approximation of a perfect dipole. This simplified model can be
implemented to get closer and closer to a real-world case, for instance, by increasing the
number of sectors, transitioning from a single-sector to a multiple-sector configuration.
In particular, if there are two sectors involved, it is called a double-sector dipole.

Figure 9: Schematic representation of a double-sector dipole.

For a double-sector dipole, the situation is analogous to what has already been seen for the
single sector. This is because the contributions of the individual sectors overlap linearly
for the magnetic field and forces. An exception is the energy stored per unit length, as
in addition to the contributions of the two sectors, mutual inductances between the two
sectors must be taken into account. Defining the total stored energy as ET :

ET = E1 + E2 + E12 + E21 (129)

where E1 is the stored energy of the single sector between α1 and α2, E2 is the stored
energy of the single sector between α3 and α4, while E12 and E21 are the stored energies
due to the mutual inductances. Defining all terms:

E1 =
∑
n odd

4µ0J
2
0

n3π

a42(2− n) + a41(2 + n)− 4a2+n
1 a2−n

2

2(4− n2)
+

kn
R2n

1

(
a2+n
2 − a2+n

1

2 + n

)2
×

× [sin(nα2)− sin(nα1)]
2 (130)
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E2 =
∑
n odd

4µ0J
2
0

n3π

a42(2− n) + a41(2 + n)− 4a2+n
1 a2−n

2

2(4− n2)
+

kn
R2n

1

(
a2+n
2 − a2+n

1

2 + n

)2
×

× [sin(nα4)− sin(nα3)]
2 (131)

The stored energies by the mutual inductances are equal and given by:

E21 = E12 (132)

E12 =
∑
n odd

4µ0J
2
0

n3π

a42(2− n) + a41(2 + n)− 4a2+n
1 a2−n

2

2(4− n2)
+

kn
R2n

1

(
a2+n
2 − a2+n

1

2 + n

)2
×

× [sin(nα2)− sin(nα1)] [sin(nα4)− sin(nα3)] (133)

it’s possible to calculate the total stored energy in a double-sector dipole as follows:

ET =
∑
n odd

4µ0J
2
0

n3π

a42(2− n) + a41(2 + n)− 4a2+n
1 a2−n

2

2(4− n2)
+

kn
R2n

1

(
a2+n
2 − a2+n

1

2 + n

)2
×

× [sin(nα2)− sin(nα1) + sin(nα4)− sin(nα3)]
2 (134)

In the case of a dipole with more than two sectors, it is possible to easily calculate all
the various contributions by exploiting the linear superposition and, as just demonstrated,
taking into account the influence of each sector on the others when calculating the energy
stored in the coils. From section 2 onwards, the contribution due to the ferromagnetic
yoke that typically surrounds the coils of a magnet has been taken into account. The
iron yoke is essential for the correct calculation of various parameters involved. Iron was
assumed linear to facilitate analytical processing. However, when the iron saturates for
magnetic fields above 1.5 - 2 T, this assumption is no longer valid. Studies without iron
yoke can be carried out by setting kn = 0.
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