Universita degli studi di Udine

A Randomized Numerical Aligner -- rNA

This is the peer reviewd version of the followng article:

Original
A Randomized Numerical Aligner -- rNA / Policriti A; Tomescu A I; Vezzi F. - In: JOURNAL OF COMPUTER AND
SYSTEM SCIENCES. - ISSN 0022-0000. - STAMPA. - 78:6(2012), pp. 1868-1882.

Availability:
This version is available http://hdl.handle.net/11390/871416 since

Publisher:

Published
DOI:10.1016/j.jcss.2011.12.007

Terms of use:
The institutional repository of the University of Udine (http://air.uniud.it) is provided by ARIC services. The
aim is to enable open access to all the world.

Publisher copyright

(Article begins on next page)

21 July 2018

Journal of Computer and System Sciences 78 (2012) 1868-1882

Contents lists available at SciVerse ScienceDirect

JOURNAL or
C

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

A randomized Numerical Aligner (rNA)

Alberto Policriti P, Alexandru I. Tomescu®¢, Francesco Vezzi®P:*

2 Dipartimento di Matematica e Informatica, Universita di Udine, Via delle Scienze, 206, 33100 Udine, Italy
b Istituto di Genomica Applicata (IGA), Via J. Linussio, 51, 33100 Udine, Italy
€ Faculty of Mathematics and Computer Science, University of Bucharest, Str. Academiei, 14, 010014 Bucharest, Romania

ARTICLE INFO ABSTRACT
Article history: With the advent of new sequencing technologies able to produce an enormous quantity
Received 14 September 2010 of short genomic sequences, new tools able to search for them inside a genomic reference

Received in revised form 9 March 2011
Accepted 17 November 2011
Available online 23 December 2011

sequence have emerged. Because of chemical reading errors or of the variability between
organisms, one is interested in finding not only exact occurrences, but also occurrences
with up to k mismatches. The contribution of this paper is twofold. On the one hand,
we present a generalization of the classical Rabin-Karp string matching algorithm to

i;gg,f;ate string matching solve the k-mismatch problem, with average complexity O(n +m) (n text and m pattern
Hamming distance lengths, respectively). On the other hand, we show how to employ this idea in conjunction
Sequencing with an index over the text, allowing to search a pattern, with up to k mismatches, in
Short string aligner time proportional to its length. This novel tool-rNA (randomized Numerical Aligner)—
Next Generation Sequencing is in general faster and more accurate than other available tools like SOAP2, BWA,

and BOWTIE. rNA executables and source code are freely available at http://iga-
rna.sourceforge.net/.
© 2011 Elsevier Inc. All rights reserved.

1. Introduction

One of the main applications of string matching is computational biology. A DNA sequence can be seen as a string over
the alphabet ¥ = {A, C, G, T}. Given a genomic reference sequence, we are interested in searching (aligning) different se-
quences (reads) of various lengths. Reads are produced by sequencing machines able to read stretches of DNA of a given
organism. When aligning such reads against another DNA sequence, we must consider errors due to the sequencer and
intrinsic errors due to the variability between organisms. For these reasons, all the programs aligning reads against a refer-
ence sequence must deal with mismatches [1,2]. String matching can be divided into two main areas: exact string matching
and approximate string matching. When doing approximate string matching, we need to employ a distance metric between
strings. The most commonly used metrics are the edit distance (or Levenshtein distance) and the Hamming distance.

The first algorithms to solve the exact string matching problem are due to Knuth, Morris and Pratt [3], Boyer and
Moore [4], running in time O(n + m) (n text and m pattern lengths, respectively), and Rabin and Karp [5], requiring time
O(n +m) on average.

* Corresponding author at: Dipartimento di Matematica e Informatica, Universita di Udine, Via delle Scienze, 206, 33100 Udine, Italy.
E-mail addresses: alberto.policriti@uniud.it (A. Policriti), alexandru.tomescu@uniud.it (A.l. Tomescu), francesco.vezzi@uniud.it (F. Vezzi).

0022-0000/$ - see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2011.12.007

http://dx.doi.org/10.1016/j.jcss.2011.12.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://iga-rna.sourceforge.net/
mailto:alberto.policriti@uniud.it
mailto:alexandru.tomescu@uniud.it
mailto:francesco.vezzi@uniud.it
http://dx.doi.org/10.1016/j.jcss.2011.12.007
http://iga-rna.sourceforge.net/

A. Policriti et al. / Journal of Computer and System Sciences 78 (2012) 1868-1882 1869

When a large number of patterns must be searched, these solutions do not perform well, as the text has to be scanned for
each pattern. In such cases, it is convenient to build an index over the text, allowing to search a pattern in time proportional
to its length, or over the patterns, in which case the reference is scanned only once. Usually, when the reference is fixed, or
the total pattern length is larger than the reference, indexing the text is the preferred solution. For example, this method
is employed by popular tools for searching inside DNA strings, such as SOAP2 [6], BWA [7], or BOWTIE [8]. For a detailed
discussion on when, in biological applications, an index over the text is preferred to one over the patterns, and vice-versa,
refer to [9]. The most popular such indexes are Suffix Trees (see e.g. [10-12]) and Suffix Arrays [13]. For a complete review
on indexing algorithms refer to [14].

Approximate string matching at distance k under the edit metric is called the k-difference problem, while under the
Hamming metric, it is called the k-mismatch problem. A simple algorithm for the k-difference problem is based on dy-
namic programming and it has a running time O(nm). Several efforts were made to improve this result. Abrahamson [15]
shows that string matching with mismatches can be solved in time O(n,/mlogm). The fastest solutions for the k-mismatch
problem relies heavily on the ability to search the suffix tree of the text and of the pattern. Landau and Vishkin [16,17]
introduced a method running in time O(nk) that uses constant time lowest common ancestor queries on the suffix trees of
P and T (which is now known as “kangaroo hopping”). The algorithm of Galil and Giancarlo [18] attains the same complex-
ity O(nk). A more recent paper [19] proposed a variation of FAAST [20] that has average running time O(n(logm + k)/m)
that was proved to be optimal for approximate string matching [21]. The asymptotic running time was improved in [22]
to O(n/klogk), by a method based on counting and filtering, the suffix tree with kangaroo hooping, and fast Fourier
transforms, which may ultimately lead to a more sophisticated implementation.

The first algorithm that solved the k-mismatch problem with the construction of an index is due to Ukkonen and Joki-
nen [23]. The first solution with query time depending only on k and m was proposed by Ukkonen [12] using Suffix Trees.
More recently [24], the k-difference problem has been solved in time O(]X*m* max(k, logn)) where ¥ is the alphabet,
using compressed Suffix Arrays [25].

In many practical applications, we are interested in finding the best occurrence of the pattern, with at most k mis-
matches (the best k-mismatch problem—to be introduced in Section 1.1). Recently, a flurry of papers presenting new in-
dexing algorithms to solve this problem appeared [7,6,8]. All these algorithms aim to search inside a reference sequence
the myriad of reads that are produced by new sequencing technologies (for further details refer to www.illumina.
com, www.solid.com, and www.appliedbiosystems.com). For example, the latest available Illumina sequencer,
HiSeq2000, can produce 200 billion characters (called bases) in a single experiment, grouped in reads of length 100 (their
length is expected to grow to 150 bases in the near future). Tools like SOAP2 [6] are able to align this large set of reads in
a very short time, thanks to advanced indices and heuristics, that can, however, reduce accuracy.

In this paper we focus on the best k-mismatch problem, which we formally introduce in Section 1.1. In Section 2 we
show how the on-line algorithm of Rabin and Karp [5] can be generalized to solve the k-mismatch problem, with an
average time complexity of O(n + m). This idea is employed in Section 3, along with an index over the text, for solving
in a precise way the best k-mismatch problem; this allows the search of a pattern in time proportional to its length.
Section 4 sets up a formal framework explaining why this method is computationally efficient, and discusses some envisaged
extensions.

Our proposed algorithm for the best k-mismatch problem has been implemented into a usable tool for bioinformatics, as
explained in Section 5. This tool, which we call ‘randomized Numerical Aligner’ (rNA), is freely available at http://iga-
rna.sourceforge.net/. Even though we do not sacrifice accuracy, the experimental results of Section 6 show that
our algorithm has better performance than the most used aligners for short reads, such as SOAP2 [6], BWA [7], or
BOWTIE [8].

1.1. Problem definition and notations

Let ¥ ={0,1,...,b — 1} be an alphabet of b > 2 characters, and let c,d € X. Define neq(c,d) =1 if c #d, and 0
otherwise. Let X = X[0]X[1]...X[n— 1] and Y = Y[0]Y[1]...Y[n — 1] be two strings over the alphabet X. The Hamming
distance between X and Y is defined as dy(X,Y) =qef Z?;(} neq(X[i], Y[i]). Given numbers 0 <m<nand 0<s<n—m,
we denote by X the string X(s) =der X[s1X[s + 1]...X[s +m — 1]. We denote the numerical radix-b representation of a
string X of length n by x =gef b" 1 X[0] + b"2X[1]+ --- + bX[n — 2] + X[n — 1]. Given a positive integer g, the number %
stands for x mod g, and is called the fingerprint of the string X. The k-mismatch problem is defined as follows:

IN: Text T =T[O]T[1]...T[n— 1], pattern P = P[O]P[1]... P[m — 1], over the alphabet X, and a natural number k < m.
OUT: All pairs (s,dy (P, T(s))), where 0 <s<n—m and dy (P, T()) <k.

For such a pair (s,dn(P, T(s))), we say that P occurs (with mismatches) with shift s in T. If dg(P, T(5)) =0, we say that
T(s is an exact occurrence of P.

In many applications, like in the search of a sets of sequences (reads) inside a genomic reference sequence, one is
given a text T, of length n, and a collection P of patterns (usually of the same length m) and is required to find the best

1870 A. Policriti et al. / Journal of Computer and System Sciences 78 (2012) 1868-1882

occurrences of each P € P, with at most k mismatches. This problem, referred to in what follows as the best k-mismatch
(alignment) problem, can be formulated in the following way:

IN: Text T = T[O]T[1]...T[n—1], a collection P of patterns of length m, all over the alphabet X, and a natural number
k <m.
OUT: For every P € P, all pairs (s, dy(P, T(s))), where 0 <s<n—m and dy (P, T(s)) <k, such that forall 0 <s'<n—m
we have dy (P, T(s)) <dn(P, T(s)).

2. An on-line algorithm for string matching with k mismatches

One of the simplest exact string matching algorithms—that also performs well in practice—is the Rabin-Karp randomized
algorithm [5]. For every s =0...n—m, the algorithm encodes P and any T by the radix-b numbers p and t(), respectively,
and replaces expensive string comparisons by constant-time suitable numerical comparisons. As usually m is larger than the
length of a processor word, instead of storing p and t(), one keeps the values p = p mod q and f(s) = t(;) mod q. As an
indication that P may occur with shift s in T, the algorithm now tests whether p = f(s) and, if so, it proceeds to a character-
by-character comparison of P and T. Randomly choosing g to be a prime number in the interval [2, mn?], the test p = f(s)
produces few false positives [5] (i.e., it gives a positive answer in the case when P # T). Moreover, as f(5+1) can be
computed from f<s) in constant time, the overall expected time complexity is O(n + m).

The Rabin-Karp method has already been employed in [26] to solve the k-mismatch problem. That approach is based
on generating all the Z:‘(:o (T)(b —1)! strings obtained from P with at most k mismatches. In this paper we will instead
make use of some algebraic properties of the Hamming distance under the modulo operation. In this way, we can replace
‘generation’ by ‘verification’, and we can reduce the exponential blow-up on m, to an exponential blow-up on the length w
of a processor word.

We will retain the advantageous features of the Rabin-Karp algorithm, like encoding strings by a radix-b number, and
storing values modulo an appropriate number q. The only point where a change is needed is in the heuristic checking
whether the pattern occurs with shift s (i.e., in the test p = E(s)). In what follows, we will seek an answer to these questions:

1. If dy(P, T(s)) <k, then what fast test on the available data (e.g., p, f(s)) can we use to detect such a situation?
2. How can we guarantee that this test produces few false positives, and what is the probability of such an event?

We note that when k =0, then p = f(s) is equivalent to (p — f<s)) mod g = 0. With this clue in mind, we still compute
(p— f(s)) mod g, but we will try to characterize the set Z(k,q) < {0, ...,q — 1}, such that whenever dy(P, T(s)) <k, then
(p— f(s)) mod q € Z(k, q) holds. More formally, the set Z(k, q) is defined as follows.

Definition 1. Given m > 0, 0 <k <m and q > 0, define Z(k, q) to be the set
Z(k,q) =qef {x—y)mod q | X, Y € 2™, dy(X,Y) <k}.
We will sometimes refer to the elements of Z(k,q) as witnesses, as they testify that two strings can be at Hamming

distance at most k. The algebraic difference between the numerical representations of two strings at a given Hamming
distance is characterized in Lemma 1.

Lemma 1. Given two strings X and Y of the same length m, for any 0 < k < m we have dy (X, Y) =k if and only if

x—ye{(=D"tb' 4+ (=D)geb™: uq, ... up € {0, 1,

t,....tke{l,...,b—=1}, i1 > >ige{0,....m—1}}.
Plainly, from Lemma 1, Z(k, q) can be expressed as

Z(k,q) = {0} U {((=D"1t1b" + - + (=1)"i¢;b') mod q: 0 < j <k
ui,...,ujef0,1}, t1,...,tje{l,...,b -1},
i1>-->ij€ef0,....m—1}}.
An upper bound for the cardinality of Z(k, q) is min{q, le{':o (”11) (2(b — 1))J}, as for each 0 < j <k, there are ('7) ways
to choose j pairwise distinct i1, ...,ij, and (2(b — 1))/ ways to choose uj, ..., uj and ty,...,t;.
In order for the test (p — f(s)) mod q € Z(k,q) to give few false positives, the size of Z(k,q) must be small, which,

working modulo an arbitrary number g, may not be true. The main idea of our approach is to choose ¢ =b" — 1, where
w < m is a natural number large enough, according to a few complexity considerations.

A. Policriti et al. / Journal of Computer and System Sciences 78 (2012) 1868-1882 1871

Notice that, arithmetic modulo numbers of the form 2% — 1 (called Mersenne numbers) is used in various applications,
like digital systems based on residue number system, or cryptography, therefore, efficient VLSI circuit architectures for
addition and multiplication modulo 2% — 1 have been proposed over the years (see, e.g., the discussion in [27], and the
references therein). Notice also that, in general, the usage of q of the form 2% — 1 is not suggested when exact search is
performed.

The following lemma shows that the choice g =b" — 1 guarantees that Z(k, q) has a small cardinality.

Lemma 2. Given 1 < w <m,
Z(k,b" —1) = {0} U {((—=D"1 61" + - + (=" t;b'i) mod (b* —1):
O0<j<k ug,...,u;jef{0,1}, f1,...,tje{l,...,b =1},
i1>->ijef0,...,w—1}}.
Proof. To simplify notation in this proof, we let Z*(k,b" — 1) stand for the set on the right-hand side of the equality

claimed above. Hence, we have to show that Z(k,b" — 1) = Z*(k,b" —1).
Since the modulo operation is linear, we have

b* mod (bw _ 1) — bw(sdivw)+s mod w mod (bw _ 1)
((bW)SdWW ps mod W) mod (bw _ 1)
= (((0")* ™™ mod (b" —1))(b* ™ ¥ mod (b —1))) mod (b — 1)
= (((b mod (B¥ —1))°™" mod (b¥ — 1))b* ™4 *) mod (b* — 1)
b’ mod w
This entails that
Z(k,b" — 1) = {0} U {((=D)"1tsb" + -+ + (=1)"it;b') mod (b* —1):
0<j<k ug,...,u;€{0,1}, ty,...,t;€{l,...,b =1},
i1,....i;€{0,...,w—1}}
=ger R(K).

Clearly, Z*(k,b" —1) € R(k) (notice that the difference between Z*(k,b" — 1) and R(k) is that the indices i1, ...,i; are
not required to be distinct in R(k)). To prove the opposite inclusion, we will proceed by induction on k <m. When k =1,
the claim is true. Assuming that the claim is true for k <m — 1, we will show that it also holds for k + 1.

For the sake of clarity, and without loss of generality, we assume onwards that b = 2. For any x € R(k + 1) \ R(k), where
x=((=DU121t ... 4 (=1)42l 4 (—1)U+12ik+1) mod (2¥ — 1), we have to show that x € Z*(k + 1,2" — 1). We have that
X can be written as

(=112 4. 4 (=1)"2'%) mod (2 — 1) + (~=1)"+12%+1 mod (2" — 1)) mod (2" — 1).

From the inductive hypothesis, the first of the above two terms belongs to Z*(k,2" — 1), and hence equal to some
(=1V12M 4.4 (=1)"i2") mod (2% —1), where 0 < j <k, vi,...,vj€{0,1},and hy > --- > h; € {0, ..., w — 1}. Moreover,
(=1)%+120k+1 mod (2W — 1) = (—1)4+12ik+1 Md W g 2V — 1),

If (ig41 mod w) ¢ {hy,...,h;}, then the claim is true. Otherwise, suppose that i,,q mod w equals some hj, and that x
becomes

((_1)V12h1 4o (=2 (D" + (_1)Uk+1)2h1
+ (=2 44 (—=1)Y12M) mod (2% —1).

If ugr1 =1—vy, thenxe Z*(k—1,2% —1) C 2*(k+1,2" — 1) and the claim is true. Otherwise, assume that uy;; =
v; =0 (the case ug4q =v; =1 is entirely analogous). Then, x is

((=DV12M o (=20 20 g (V2 4 4 (—1)Y12M) mod (2% - 1),
which belongs to R(k) = Z*(k,2% — 1) Cc Z*(k+ 1, 2" — 1), completing thus the proof. O

Hence, |Z(k,b" — 1)| is at most Z’j’:o (‘;.“)(Z(b — 1)), as for each 0 < j <k, there are ("]") ways to choose j pairwise
distinct iy, ...,ij, and (2(b — 1))f ways to choose u1,...,uj and tq,...,t;.

1872 A. Policriti et al. / Journal of Computer and System Sciences 78 (2012) 1868-1882

Algorithm 1: String matching with k mismatches

Input: T =T[0]T[1]...T[n—1], P = P[O]P[1]... P[m — 1], both over the alphabet ¥ ={0,1,..., b — 1}, number of mismatches k (0 < k <m) and
word length w.
Output: All pairs (s,dy (P, T(s))), where 0 <s <n—m and dy(P, T5)) <k.

q<b"Y -1,
h « pm-1 modw;

Z <« GENERATEZ(k, q);
SOLUTIONS < {;
p<—t<«0;
fori< Otom—1do

p < (b-p+ P[i]) mod q;

L f <« (b-f+T[i]) mod q;
if (p —f) mod q € Z then
if dy (P, T(g)) <k then

|_ SOLUTIONS < SOLUTIONS U {(0,dy (P, T(0)))};

-0 W NI AW N =

—

for s < 1ton—m do
f<(b-E—h-T[s—11)+ T[s+m —1]) mod g;
if (p —f) mod q € Z then
if dy (P, Ts) < k then
L |_ SOLUTIONS <— SOLUTIONS U {(s,dy (P, T(5)))};

ke
QU b WN

return SOLUTIONS;

—
~

Table 1
The average number of false positives returned by the heuristic test (p — fs) mod q € Z(k,4"¥ — 1), when ¥ ={0,1,2,3}, n =4G, and w = 15 (32-bit
architecture) and w = 31 (64-bit architecture).

k=0 k=1 k=2 k=3 k=4 k=5
f. p. on 32 bits 3.73 339 13,079 279,959 3,662,224 30,549,760
f. p. on 64 bits ~ 0 ~ 0 ~ 0 ~ 0 ~ 0 24

Onwards, we suppose to work modulo g = b" — 1, without explicitly mentioning it. Observe also that, as a result of
Lemma 2, the set Z(k,b" — 1) depends only on b, w and k.

The generalized algorithm (shown as Algorithm 1) works in a similar manner as the Rabin-Karp algorithm [5]. It starts
by setting ¢ =b" — 1, s =0, and by computing p = p mod q and f(o) =ty mod q, using Horner’s rule and bringing into
play the linearity of the modulo operation. Then, for each 0 < s <n —m it checks whether (p — f(s)) mod q € Z(k,q). If
yes, it performs a character-by-character comparison of P and T(;. When incrementing s, the value f(s) can be computed
in constant time, as follows. For all 0 < s <n —m, we have f(5+1) =b-(ts — b™1T[s]) + T[s +m]. Working modulo g, this
equation becomes f(s11) = (b - (fs) — (b™~! mod q)T[s]) + T[s +m]) mod gq. If we let h =gef ™! mod g = b~ mod w e
get tsy1y = (b (Es) — h - T[s]) + T[s +m]) mod q.

In Algorithm 1 we assume that procedure GENERATEZ(k, q) generates the set Z(k,b" — 1), as expressed in Lemma 2.

In order to evaluate the expected complexity of the string matching phase of Algorithm 1, we follow the formalism of
[28, Ch. 32.2]. We have to compute the time c(q) the test (p — f(s)) mod q € Z on lines 9 and 14 takes, and the average
number of false positives produced by it. If we denote by p(q) the probability that at a specific shift 0 < s <n —m this test
will produce a false positive, we can estimate the number of false positives as n - p(q). Considering v to be the number of
occurrences of P in T with at most k mismatches, the expected complexity is

On-c@+(m-v+m-n-p@)).

In many applications v is small (i.e., O(1)) and if we choose g such that n- p(q) < 1, then the expected complexity becomes
O - c(q) +m). The only values of t(for which (p — f(s)) mod q € Z(k, q), but dy(P, T(s)) > k are of the form p+2z+j-q,
where z € Z(k,q) and 0 < j < [b™/q]. As we have at most |b™/q]|Z(k,q)| such values, and there are at most b™ possible
values for t(), the probability that at a specific shift s, the test (p — f(s)) mod q € Z(k, q) produces a false positive is p(q) <
M under the assumption that the operation mod(b" — 1) uniformly distributes numbers in the interval [0...q — 1]
(for example when b" — 1 is a prime number).

Therefore, to attain the desired time complexity, one has to choose ¢ =b" — 1 such that b - q fits into a processor word
and such that g >n|Z(k, q)|.

Working on a 32-bit processor, with strings over the alphabet {0, 1, 2, 3}, limits w to 15, therefore, if n or k are large
enough, a flurry of false positives are due to appear. If we use a 64-bit architecture, w is limited to 31, and hence the
number of false positives drastically decreases. These numbers are computed in Table 1.

We choose to implement the test (p — f<s)) mod q € Z(k,q) by generating the set Z(k,q) before-hand, in time
O(Z(k,q)|). The data structure storing it can be an ordered array, with search complexity c(q) = O(log|Z(k,q)|). A data

A. Policriti et al. / Journal of Computer and System Sciences 78 (2012) 1868-1882 1873

structure more appropriate for unsuccessful queries, as we expect most of them to be, is a trie, with worst case search
time c(q) = O(w). However, due to better memory locality, a hash table with collisions resolved by chaining is pre-
ferred. Under the assumption of simple uniform hashing and using O(«) memory, the average search complexity becomes
c@=00+|Zk, ql/o).

If one agrees to use an additional amount O(q) of memory, then Z(k, q) can be simply stored as a direct-address table
Z[0...q — 1], where Z[z] =1 iff ze Z(k, q), and thus c(q) = O(1).

Theorem 1. Algorithm 1 solves the k-mismatch problem; if ¢ = b" — 1 > n|Z(k, q)|, and if c(q) denotes the complexity of testing
membership in Z(k, q), its expected search complexity is O(n - c(q) + m+ | Z(k, @)1).

3. Arandomized numerical string aligner
3.1. An exact string aligner

An exact string aligner is given a text T, of length n, and a collection PP of patterns, and is required to find all exact
occurrences of P in T, for every P € P. In what follows, we will assume that all the patterns are of the same length
m. A naive approach is to iteratively apply the Rabin-Karp algorithm for each P € PP, with an overall time complexity of
O((n 4+ m)|P]). Another solution is to compute before-hand the fingerprints of all the patterns in 7 and store them in an
appropriate data structure, in which every f(s) (0 <s<n—m) is searched for. If a matching fingerprint value is found, the
corresponding pattern is compared with T(). This approach takes time O(m|P| + n) if a hash table is used to store the
fingerprints of the patterns (as done e.g. in [26]), and time O(m|P| + nlog|P|), if they are stored as an ordered array.

The approach we choose to follow does not rely on a data structure on the patterns, but on the text. This can be
pre-processed in time O(n) and space O(n), by constructing the index

T ={({{).s): 0<s<n—m}.

The shifts s in T which may be exact occurrences of a P € P correspond to those pairs (p,s) € 7. The set 7 can
be stored is a way similar to a hash by chaining. We use an array indexed by numbers from 0 to q — 1, having, for all
0<r<q—-1,7[r1={s1,..., 8} iff for all 1<i<]|, f(s,-) =r. Note that when doing exact alignment, g can be chosen to be
®(n), according to the complexity analysis of Section 2. This exact aligner has average time complexity O + m|P]).

3.2. A k-mismatch string aligner

In order to construct a string aligner that solves the best k-mismatch problem, Algorithm 1 can be adapted to use
the index 7 over the text, by reverting from ‘verification’ back to ‘generation’. For every P € P, we are interested in
finding all the shifts s in T which may be occurrences of P with at most k mismatches. They correspond to those pairs
(f<s),s) €7 such that (p — f(s)) mod q € Z(k, q). Using linearity of the modulo operation, we thus iteratively search in 7°
all numbers (p — z) mod q, for every z € Z(k, q). For all shifts s such that {((p — z) mod q,s) € 7, we check that indeed
du(P, T(s)) < k. The average complexity of a search for a pattern is thus O(m + | Z(k, q)|), amounting to a total complexity
of O(n+ (m+|Zk,DIP)).

However, the larger w is, the lower the probability of a false positive is, but the larger |Z(k, q)| gets, and vice-versa. We
can remediate to this problem by a rather standard use (in this field) of the pigeonhole principle.

Definition 2. Given a string P = P[0]P[1]... P[m — 1] and a positive integer 1 <t < m, for every 0 <i <t, we denote by
P\mye (i) its substring P[ilm/t]]... P[(i 4+ 1)[m/t] — 1] and call it the ith block of P.

Note that the t blocks of a string P do not overlap, a crucial property for the following lemma to hold.

Lemma 3. Let T be a text, P = P[0]P[1]... P[m — 1] be a pattern, and t a positive integer, 1 <t < m. If P occurs in T with at most k
mismatches, then there is at least one block Pm¢ (i) of P that occurs in T with at most |k/t] mismatches.

Accordingly, instead of searching for an entire pattern P with at most k mismatches, we can perform t searches for all of
the blocks of P, each with at most [k/t] mismatches. Each occurrence of a block Pm/ (i) (0<i<t) of P in T, with shift s,
is an indication that P may occur in T with shift s —i|m/t]. As we are interested in finding the best occurrences of P in T,
we will keep the smallest number of mismatches at which an occurrence of P has been found so far in a variable best_k.
In this way, each block of the pattern is searched with at most |best_k/t] mismatches. The pseudo-code of the resulting
procedure is given as Algorithm 2.

Procedure PREPROCESSTEXT builds the index over the text discussed in Section 3.1 by storing all fingerprints of length [of
the text. We assume that procedure GENERATEZ(k, q) returns an array containing the elements of the set Z(k, q), ordered in
the following way: for all 0 <i <k the elements of Z(i, q) are placed before the elements of Z(i +1,q) \ Z(i, q).

1874 A. Policriti et al. / Journal of Computer and System Sciences 78 (2012) 1868-1882

Algorithm 2: The randomized Numerical Aligner (rNA)

Input: Text T = T[0]T[1]...T[n — 1], a collection P of patterns of length m, all over the alphabet ¥ ={0,1,...,b — 1}, number k of mismatches

(0 < k <m), the number ¢t of blocks in which the patterns get divided (1 <t <k+ 1), and word length w.
Output: For all P € P, all pairs (s,dy (P, T(s))), where 0 <s <n—m, dy (P, T(s)) <k and for all 0 <’ <n—m, it holds that

dy(P, T(s)) <dp(P, T(s)).

1 procedure SEARCHPATTERN(P)
2 fori < 0Otot—1do
3 Pi(i) < 0;
4
5

for j«<i-lto(i+1)-1—1do
| D) < (b- pi@ + PLjI) mod g;

6 SOLUTION <« (J; best_k < k;
7 exact_occurrence < false; j < 0;
8 while j < |Z(|best_k/t],q)| do //for every witness Z[j]
9 i< 0;
10 while i <t — 1and (—exact_occurrence) do //for every block i
11 foreach s ¢ indexT[(p;(i) — Z[j]) mod q] do //for all shifts
12 ifs—i-1>0anddy(P, Ts_iy)) < best_k then
13 if dy (P, T(s—_i.)) < best_k then
14 best_k < dy (P, Ts—in)s
15 SOLUTION <« {7;
16 SOLUTION <— SOLUTION U {(s —i -1, best_k)};
17 L if best_k = 0 then exact_occurrence < true;
18 | i+
19 print SOLUTION;
20 end
21 q < bY —1; 1« |m/t]; //compute ¢ and the block length t

22 indexT <—PREPROCESSTEXT(T, b, 1, q);
23 Z <« GENERATEZ(k, q);

24 foreach P € P do

25 | SEARCHPATTERN(P);

The procedure SEARCHPATTERN(P) starts by dividing the pattern in ¢ blocks, each of length [= [m/t]. For each block P;(i)
(0 <i<t), its fingerprint p;(i) is computed employing Horner’s rule and the linearity of the modulo operation (lines 2-5).
The variable best_k stores the smallest distance at which an occurrence of P has been found so far, while exact_occurrence
indicates whether an exact occurrence has been found in the text.

For each index j (0 < j < |Z(|best_k/t],q)|), we iteratively search in the text every block P;(i) (0 <i <t), with at most
|best_k/t| mismatches (line 10). Every such shift s where the block i may occur is an indication that the pattern may occur
at shift s —i - [with at most best_k mismatches (if, of course, s —i-1>0).

If this is indeed the case (line 12), we have to check whether the current occurrence is at distance strictly smaller than
best_k (line 13). If so, the variable best_k is updated with the current distance, and all the shifts s stored so far in the set
SoLutioN are discarded. Anyhow, the current shift s together with best_k are added to SoLuTioN. In other words, at every
step of the computation, the set SOLUTION stores occurrences only at distance best_k.

Lastly, in line 17 we implement the following optimization: if the pattern occurs in an exact manner in the text, then
the first block does as well. Since this block will indicate all exact occurrences, searching the remaining blocks of P brings
no additional information. Therefore, we set exact_occurrence to true, stopping the search (this is true because best_k was
changed to 0, hence the loop in line 8 is no longer executed).

4. Extensions and connections

This section attempts to set up a formal framework capturing the properties which make the approach exposed in Sec-
tions 2 and 3 computationally efficient. We will argue that fingerprinting using the mod operation is no singular example,
and that the xor operator is an alternative. Both these fingerprinting methods have been implemented in our tool, as it will
be explained in Section 6. We end this section by a discussion on an envisaged connection between coding theory and our
solution to the best k-mismatch problem.

For the clarity of the presentation, we again assume that the input alphabet X is {0, 1}. Formally, we have defined a
hash function hmog : {0, 1}™ — {0, ..., 2% — 2}, where hmoq(X) =X = x mod (2% — 1). From Lemmas 1 and 2, it holds that
for all X,Y {0, 1}™,

du(X,Y)<k = hmod(hmod(x) - hmod(y)) € Z(k, 2" — 1)7

and that the size of Z(k,2" — 1) is bounded by Z’]‘-zo 24 ("j") First, observe that w must be chosen so that w > k. If this
were not the case, Z(k, 2" — 1) would equal {0, ...,2" — 2} and hence the test hpoq(x) € Z(k,2" — 1) would always hold.

A. Policriti et al. / Journal of Computer and System Sciences 78 (2012) 1868-1882 1875

This implies that |Z(k, 2" — 1)| > 2X. Moreover, recall that w was chosen with the additional property that 2% — 1 >
n|Zk, 2" — 1)| > n2k. For texts of practically significant lengths, we may assume that n > 2%, and hence that w > 2k. This
implies that (‘;") < (}). for all 0 < j <k. Therefore, |Z(k,2% —1)| < 2k+1 ()= Okwh),

By the following definition, we would like to capture the main features of this hash function.

Definition 3. We say that a hash function h: {0, 1} — {0, 1} is Hamming-aware if there exist

e a function comparey, : {0, 1}" x {0, 1} — {0, 1}", computable in time O(w),
e a constant ¢ and a set N, C {0, 1}" of size (’)(ckw"),

with the properties

(i) dg(X,Y) < k= comparey (h(X), h(Y)) € Np;
(i) for all X € {0,1}™, |{€ € {0, 1}" | comparey, (h(X), &) € Np}| = O(ckwk);
(iii) for all X € {0, 1}™, the set {& € {0, 1}" | compare;, (h(X), £) € Ny} can be listed in time O(ckwk).

Imposing condition (i) means that, given X, we want to be able to characterize (i.e., recognize) those hash values cor-
responding to strings Y at Hamming distance at most k from X. Notice that the set N; does not depend on the choice of
X or Y, but only on the hash function. Testing membership in N, can be done, as argued in Section 2, in time O(1) if
Np, is stored as a direct address table of size 2%, or in time O(klogcw) if it is stored as an ordered array, by means of
a binary search. Condition (ii) requires that the aforementioned characterization be as precise as possible, while condition
(iii) is useful when doing string alignment using a text index: we also want to be able to enumerate all those hash values
corresponding to strings at Hamming distance at most k from X.

It is clear that by taking compare, (hx,hy) =hmoa(hx —hy) and Np_ ., = Z(k,2" — 1) conditions (i)-(iii) are fulfilled,
and hence hmoq is @ Hamming-aware hash function.

We will now examine other Hamming-aware functions. For this reason, let us come back to hmogq and see an alternative
interpretation of the operation mod (2" — 1). Suppose, for simplicity, that m =rw, r > 2. Given X € {0, 1}, hnoq(X) can be
computed as the sum of the numerical values of the r blocks (recall Definition 2) of length w of X, modulo 2% — 1. Indeed,
since 2°¥ mod (2% — 1) =1, for all s > 0, we have

hmod(X) = (Xw (0) + 2% Xy (1) + -+ + 207D x,, (r — 1)) mod (2% — 1),
hmod(X) = (xw (0) 4+ Xw (1) + -+ + Xy (r — 1)) mod (2" —1).
Example 1. Still working under the assumption that m = rw, and denoting by ® the xor operator between two binary
strings, let us define hyo, : {0, 1} — {0, 1}V as
hyor(X) = Xw(0) @ X (1) ® - -+ @ Xw (r — 1).
Clearly, it holds that for all strings X, Y € {0, 1}™,
dp(X,Y) <k = di(hor(X), hxor(Y)) <k

To see that hyor is a Hamming-aware function, take comparey (hx,hy) =hx ® hy, and Np, = {6 € {0,1}" |
the number of 1's in § is at most k}. To see that conditions (i)-(iii) are satisfied, observe that [Ny | = Zl;‘:o ("j") = O(kwk)
and that the set (£ € {0,1}" | h(X) ® & € Ny, } is actually {h(X) ® § | § € Np,,}, hence of size Okwk).

At this point, it is not hard to devise more elaborate hash functions.

Example 2. Given m and w, we can randomly choose w numbers from the set {0, ..., m—1}. Then, we can randomly choose
another w numbers of the remaining ones, and so on, r times. Given a string X, let us denote by X, (0) the substring of X
formed by taking the bits on the first such randomly chosen positions, by X, (1) the substring of X formed by the bits on
the second randomly chosen positions, and so on. Then, we can define the Hamming-aware function hy : {0, 1}™ — {0, 1}V
analogously, as

hyor = Xw(0) ® Xy (1) ® -+ @ Xy (r — 1).

Example 3. Given a binary string X, let

0 ifatleast [|X|/2] + 1 characters of X are 0,

majority(X) = { .
1 otherwise.

1876 A. Policriti et al. / Journal of Computer and System Sciences 78 (2012) 1868-1882

Define now hmgj(X) to be the string & € {0, 1}" such that for all 0 <i < w, the ith character of & is
g[i] = majority(X[1]X[i + w]... X[i + (r — Dw]).

As before, it holds that for all strings X,Y € {0, 1}"", dy(X,Y) <k = dp (hmaj(X), hmaj(Y)) < k and we analogously obtain
that hy,j is @ Hamming-aware hash function.

Let us now look at the approach taken in building the string aligner, from a geometric perspective. Our hash function
partitions the space of all substrings T (s of length m of T in such a way that it is easy to identify the classes of this partition
which may contain elements of the Hamming ball of center P and radius k. Indeed, every substring T of length m of T
is mapped to the class of this partition indexed by hmoq(T(s)). Given P, the classes of this partition on T that may intersect
the Hamming ball of center P and radius k are indexed by hmog(hmod(P) — 2), for all z € Z(k,2" — 1). Consequently, the
remaining classes can be safely disregarded.

In order for this approach to be computationally effective, we need to ensure that all the classes have similar size
and to filter-out as many classes as possible. The former requirement is implicitly fulfilled by our Hamming-aware hash
functions as we assume a quasi-uniform distribution over the text. The latter requirement is satisfied by the property of
being Hamming-aware, which indicates only O (cKw¥) classes that need to be checked.

However, one may also require, at least from a formal point of view, that the classes of the partition induced by the hash
function be Hamming balls. However, in our case, no property of the kind ‘if two elements are in the same class, i.e., have
the same hash value, then they are at Hamming distance at most ¢k’ holds, where ¢ is an appropriate constant.

We think that the problem of constructing a Hamming-aware hash function such that the partition it induces consists
of Hamming balls can be the bridge between our approach and tools from channel coding theory. There, given m, the goal
is to choose a set of codewords of length m such that the Hamming balls of radius k, centered around these codewords
do not overlap and cover the space of all words of length m as much as possible. Hence, one may want to take the set of
these Hamming balls as the partition of the space of the text. However, we consider crucial having the property that the
Hamming ball of radius k and centered around P intersects at most O (ckwk) classes of the partition, and having an efficient
way of enumerating all shifts of the text inside them.

5. Implementation details

As pointed out in the introduction, bioinformatics is the main field where string alignment tools are used. A new gen-
eration of machines (called next generation sequencers) can process molecules of DNA and produce as output an enormous
quantity of sequences (called reads). For example, the latest available Illumina sequencer, HiSeq2000, can produce 200 billion
characters (called bases), grouped in reads of length 100 (their length is expected to grow to 150 bases in the near future).
Our implementation of the algorithm exposed in Section 3.2 solves this practical problem, focusing mainly on Illumina
reads.

The biological setting is the following. The DNA alphabet is composed of the four characters A, C, G, T. In practice both
the text (called the reference sequence) and the reads can contain a certain number of ambiguous characters (caused by
gaps in the assembly or by sequencing errors). As customary in this field, we will identify them with the character N.
Given a string X, let us define its reverse complement to be the string X, such that for all i € {0,...,|X| — 1}, X[i] =
cmpl(X[|X| —i—1]), where cmpl: {A,C,G,T,N}— {A,C,G, T, N}, and cmpl(A) =T, cmpl(C) = G, cmpl(G) =C, cmpl(T) = A
and cmpl(N) = N. The DNA is a double-stranded molecule: each strand, comprised of a sugar-phosphate backbone and
attached bases, is connected to a complementary strand. Since the sequencers, in general, cannot indicate the strand from
which each read has been taken, given a read P, we must align both P and P. Therefore, in this particular instance of the
best k-mismatch problem we are interested in finding the occurrences at minimum Hamming distance of either P or P.In a
real setting, the reference sequence is divided into chromosomes or into scaffolds, hence the input text consists of a database
of genomic sequences D = {T', T2, ..., T4},

5.1. Data structures

Given D ={T!, T2,..., T"}, we build the string T = T!1$T2$.--$T“, where $ is a new character used as delimiter. Once
a match is found inside T, its global coordinate is converted into a local coordinate inside a chromosome/scaffold, by doing
a binary search on a lookup table.

The main data structure behind rNA is the hash table indexT, implemented with two arrays, H and V. The former has
length ¢ + 1 and contains pointers to V, while the latter has length equal to |T| and contains pointers to the text. In
position H[r] we memorize the rank of the fingerprint r, i.e., the number of fingerprints less than r present in T. From
position V[HI[i]] to position V[H[i + 1] — 1] we store the shifts of T having fingerprint r. After having computed the
fingerprint p of a read P, we perform the test in line 13 of Algorithm 2 for all these shifts.

Note that, by scanning the text two times, arrays H and V can be computed in-place, without any supplementary
memory. Moreover, both them and T need to be in RAM during search phase. Hence, we need 4-q+4-|T| + |T| bytes,
if 4 bytes are used for each pointer, and each character of T is stored as one byte. In the case of the grapevine genome,
whose length is approximately 480 M, we need approximately 6.3 GB, while with the human genome, whose length is

A. Policriti et al. / Journal of Computer and System Sciences 78 (2012) 1868-1882 1877

approximatively 3.2 G we need 20 GB if q is set to 41> — 1. In order to tackle genomes of longer lengths, two solutions
arise, depending on the amount of memory one is disposed to use. The first one is to use a larger g, which would require
8 bytes for each pointer (since we need to pass to a 64-bit architecture). The second solution, which is currently under
development, is a distributed implementation which allows to spread the computation over several nodes of a cluster.

Most of the other available tools for the alignment of short reads are based on sophisticated data structures closely
related to Suffix Trees [10] and Suffix Arrays [13]. Based on Burrows-Wheeler transformation, FM-indexes [29] are the key
point of tools like BWA and SOAP2. The main advantage of such data structure is the possibility to work with a compressed
index without loosing performance. BWA [7] claims to use between 2.3 GB and 3 GB during query time when aligning reads
on the Human Genome. We are currently exploring the possibility to use some of the concepts illustrated in [29] in order
to, possibly, compress the text and the hash table.

5.2. Ambiguous bases

All the N characters inside the reads are treated as mismatches. During the fingerprint computation we simply generate
a random character for each of them. In a similar way we treat ambiguous characters in the text: in the construction phase
we randomly choose a non-ambiguous base, while in the alignment phase we treat them as mismatches.

BWA uses the same approach for the reads, but it substitutes every ambiguous character of the text with a randomly
generated base. SOAP2 extends this approach even to the reads, with the risk of returning false positives.

5.3. Read checking and quality trimming

Reads are usually given in the FASTQ format. A FASTQ file uses 4 lines per read. The first line is the header, which begins
with the character @ and contains the read name. The second line is the read itself. The third line is a comment line while
the last one is a string of the same length of the read which stores the quality of the read.

Low quality bases are likely to be reading mistakes and are usually concentrated at the beginning and at the end of the
read (as a consequence of the chemical reactions used in order to read DNA). We developed a routine similar to the one
implemented by the CLCbio Workbench [30] in order to check the read quality. We first trim the low quality bases at the
beginning and at the end of the read. If after this process the remaining read has length and average quality higher than
two predefined thresholds, the read is aligned, otherwise it is discarded.

5.4. Paired-end mapping

Most of the sequencers are able to produce reads in pairs, by reading two sequences at a fixed distance and with a
known orientation. Among the many advantages of this additional information, let us only mention that it can be of help in
identifying structural variations [31].

When aligning such a pair, rNA first returns the best occurrences of each read of the pair, and then sorts them according
to their positions. At this point, a linear scan is performed in order to find a possible alignment of the two reads that
satisfies both the distance and the orientation constraints.

5.5. Output

Output is provided in the widely used SAM format [32], making rNA compatible with a large number of tools for post-
processing alignments.

5.6. Multi-thread

Alignment is a highly parallelizable routine. Presently, rNA can be used on a multi-core machine: every CPU reads a
chunk of 262,144 reads and aligns them against the reference. Every time a CPU finishes the alignment phase, it writes the
result in the output file and reads the next chunk of reads. A distributed version of rNA making use of multiple machines
is under development, with the aim at searching inside larger genomes, and at further speed improvements.

6. Experimental results

Our tool was compared against SOAP2 [6], BWA [7], BOWTIE [8], and FA2ST [33]. The last tool implements Suffix Arrays
and relies on the idea behind Lemma 3, where t, the number of blocks in which the pattern gets divided, is always chosen to
be k+ 1. Like rNA, it is the only aligner, to the best of our knowledge, that solves the best k-mismatch problem in an accurate
manner. We tested rNA using as fingerprint functions both hmoq an hyer. Since, experimentally, hmoq performs better on

1878 A. Policriti et al. / Journal of Computer and System Sciences 78 (2012) 1868-1882

125, —B- rNA-fimod | |
= 1000 —d— rINA-hyor
5]
S —— SOAP2
% 75 L —~— BWA |
= —— FA%ST
% 50(—6— BOWTIE
C‘QO
= 254
; 2 :
0 = A A X
0 1 2 3 4 5 6 7 8 9 10
(a) Text length 500M, read length 100
r— r—
100 —— read length 75 || 100 —— read length 75 ||
9 —&—read length 150 9 —e—read length 150
g5 ¢ SH
o 75 -1 8 3 8
n 2]
~ ~
8 k3
g 50| 4 % 50 -
= =}
T S
S By g 3-8 BB 1% & |
F-O0--G-O0-0C-0O-O--0-O (g %:t& i
0 [T N RO N N 0 ! ﬁ_—@i@“@-’-@‘-‘@- -A- < -
0123456 78 910 0123456 78 910

(b) Text length 500M, rNA vs. SOAP2 (¢) Text length 500M, rNA vs. BWA

-

T T T T
100 —— read length 75 || 125 —B— rNA-Roq
—©O— SOAP2
"% 4 —6—read length 150 ’%’ 1008 swa
3 + - 3 —A— FA2ST
=2 =z 75 - —&— BOWTIE ||
¢ ¢
S50 - - "
2 < 509 u\S\E/E\
Sy o 1
S ® 18 8
— ~ = 25¢ D
E\\ 3 ~) = -
! ‘%—@:ﬁ}-g_m@ PPN ob— 1 1 T TRA R
0123456 78910 0123456 7 8 910
(d) Text length 500M, rNA vs. FA2ST (e) Text length 50M, read length 100

Fig. 1. The number of errors is represented on the X-axis, while the Y-axis indicates the number of reads processed per second. Fig. 1(a) compares the
read throughput of rNA-hmog, *NA-hyo, SOAP2, BWA, FAZST, and BOWTIE when aligning reads of length 100 against a reference sequence of length 500 M.
Figs. 1(b)-1(d) compare the performance of rNA (continuous lines) with SOAP2, BWA, and FA2ST (dashed lines) when varying the read length (75, 100, 150)

and the number of errors. Fig. 1(e) compares the read throughput of the algorithms when aligning reads of length 100 against a reference sequence of
length 50 M.

texts of length 500 M, we choose it as the default implementation. In the ongoing, we identify the two implementation
with rNA-hnoq4, and rNA-hy.,, respectively, while with rNA we identify the default version, rNA-hmog.

In order to achieve high performance, many of the currently available aligners sometimes sacrifice correctness over
speed, by skipping a small number of occurrences of a read. For example, BWA [7] and SOAP2 [6] search only the first
I < m characters of the read (usually called seed) in the reference text with at most d < k mismatches, and for each such
occurrence, they check that the entire pattern occurs with at most k mismatches (generally, the default values of [and d
are 30 and 2, respectively, but in most cases they can also be set by the user). This heuristic, usually called seed&extend,
is based on the biological assumption that reading mistakes are less frequent in the first bases. Despite this, our goal is
to solve the best k-mismatch problem, hence we search each block of the pattern, as described in Algorithm 2. Our choice
obviously lowers the performance of rNA, but, as we will soon show, it increases its accuracy. Note that, for the very same
reason, the performance of rNA is highly dependent on whether a read occurs or not in the text. rNA and BOWTIE allow
only mismatches while BWA and SOAP2 can, optionally, allow small insertions/deletions (indels) between the pattern and
the reference. In order to achieve a fair comparison we run these two last tools without allowing indels.

A. Policriti et al. / Journal of Computer and System Sciences 78 (2012) 1868-1882 1879

Table 2

Comparison between rNA, SOAP2, BOWTIE, and BWA on two real datasets. We used the grapevine reference genome PN40024 of length 480 M to align
33,675,544 reads of length 100 belonging to the Sangiovese grapevine variety and the human genome reference hg18 of length 3.2 G to align 24,177,454
reads of length 100 belonging to a Korean adult male. All reads are aligned with at most 7 mismatches. Tools SOAP2 and BOWTIE do not offer the trimming
option. All the tools have been used allowing 8 threads.

Program Grapevine Human
Time Aligned (%) Time Aligned (%)

rNA noTRIM 21m 78.80 23 h15m 53.45
rNA TRIM 1h20m 83.88 19h 23 m 58.93
SOAP2 noTRIM 1h24m 57.36 1h54m 38.18
BOWTIE noTRIM 30 m 57.36 41 m 42.61
BWA noTRIM 1h05m 70.94 4h38m 51.27
BWA TRIM 55 m 76.87 1h10m 55.04

The tests were performed over a machine running Linux 2.6.24, on two quad-core Intel Xeon 3 GHz processors with
32 GB of RAM.

We performed our benchmarks on two datasets: a simulated dataset and a real dataset. The former dataset has been
used to show the maximum achievable performance with the tested tools. For this purpose all the experiments in the
simulated dataset were run using a single CPU. The latter dataset has been used to highlight the performance and the
accuracy in real-case scenarios. In order to show the time required in real situations, we ran all the experiments always
allowing 8 threads.

The simulated dataset was constructed by extracting from the grapevine genome 5 sequences of sizes 50 K, 500 K, 5 M,
50 M, and 500 M. In order to avoid the extra time needed to convert from global to local coordinates, these sequences
consist of a single scaffold. From each such reference, we extracted 400,000 reads of length m (m € {75, 100, 150}), with an
average error rate of 2%. These assumptions are similar to the technical specifications of the Illumina sequencer. During the
alignment of such sequences, we disabled the quality check and the trimming heuristics for the tools with such options.
For all the possible combinations of tool, text length and read length, several experiments where done varying the input
parameters and only the best result was considered. Fig. 1(a) compares the 5 tools on reference length 500 M and query
length 100. When allowing less than 4 mismatches, rNA greatly outperforms all other tools with both the implemented
fingerprints. If the number of allowed mismatches increases, the only tool that achieves comparable results is SOAP2 (whose
performance tends to be constant). It is important to stress again the fact that, while SOAP2 uses the seed&extend heuristic,
rNA solves the best k-mismatch problem. From Figs. 1(a) and 1(b) we can have a complete comparison between rNA and
SOAP2 on a reference of length 500 M bases. When the ratio between the number of mismatches and the length of the
read is low, rNA is significantly faster than SOAP2. In particular, for read length 150 and at most 10 mismatches, rNA is
always better than SOAP2. Fig. 1(e) shows the performance on a 50M text. Other results for references of length 50 K, 500 K,
5 M, and 50 M are presented in Appendix A.

The real dataset was formed by two reference sequences: the grapevine genome of length 480 M composed of 33
sequences (20 Chromosomes and 13 unordered scaffolds) and the human genome of length 3.2 G composed of 23 Chromo-
somes. We aligned against the first reference a real Illumina lane composed of 33,675,544 reads of length 100 belonging to
the grapevine variety Sangiovese (experiment performed at IGA, Institute of Applied Genomics), while against the human
reference hg18 we aligned another real lane composed of 24,177,454 reads of length 100 belonging to a Korean adult male
(downloaded from NCBI-SRA experiment SRX011536). The results of these experiments are summarized in Table 2. In both
cases we aligned each read with a maximum of 7 mismatches, allowing in this way 7% of difference in both cases. In the
case of rNA and BWA, we used the tools with and without the trimming option. When evaluating the output produced by
SOAP2, we noticed that, despite having set the maximum number of total allowed mismatches to 7, there were a certain
number of alignments with a larger number of errors. For the sake of our experimental comparison, we decided to discard
them.

In the case of the grapevine genome, we can see that rNA without the trimming option is the fastest tool, and also the
one able to align the highest number of reads. When the trimming option is turned on, the performance of rNA decreases,
but in return it aligns 83.88% of the reads. In the human genome case, rNA is between 5 and 20 times slower than the
other tools. Nevertheless, rNA still aligns the highest number of reads.

Acknowledgments
We thank Cristian Del Fabbro and Simone Scalabrin for the help provided during rNA’s implementation. Cristian de-

veloped important modules like Input/Output, paired read handling, and SAM format support. Simone provided essential
feedback which guided the implementation towards a practical tool for the bioinformatics community.

1880 A. Policriti et al. / Journal of Computer and System Sciences 78 (2012) 1868-1882

Appendix A. More experimental results

—————— ————————
200 - —B— rNA-hmod | | —B read length 75 ||
e TNA-Tior 150 1 leneth
= 175 |- soapz || g ! —e&—read length 150
8150, —— swa || 5125 |
§ k —A— FAZST §
}‘125[* & BOWTIE [}:100(7
Q I Q
£100 [- - B GEN
g 5§ Ple g ReE 4
N i@ 1 .7 5l
=) k=)
50 4 — B-O--0-0-0-0-0-—g5_¢o —
4 25 R
25 | -
A s oL+ 111
012345678910 0123456 78910
(a) Text length 50K, read length 100 (b) Text length 50K, rNA vs. SOAP2
—T——r—Tr—T—T—T— B B e e e e s s
150 |- —— read length 75 || 150 - —— read length 75
< —&—read length 150 . —&—read length 150
n =1 n
g 7 1 8 7T |
3 3
2100 |- -4 £100 [
g s
8 r o & I P
= =}
o o
e 50[}\\‘3 1 2 500,
N ~o.tER
- o B-g-O-E 3-8 | - L E‘@—QZQ_E:Q_E |
TC-0-0-0-6-0-0-4 “O--0-g
oL+ 1) S Y B
012345678910 012345678910
(c) Text length 50K, rNA vs. BWA (d) Text length 50K, rNA vs. FA2ST

Fig. 2. The number of errors is represented on the X-axis, while the Y-axis indicates the number of reads processed per second. Fig. 2(a) compares the
read throughput of rNA-hpmog, INA-hyor, SOAP2, BWA, FA2ST and, BOWTIE when aligning reads of length 100 against a reference sequence of length 50 K.
Figs. 2(b)-2(d) compare the performance of rNA (continuous lines) with SOAP2, BWA, and FA2ST (dashed lines) when varying the read length (75, 150) and
the number of errors.

175 |- B xNAhmeg —B- read length 75
—ke— rNA-hyor 150 |~ . - i
< 150 - —©— SOAP2 - —&—read length 150
é A —%— BWA g 1250
g125 —A— FA?sT 3
- % 100 |-
7. 0 BOWTIE =
.& 100 8 g
g g 75
g 75 -
ER 5 S0
i 9539 0-90-00-00-o
25 -

R

| 1 A) 0 | | | 1 1 1 1 1 1
0123456 78910 0123456 78910
(a) Text length 500K, read length 100 (b) Text length 500K, rNA vs. SOAP2

150 | —&— read length 75 || 150 | —&— read length 75 ||
= —e&—read length 150 . —e&—read length 150
2 0 1 2 @ g
3 8
o] o]
£.100 |+ -4 Z£100 |-
wn wn
8] ¢ 2 <
o T B = L B
) [
3 3
: M) g M)
2 5009, 1 = 5009,
T 8y T 1EEggs
[Y~eorf3-g-3-) [R ISR SN b
© @—@E_QE,Q_@,(Bg-0 -4
0 | | | | | | | | | 0 | | | | | | | | |
0123456738910 0123456 78910
(c¢) Text length 500K, rNA vs. BWA (d) Text length 500K, rNA vs. FA2ST

Fig. 3. The number of errors is represented on the X-axis, while the Y-axis indicates the number of reads processed per second. Fig. 3(a) compares the
read throughput of rNA-hmog, FNA-hyor, SOAP2, BWA, FA%ST and, BOWTIE when aligning reads of length 100 against a reference sequence of length 500 K.
Figs. 3(b)-3(d) compare the performance of rNA (continuous lines) with SOAP2, BWA, and FAZST (dashed lines) when varying the read length (75, 150) and
the number of errors.

A. Policriti et al. / Journal of Computer and System Sciences 78 (2012) 1868-1882 1881

—r——T— —————————
175 & rNAhmod | 150 | —& read length 75
—o— rNA-hyor
<150 | SOAPD = —6—read length 150
g 4 —%— BWA 5 1250
8125 —A— FA2sT [o4
& £.100
> I BOWTIE }
.2 10 2 ¢
g g 75
= =)
o o 0
5 g %0
i —
o5 P-0--0-0-0-0-0-9-0-0-9
IO o ol 1 v
012345678910 012345678910
(a) Text length 5M, read length 100 (b) Text length 5M, rNA vs. SOAP2
—————————— Y
150 | —&— read length 75 || 150 | —B— read length 75

—&—read length 150 —&—read length 150

10® queries/second
=
S
—p {
([
&
10® queries/second
[
=]
= fo |}
{
[

50 b 50 - b
M.
L B %:%\@
Po g | PEe o |
E\—J@»@—@—‘E—e—o—e :@"&"@\‘Qﬁ<<}<@_e
ob—— v 1 ob——1 1 1 B-8 TN
0123456 738910 0123456738910
(c¢) Text length 5M, rNA vs. BWA (d) Text length 5M, rNA vs. FA2ST

Fig. 4. The number of errors is represented on the X-axis, while the Y-axis indicates the number of reads processed per second. Fig. 4(a) compares the
read throughput of rNA-hmod, INA-hyor, SOAP2, BWA, FAZST and, BOWTIE when aligning reads of length 100 against a reference sequence of length 5 M.
Figs. 4(b)-4(d) compare the performance of rNA (continuous lines) with SOAP2, BWA, and FA?ST (dashed lines) when varying the read length (75, 150) and
the number of errors.

175 | —B— rNAhmed | 150 | —& read length 75 ||
FINATor —&—read length 150
<150 |- —o— soarz || o g
g 5 —%— BWA 5 1254
§ 125 —A— FA2sT H ;
> BOWTIE }100
£ 1008 g ¢
g g 75
g 75 &
o o 50
= 50 = m-go-a8-ge-0
25é By o000 0O
T R R R ob— 1 11
012345678910 0123456 78910
(a) Text length 50M, read length 100 (b) Text length 50M, rNA vs. SOAP2
— "
150 | —8— read length 75 || 150 |- —8— read length 75 ||
= —6—read length 150 o —&—read length 150
g g
Q O
? ?
= -
3 g
= 3
S o
) D o
=) =)
[3\ - ,Q@ -
vlE g
| @‘?’"&@‘*@-@ﬁf&- oL 1 | @I\&:fj‘(f*(}»m»x
012345678910 0123456 78910
(c¢) Text length 50M, rNA vs. BWA (d) Text length 50M, rNA vs. FA2ST

Fig. 5. The number of errors is represented on the X-axis, while the Y-axis indicates the number of reads processed per second. Fig. 5(a) compares the
read throughput of rNA-hmoq, INA-hyor, SOAP2, BWA, FA2ST and, BOWTIE when aligning reads of length 100 against a reference sequence of length 50 M.
Figs. 5(b)-5(d) compare the performance of rNA (continuous lines) with SOAP2, BWA, and FA?ST (dashed lines) when varying the read length (75, 150) and
the number of errors.

1882 A. Policriti et al. / Journal of Computer and System Sciences 78 (2012) 1868-1882

References

[1] S.E. Altschul, T.L. Madden, A.A. Schaffer,]. Zhang, Z. Zhang, W. Miller, D.J. Lipman, Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs, Nucleic Acids Res. 25 (17) (1997) 3389-3402.
[2] WJ. Kent, BLAT—The BLAST-like alignment tool, Genome Res. 12 (4) (2002) 656-664.
[3] D.E. Knuth, J.H. Morris, V.R. Pratt, Fast pattern matching in strings, SIAM J. Comput. 6 (2) (1977) 323-350.
[4] R.S. Boyer,].S. Moore, A fast string searching algorithm, Commun. ACM 20 (10) (1977) 762-772.
[5] R. Karp, M. Rabin, Efficient randomized pattern-matching algorithms, IBM J. Res. Develop. 31 (2) (1987) 249-260.
[6] R. Li, C. Yu, Y. Li, T-W. Lam, S.-M. Yiu, K. Kristiansen,]. Wang, SOAP2: an improved ultrafast tool for short read alignment, Bioinformatics 25 (15)
(2009) 1966-1967.
[7] H. Li, R. Durbin, Fast and accurate short read alignment with Burrows-Wheeler transform, Bioinformatics 25 (14) (2009) 1754-1760.
[8] B. Langmead, C. Trapnell, M. Pop, S. Salzberg, Ultrafast and memory-efficient alignment of short DNA sequences to the human genome, Genome
Biology 10 (3) (2009) R25.
[9] D.S. Horner, G. Pavesi, T. Castrignano, P.D. De Meo, S. Liuni, M. Sammeth, E. Picardi, G. Pesole, Bioinformatics approaches for genomics and post
genomics applications of next-generation sequencing, Briefings Bioinformatics (2009), bbp046+.
[10] P. Weiner, Linear pattern matching algorithms, in: Proc. 14th Ann. Symp. on Switching and Automata Theory (SWAT 1973), 1973, pp. 1-11.
[11] A. Apostolico, The myriad virtues of sub-word trees, Combinatorics on Words 112 (1985) 85-96.
[12] E. Ukkonen, Approximate string matching over suffix trees, in: Proc. 4th Ann. Symp. on Combinatorial Pattern Matching, 1993, pp. 228-242.
[13] U. Manber, G. Myers, Suffix arrays: A new method for on-line string searches, in: SODA'90: Proc. 1st Ann. ACM-SIAM Symp. on Discrete Algorithms,
1990, pp. 319-327.
[14] P. Ferragina, String algorithms and data structures, CoRR abs/0801.2378.
[15] K. Abrahamson, Generalized string matching, SIAM J. Comput. 16 (6) (1987) 1039-1051.
[16] G.M. Landau, U. Vishkin, Efficient string matching in the presence of errors, in: Proc. 26th IEEE Symp. on Foundations of Computer Science, 1985,
pp. 126-136.
[17] G.M. Landau, U. Vishkin, Efficient string matching with k mismatches, Theoret. Comput. Sci. 43 (1986) 239-249.
[18] Z. Galil, R. Giancarlo, Improved string matching with k mismatches, SIGACT News 17 (4) (1986) 52-54.
[19] L. Salmela, J. Tarhio, P. Kalsi, Approximate Boyer-Moore string matching for small alphabets, Algorithmica 58 (3) (2010) 591-609.
[20] Z. Liu, X. Chen, J. Borneman, T. Jiang, A fast algorithm for approximate string matching on gene sequences, in: Proc. 16th Ann. Symp. on Combinatorial
Pattern Matching, in: Lecture Notes in Comput. Sci., vol. 3537, 2005, pp. 79-90.
[21] W.L. Chang, T.G. Marr, Approximate string matching and local similarity, in: Proc. 5th Ann. Symp. on Combinatorial Pattern Matching, 1994, pp. 259-
273.
[22] A. Amir, M. Lewenstein, E. Porat, Faster algorithms for string matching with k mismatches, J. Algorithms 50 (2004) 257-275.
[23] P. Jokinen, E. Ukkonen, Two algorithms for approximate string matching in static texts, in: Proc. 2nd Ann. Symp. on Mathematical Foundations of
Computer Science, in: Lecture Notes in Comput. Sci., vol. 520, 1991, pp. 240-248.
[24] TN.D. Huynh, W.-K. Hon, T.-W. Lam, W.-K. Sung, Approximate string matching using compressed suffix arrays, Theoret. Comput. Sci. 352 (1) (2006)
240-249.
[25] R. Grossi,].S. Vitter, Compressed suffix arrays and suffix trees with applications to text indexing and string matching, SIAM]. Comput. 35 (2) (2005)
378-407.
[26] R. Muth, U. Manber, Approximate multiple string search, in: Proc. 7th Ann. Symp. on Combinatorial Pattern Matching, 1996, pp. 75-86.
[27] R. Zimmermann, Efficient VLSI implementation of modulo (2" 4 1) addition and multiplication, in: IEEE Symposium on Computer Arithmetic, IEEE
Computer Society, 1999, pp. 158-167.
[28] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction to Algorithms, 2nd edition, MIT Press/McGraw-Hill Book Company, 2001.
[29] P. Ferragina, G. Manzini, Opportunistic data structures with applications, in: Proc. 41st Ann. Symp. on Foundations of Computer Science, 2000, pp. 390-
398.
[30] http://www.clcbio.com/files/usermanuals/CLC_Genomics_Workbench_User_Manual.pdf, pp. 405-406.
[31] S. Lee, F. Hormozdiari, C. Alkan, M. Brudno, MoDIL: detecting small indels from clone-end sequencing with mixtures of distributions, Nat. Methods 6 (7)
(2009) 473-474.
[32] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin, 1000 genome project data processing subgroup, the
sequence alignment/map format and SAMtools, Bioinformatics 25 (16) (2009) 2078-2079.
[33] C. Del Fabbro, Repeated sequences in bioinformatics: assembly, annotation and alignments, PhD thesis, University of Udine, 2010.

http://www.clcbio.com/files/usermanuals/CLC_Genomics_Workbench_User_Manual.pdf

