J.J. Rehr, R.C. Albers, C.R. Natoli and E.A. Stern:

NEW HIGH-ENERGY APPROXIMATION FOR X-RAY-ABSORPTION NEAR-EDGE STRUCTURE.

Estratto da:
New high-energy approximation for x-ray-absorption near-edge structure

J. J. Rehr

Department of Physics, University of Washington, Seattle, Washington 98195
and Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

R. C. Albers

Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545

C. R. Natoli

Laboratori Nazionali di Frascati dell’Istituto Nazionale di Fisica Nucleare, I-00044 Frascati, Italy

E. A. Stern

Department of Physics, University of Washington, Seattle, Washington 98195
(Received 14 April 1986)

Spherical-wave corrections in x-ray-absorption fine structure (XAFS) are incorporated using a novel high-energy approximation which replaces the plane-wave approximation and is found to be in excellent agreement all the way to the absorption edge. The single-scattering theory of XAFS is recovered in terms of distance-dependent backscattering amplitudes. Application to the K-shell XAFS of Cu yields results in close agreement with the corresponding exact treatment. Multiple-scattering contributions in XAFS and spherical-wave corrections in angle-resolved photoemission are treated similarly.

Extended x-ray-absorption fine structure (EXAFS) is a valuable technique for determining local atomic structure in molecules and solids. The usual approximations in EXAFS analysis are the small-atom, plane-wave approximation (PWA), and the restriction to single-scattering paths. Recent evidence suggests that the discrepancy between this EXAFS theory and experiment in x-ray-absorption near-edge structure (XANES) is due primarily to the failure of the PWA. This is corroborated here. It has also been thought that correcting the PWA requires exact calculations. We show, in fact, that the appropriate high-energy approximation is not the PWA, but rather an asymptotic theory which is as simple as possible that includes spherical-wave corrections. This approximation is termed the spherical-wave approximation (SWA). We find that the SWA yields excellent agreement with exact calculations all the way to the absorption edge, thereby giving a unified treatment of XAFS, i.e., both EXAFS and XANES. As recognized previously the exact theory can be recovered by replacing the backscattering amplitude \(f(\kappa) \) in the PWA EXAFS formula (Eq. 1 below) with an effective, distance-dependent backscattering amplitude, \(\tilde{f}(\kappa, R) \). Here we give an explicit expression for \(\tilde{f}(\kappa, R) \) in terms of atomic phase shifts, together with an accurate SWA formula. The smooth dependence on \(1/R \) permits \(\tilde{f}(\kappa, R) \) to be tabulated for analysis purposes. Similar SWA’s are developed for multiple-scattering terms in XAFS and for spherical-wave corrections in photoemission. A model calculation of the K-shell XAFS spectrum for Cu is presented as an initial application.

Before describing our approximation, we briefly recall the results of single-scattering XAFS theory. For simplicity, we restrict our attention in this paper to K-shell absorption in polycrystalline materials. The normalized XAFS spectrum is defined in terms of the x-ray-absorption coefficient \(\mu \) as \(\chi(\omega) = \mu \mu_0 / \mu_0 \), where \(\mu_0 \) is the atomiclike background. The PWA formula for \(\chi(\omega) \) is

\[
\chi(\omega) = -\sum_{\mathbf{R}} \frac{|f(R)|}{KR^2} \sin(2KR + 2\delta_0(0) + \theta) e^{-2KR - 2\omega R^2}.
\]

(1)

Here the sum is over scattering sites \(\mathbf{R} \) with backscattering amplitude \(f(R) \) as the photoelectron wave number (in atomic Rydbergs units, \(\hbar = 2m = e^2/2 =) \), \(\omega = E - E_\text{F} \) is the energy relative to the muffin-tin zero in Rydbergs and \(\delta_0(0) \), the \(l = 1 \) phase shift of an absorbing atom at \(\mathbf{R} = 0 \). The exponential decay factors are due to the mean free path \(\lambda \) and to the Debye-Waller factor (assuming small disorder), respectively.

The starting point for our SWA is the exact single-scattering XAFS formula:

\[
\chi(\omega) = -\frac{1}{\sqrt{2\pi\sqrt{3}}} \sum_{\mathbf{R}} G_{\mathbf{L} \mathbf{L}'}(\mathbf{R}) I_{\mathbf{L}'}(\mathbf{R}) G_{\mathbf{L} \mathbf{L}'}(-\mathbf{R}),
\]

(2)

where \(G_{\mathbf{L} \mathbf{L}'}(\mathbf{R}) \) is the dimensionless free propagator in an angular momentum \(L = (j, l, m) \), and site \(\mathbf{R} \) basis, and \(I_{\mathbf{L}'}(\mathbf{R}) \equiv e^{i\omega \Delta} \sin \delta_0 \) is the dimensionless atomic \(\mathbf{I} \) matrix at site \(\mathbf{R} \). Formally \(G_{\mathbf{L} \mathbf{L}'} \) is given by the expansion

\[
G_{\mathbf{L} \mathbf{L}'}(\mathbf{R}) = -4\pi \sum_{\mathbf{L}_L} \gamma_{\mathbf{L}_L}(\mathbf{R}) \psi_{\mathbf{L}_L}(\mathbf{R}) \psi^*_{\mathbf{L}_L}(\mathbf{R}),
\]

(3)

where \(\psi_{\mathbf{L}_L}(\mathbf{R}) \equiv i^l_\mathbf{L} h^*_l(\mathbf{R}) \), \(h^*_l \) is a spherical Hankel function, and \(\rho = kr \). Carrying out the \(L \) sums in Eq. (2) using Eq. (3) and 3j symbol identities gives the Müller-Schaich XAFS formula.

The PWA theory can be derived by using an extreme-
high-energy limit for the G's in Eq. (2). Our SWA consists of replacing this form with a better high-energy approximation, based on rapidly convergent, asymptotic expansions of modulus and phase similar to the WKB approximation, which takes into account the centrifugal barrier seen by the photoelectron. We then obtain an approximate XAFS formula that has exactly the same form as Eq. (1), but with \(f(\pi, R) \) replaced by \(f(\pi, R) \).

Our derivation is summarized as follows; details will be presented elsewhere.\(^8\) Choosing the \(z \) axis along the \(R \) direction, we may define \(G_{L, L'} \) in terms of its extreme-high-energy behavior and a dimensionless correction factor \(g_{L, L'}^{(m)}(\rho) = g_{L, L'}(\rho) \delta_{m, m'} \) as

\[
G_{L, L'}(R) = 4 \pi Y_0^*(\hat{R}) Y_{L'}^0(\hat{R}) \frac{e^{i \rho}}{\rho} g_{L, L'}^{(m)}(\rho) \delta_{m, m'},
\]

\(R = \pm R \hat{z} \).

In the extreme-high-energy limit, i.e., \(\rho > |(l+1)+l'| \times \delta_{m, 0} \rightarrow \delta_{m, 0} \) as \(\rho \rightarrow \infty \). If one uses this limit to evaluate Eq. (2), the conventional PWA EXAFS formula is recovered. Unfortunately, this extreme limit cannot be achieved for all \(l \) and is therefore not the appropriate high-energy limit for EXAFS. The physical reason is that the centrifugal barrier introduces a phase correction in each partial wave of order \((l+1)/KR \) which is not negligible. To see this note that l-wave scattering is only important when the turning point is smaller than the muffin-tin radius, i.e., \(\sqrt{l(l+1)/2} \leq R_{MT} \). Hence \(l(l+1)/KR \leq \sqrt{l(l+1)/2} R_{MT}/R \), but this is not negligible for all significant \(l \), especially for small \(R \). Although this phase error grows with \(l \), \(t_l \) becomes smaller, and hence the EXAFS still converges to the PWA at sufficiently high energies. Using the PWA together with an ad hoc energy shift, such phase shifts can be accounted for only in some average sense, since this prescription introduces an l-independent phase correction varying as \(1/k \). However, a significant improvement at all energies results by using our SWA as we now show.

We find it advantageous to calculate \(g_{L, L'}^{(m)}(\rho) \) in two ways, depending on whether \(l \) or \(l' \) is small or large: (1) For small \(l \) or \(l' \), the number of nonvanishing coefficients \(Y_l Y_{l'} \) in Eq. (3) is small, so \(G_{L, L'} \) reduces to a sum over a number of spherical Hankel functions. For example, for \(l = 1 \) (i.e., single-scattering, K-shell absorption), \(g_{L, L'}^{(m)}(\rho) \) is given exactly by

\[
g_{L, L'}^{(0)}(\rho) = \frac{1}{2l + 1} \left(\frac{l}{l+1} \right)^{1/2} \frac{c_{l+1}(\rho) - c_{l-1}(\rho)}{2l + 1},
\]

\[
g_{L, L'}^{(1)}(\rho) = \frac{1}{2l + 1} \left(\frac{l}{l+1} \right)^{1/2} \frac{c_{l+1}(\rho) + c_{l-1}(\rho)}{2l + 1},
\]

where \(c_{l}(\rho) \) are the correction factors to limiting high-energy form of spherical Hankel functions, i.e., \(h_{l}^{\pm}(\rho) \equiv \frac{1}{\rho} i^{l-l}(e^{i \rho/\rho}) c_{l}(\rho) \). Replacing the exact \(c_{l}(\rho) \) with that from the leading terms of asymptotic expansions of the modulus and phase of \(h_{l}^{\pm}(\rho) \), we obtain

\[
c_{l}(\rho) = \left[1 + \frac{L^2}{2l^2} \right]^{1/2} e^{i l \rho/2},
\]

where \(L^2 = (l+1) \). Note that when l-wave scattering is significant (i.e., \(t_l \) non-negligible), \(l/\rho < R_{MT}/R < 1 \), which implies the high-energy limit. Subsequent terms are smaller than those retained in Eq. (6) and can be neglected.

The dominant spherical-wave correction is seen to be the non-negligible phase shift \(L^2/2l^2 \). Formulas similar to Eqs. (5a) and (5b) can be developed for larger \(l \) or \(l' \), but they involve an intermediate \(l \) sum and hence become progressively more cumbersome.\(^7\) Thus we adopt an alternative procedure: (2) For general \(l \) or \(l' \) (i.e., for higher shells \(L, L', M, \) etc., and for multiple-scattering corrections) we develop new asymptotic expansions for the modulus and phase of \(g_{L, L'}^{(m)}(\rho) \), starting from a more general integral equation for \(G_{L, L'} \). The leading terms are

\[
g_{L, L'}^{(0)}(\rho) = \left[1 + \frac{L^2 + L'^2}{2\rho^2} \right]^{1/2} e^{i (l + l')/2} J_0 \left(\frac{L^2 L'^2}{\rho^2} \right)^{1/2},
\]

\[
g_{L, L'}^{(1)}(\rho) = \left(\frac{L^2 + L'^2}{\rho^2} \right)^{1/2} e^{i (l + l')/2} J_0 \left(\frac{L^2 L'^2}{\rho^2} \right)^{1/2},
\]

where \(J_0 \) is the Bessel function of order zero. For nonshadowing multiple-scattering contributions to \(\Phi(E) \), one also needs propagators for general directions \(R \neq \hat{z} \).

Applying rotation matrices to Eqs. (3), (5), and keeping only the dominant term, we find

\[
G_{L, L'}(R) = 4 \pi Y_0^*(\hat{R}) Y_{L'}^0(\hat{R}) \frac{e^{i \rho}}{\rho} g_{L, L'}^{(0)}(\rho).
\]

The leading corrections to Eq. (8) are proportional to \(g_{L, L'}^{(1)}(\rho) \).

An exact single-scattering XAFS equation can now be obtained by using Eqs. (5a) and (5b) in (4) and summing over \(m \). The result now has the same form as Eq. (1), except that the backscattering amplitude and phase \(\Phi \) are replaced by \(f(\pi, R) = |\hat{f}(\pi, R)| e^{i \hat{\Phi}(R)} \), where

\[
f(\pi, R) = \frac{1}{k} \sum_{L} \left[-(1)^{2(l+1)} t_l \right] \times \left(\frac{(l+1)c_{l+1}(k R) + l c_{l-1}(k R)}{2l + 1} \right).
\]

As \(R \rightarrow \infty \) the term in brackets in Eq. (9) becomes unity, and \(f(\pi, R) \) reduces to \(f(\pi) \). We emphasize that this result is exact. Our approximate (SWA) expression for \(f(\pi, R) \) results by replacing \(c_{l}(\rho) \) in Eq. (9) with the asymptotic formula in Eq. (6) and thereby avoids the explicit calculation of spherical Hankel functions.

We have applied our SWA to a model calculation of the K-shell XAFS of fcc Cu. The potential and lattice constant used are those of the self-consistent linear augmented-plane-wave band-structure calculations of Ref. 10. Thus the core-hole potential is neglected, a reasonable approximation for metallic Cu. To achieve good convergence, we used \(l \leq 19 \) phase shifts and 34 shells of neighbors. Finally, the resultant spectrum was Lorentzian broadened using a constant imaginary potential, \(\eta = 4 \) eV. To illustrate the importance of spherical-wave effects we plot in Fig. 1 the amplitude and phase of the effective backscattering amplitude \(f(\pi, R) \) given by Eqs. (9) and (6); this is compared with the usual definition,
with band-structure calculations for $\epsilon < 10$ Ry. However, significant deviations are evident in the EXAFS region beyond about 10 Ry, which cannot be fully explained by shadowing corrections. We will discuss general (i.e., type-1 and type-2) multiple-scattering corrections using the SWA formulae Eqs. (7a), (7b), and (8) in a subsequent paper.

Finally, we note that analogous SWA can be developed for other physical processes. For example, angle-resolved photoemission11,12 also exhibits EXAFS-like oscillatory structure and spherical-wave corrections are substantial. The intensity of a beam of outgoing p waves at large distances $R_0 = R_0 k$, with interfering single-scattering contributions from scatterers at sites R, is given by $I = \frac{1}{4} \sum_{\theta} \hat{f}(\theta, R) R e^{i k R (1 - \cos \theta)}$. Here the angular dependence of the outgoing p wave is $Y_{10}(\theta) = \hat{f}(\theta, -\hat{k} \cdot \hat{R})$. The scattering angle, and $\hat{f}(\theta, R)$ is the effective scattering amplitude given by

$$\hat{f}(\theta, R) = \frac{1}{k} \sum_{l} (2l + 1) i P_l \cos \theta g_l^{(0)}$$

where P_l is the Legendre polynomial of order l. Our expression for $\hat{f}(\theta, R)$ differs from the PWA formula11 by the factor $g_l^{(0)}(p)$, a SWA results by evaluating (10) using Eqs. (5a) and (6). Applications of Eq. (10) will be given separately.12

In summary, we have introduced a new, efficient high-energy approximation of XAFS which replaces the PWA yet is accurate all the way to the absorption edge. Remarkably, XANES can be treated as a high-energy phenomenon. This was not recognized previously because of the failure to incorporate spherical-wave effects correctly at high energies. The appropriate limit leads to simple, analytical forms for the electron propagators, even when spherical-wave effects are important. Compared to the exact formulae, our SWA is simpler and hence faster compu-
tationally with little loss of accuracy. These advantages are especially important for multiple-scattering contributions; for example, for the calculations presented here including shadowing, the SWA is more efficient by a factor of about 20 on a CRAY-1A computer. By comparison, other formulations seem unnecessarily complicated; also, due to various uncertainties in the theory (e.g., muffin-tin corrections, and many-body effects) even the "exact" treatments are only approximate at low energies. The standard EXAFS formula can be recovered and extended by using, in place of $f(\pi)$, the effective scattering amplitude $\tilde{I}(\pi,R)$ defined in Eq. (9). Because $\tilde{I}(\pi,R)$ is an atomic quantity and is smoothly varying in $1/R$, it is conveniently tabulated. We plan to do so for a number of elements. Finally, our approach yields a unified treatment of XAFS, valid for both EXAFS and XANES. Because it permits XAFS data to be analyzed all the way to the edge using standard techniques, it should improve the utility of XAFS for determinations of local atomic structure, particularly for low-Z atoms and/or large disorder.

Note added. McKale, Knapp, and Chan have recently calculated backscattering amplitudes $f(\pi,R)$ based on the exact Müller-Schaich formula [cf. Eq. (9)], confirming their utility in practice.

The authors thank J. W. Wilkins and P. A. Lee for their comments. Part of this work was done at the Summer Institute in Theoretical Physics at the University of Washington, which was sponsored in part by grants from the Murdock Charitable Trust and from the NSF, Grant No. DMR-84-01781. One of us (J.J.R.) thanks the Center for Material Science and the Materials Science and Technology Division of Los Alamos National Laboratory for hospitality and support. This work was also supported in part by NSF Grant No. DMR-82-07357 (J.J.R.), DOE Contract No. W-7405-Eng-36 (R.C.A.), Consiglio Nazionale delle Ricerche (Italy) (C.R.N.), and NSF Grant No. DMR-80-22221 (E.A.S.).