A. Turrin: QUANTUM-MECHANICAL FORM OF THE DAMPED BLOCH EQUATIONS.
A. Turrin: QUANTUM-MECHANICAL FORM OF THE DAMPED BLOCH EQUATIONS.

ABSTRACT.

The damped optical Bloch equations have been used to derive the form of the "corresponding" two-level atomic dynamics. It turns out that the resulting equations involve non-linear damping terms.
Formally, collisional effects can be introduced into the two-level atomic dynamics by combining Eqs. 1)

\begin{align*}
1a) \quad & \dot{X} = -\Delta Y \\
1b) \quad & \dot{Y} = \Delta X + \omega Z \\
1c) \quad & \dot{Z} = -\omega Y
\end{align*}

for the Bloch vector\(^{(1)}\) (in the rotating wave approximation and in a reference frame rotating with the rotating wave) and Eqs. 2)

\begin{align*}
2a) \quad & \dot{X} = -\Gamma_2 X \\
2b) \quad & \dot{Y} = -\Gamma_2 Y \\
2c) \quad & \dot{Z} = -\Gamma_1 (Z+1)
\end{align*}

for the relaxation. Thus, the damped Bloch equations are

\begin{align*}
3a) \quad & \dot{X} = -\Delta Y - \Gamma_2 X \\
3b) \quad & \dot{Y} = \Delta X - \Gamma_2 Y + \omega Z \\
3c) \quad & \dot{Z} = -\omega Y - \Gamma_1 (Z+1)
\end{align*}

where \(\omega = p\hat{e}(t)/\hbar\); \(p\) is the dipole matrix element between the upper state and the lower state, and \(\hat{e}(t)\) is the envelope of the optical pulse. \(\Delta = \Delta(t)\) is the detuning.

The phenomenological constants \(\Gamma_1\) and \(\Gamma_2\) denote the population rate and the phase relaxation rate respectively.

In this letter we give a quantum-mechanical representation of Eqs. 3) by use of suitable transformations.

We will restrict our analysis to the case where \(\Gamma_1 = 0\), since if \(\Gamma_1 \neq 0\) the two-level system decays back to its ground state \(X=0, Y=0, Z=-1\) as the pulse goes out (i.e. the solution at \(t=+\infty\) is known in the case \(\Gamma_1 \neq 0\)).

From Eqs. 3) it follows that the absolute value of the Bloch vector \(R = \sqrt{X^2 + Y^2 + Z^2}\) decays in length during the pulse. This decay law is governed by the equation

\begin{align*}
4) \quad & \dot{R}/R = -\Gamma_2 \left\{1 - (Z/R)^2\right\}
\end{align*}
Introduce in Eqs. 3) and 4) the two complex functions σ and ε defined by the relationships

\begin{align*}
5a) \quad X + iY &= -(R+Z)/(\varepsilon E) \\
5b) \quad X - iY &= (R+Z) \sigma^* E,
\end{align*}

where $E = \exp(\Gamma_2 t)$, and the star denotes complex conjugation. Transformations 5a) and 5b) are a generalization of the ones given by Darboux (2) for the undamped ($\dot{R}=0$, $R=1$) case.

It follows for Z/R the expression

\begin{align*}
6a) \quad Z/R &= (\varepsilon^* \varepsilon - E^{-2})/(\varepsilon \varepsilon^* + E^{-2})
\end{align*}

or, alternatively,

\begin{align*}
6b) \quad Z/R &= (E^{-2} - \sigma \sigma^*)/(\sigma \sigma^* + E^{-2})
\end{align*}

and the relationship

\begin{align*}
7) \quad \sigma \varepsilon &= -E^{-2}
\end{align*}

holds.

A straightforward (although rather tedious) calculation leads to the following differential equations for σ and ε:

\begin{align*}
8a) \quad \dot{\varepsilon} &= (i/2)\omega E \varepsilon^2 - i A \varepsilon - (i/2)\omega E - [2 \Gamma_2 E^{-2}/(\varepsilon \varepsilon^* + E^{-2})] \varepsilon \\
8b) \quad \dot{\sigma} &= - (i/2)\omega E \sigma^2 + i A \sigma + (i/2)\omega E - [2 \Gamma_2 E^{-2}/(\sigma \sigma^* + E^{-2})] \sigma
\end{align*}

On introduction of two new functions f and g by the substitutions

\begin{align*}
9a) \quad \varepsilon &= i(2/\omega)(\dot{f}/f) E^{-1} \\
9b) \quad \sigma &= -i(2/\omega)(\dot{g}/g) E^{-1}
\end{align*}

one obtains the equations for f and g:

\begin{align*}
10a) \quad \ddot{f} + (iA - \dot{\omega}/\omega - \Gamma_2 Z/R) \dot{f} + (\omega/2)^2 f = 0 \\
10b) \quad \ddot{g} - (iA + \dot{\omega}/\omega - \Gamma_2 Z/R) \dot{g} + (\omega/2)^2 g = 0
\end{align*}

where

\begin{align*}
Z/R = \{(2/\omega)^2 |\dot{f}/f|^2 - 1\}/\{(2/\omega)^2 |\dot{f}/f|^2 + 1\} \\
\text{or} \quad Z/R = -\{(2/\omega)^2 |\dot{g}/g|^2 - 1\}/\{(2/\omega)^2 |\dot{g}/g|^2 + 1\}.
\end{align*}
As a consequence of the relationship 7), Eqs. 10a) and 10b) are coupled equations, i.e.

\[(\dot{f}/f)(\dot{g}/g) = -(\omega/2)^2 \]

In the case \(T_2 = 0 \), Eqs. 10) reduce just to the equations encountered by Zener(3), Froissart and Stora(4) and Horwitz(5) as a consequence of their quantum-mechanical formulation of the problem.

Now, if the two Eqs. 10a) and 10b) are multiplied by \(\dot{g}/(g f) \) and \(\dot{f}/(g f) \), respectively, taking into account that the relationship 11) holds, one obtains the equations

12a) \[-\ddot{g}/g + \dot{f}/f = -(\lambda \dot{\omega}/\omega - T_2 Z/R) \]

12b) \[-\ddot{f}/f + \dot{g}/g = (\lambda \dot{\omega}/\omega - T_2 Z/R) \]

Integrating once, one gets

13a) \[\dot{f} = (\dot{f}(0)/g(0)) \{\omega/\omega(0)\} g \exp \left[- \int_0^t i\Delta dt + \int_0^t (T_2 Z/R) dt \right] \]

13b) \[\dot{g} = (\dot{g}(0)/f(0)) \{\omega/\omega(0)\} f \exp \left[- \int_0^t i\Delta dt - \int_0^t (T_2 Z/R) dt \right] \]

According to Eq. 11) and in order to maintain symmetry between the functions \(f \) and \(g \) we write

\[\dot{f}(0)/g(0) = \dot{g}(0)/f(0) = -i\omega(0)/2 \]

and get

14a) \[\dot{f} = -i(\omega/2) g \exp \left[- \int_0^t i\Delta dt + \int_0^t (T_2 Z/R) dt \right] \]

14b) \[\dot{g} = -i(\omega/2) f \exp \left[- \int_0^t i\Delta dt - \int_0^t (T_2 Z/R) dt \right] \]

in the form obtained at once by the quoted Authors(3), (4), (5) in their quantum-mechanical treatment (with \(T_2 = 0 \)).

Now, to facilitate comparison with other work(6), (7), (8), we convert Eqs. 14a) and 14b), using
\[f = a \exp \left[-\frac{i}{2} \int_0^t \Delta dt \right] \]
\[g = b \exp \left[\frac{i}{2} \int_0^t \Delta dt \right] \]

16a) \[\dot{a} - \frac{i}{2} \Delta a = -\frac{i}{2} \omega b \exp \left[\int_0^t (\Gamma_0 Z/R) dt \right] \]
16b) \[\dot{b} + \frac{i}{2} \Delta b = -\frac{i}{2} \omega a \exp \left[-\int_0^t (\Gamma_0 Z/R) dt \right] \]

where
\[Z/R = \frac{(2/\omega)^2 |a/a-(i/2)\Delta|^2 - 1}{(2/\omega)^2 |a/a-(i/2)\Delta|^2 + 1} \]
or
\[Z/R = -\frac{(2/\omega)^2 |b/b+(i/2)\Delta|^2 - 1}{(2/\omega)^2 |b/b+(i/2)\Delta|^2 + 1} \]

which agree, for \(\Gamma_0 = 0 \), with those given by Kroll and Watson \(^7\) and Lau \(^8\), \(^8\).

It is worth drawing attention to a point about the occupation numbers \(a \) and \(b \), when \(\Gamma_0 = 0 \): with the normalization condition \(a^*a + b^*b = 1 \), \(X, Y \) and \(Z \) assume the expressions \(X = ab^* + ba^* \), \(Y = i(ab^* - ba^*) \), \(Z = aa^* - bb^* \). These are, in fact, the three components of the Bloch vector defined by Feynman, Vernon and Hellwarth \(^1\). This can be very quickly derived by Eqs. 5), 9), 14) and 15), with \(E = 1 \).

The conclusion can be drawn that the quantum-mechanical version of the damped Bloch equations puts us in a certain difficulty, because one cannot obtain insight into the meaning of the phase relaxation terms that come in. This is a consequence of the phenomenological nature of the damped Bloch equations and of the fact that the microscopic interpretation of dephasing processes is still a contumacious problem.
REFERENCES.

(2) J. G. Darboux, Théorie des Surfaces, Tome I, II Édit., Paris 1914, p. 27

(4) M. Froissart and R. Stora, Nucl. Instr. and Methods, 7, 297 (1960)

