C. Bacci, R. Baldini-Celio, B. Esposito, C. Mencuccini, A. Reale, G. Sciacca, M. Spinetti and A. Zallo: NEUTRAL-PION PHOTO-
PRODUCTION ON PROTON FROM DEUTERIUM IN THE ENERGY
RANGE (400-800) MeV.

Neutral-Pion Photoproduction on Proton From Deuterium in the
Energy Range \((400 \div 800)\) MeV.

C. Bacci

Istituto di Fisica dell'Università - Roma
Istituto Nazionale di Fisica Nucleare - Sezione di Roma

R. Baldini-Cello, B. Esposito, C. Mencuccini, A. Reale, G. Sciaccia,
M. Spinetti and A. Zallo

Laboratori Nazionali di Frascati del CNEN - Frascati

(ricettato il 14 Febbraio 1972)

In this paper we report an experiment performed at Frascati 1.1 GeV electro-synchrotron on the photoproduction of \(\pi^0\)-mesons on proton from hydrogen and deuterium

\[
\begin{align*}
\gamma + p &\rightarrow \pi^0 + p, \\
\gamma + d &\rightarrow \pi^0 + p + (n_0).
\end{align*}
\]

The differential cross-section for reaction (1) has been measured by detecting both the proton and the forward emitted photon from the \(\pi^0\) decay, in the energy range of the incident photon \(E_\gamma = 400 \div 800\) MeV, at three different angles in the centre-of-mass system (c.m.s.) \(\theta_c^\pi = 60^\circ, 90^\circ\) and \(135^\circ\). As far as reaction (2) is concerned, we have maintained the same experimental conditions chosen for the reaction (1) only refilling the same target with deuterium instead of hydrogen.

In this case the spectator neutron \((n_0)\) was not detected.

The main purpose of this experiment is to compare the cross-section for process (2) with the cross-section for a free proton, i.e. process (1). This comparison is essentially a test on the validity of the "impulse approximation" by which people generally analyse the photoproduction on deuterium.

Actually, the experimental situation on the impulse approximation is not completely clear due to the lack of experimental data, especially for the \(\pi^0\) photoproduction \((\sim)\). For the \(\pi^+\) photoproduction the experimental data show a deviation from the impulse approximation predictions of the order of \((5 \div 10)\%\) \((\sim)\). Our results show that, sticking to the spectator model, sensible discrepancies appear in the \(\pi^0\) photoproduction on bound proton in deuterium.

The experimental setup is shown in Fig. 1.

The γ-ray beam was incident on a cylindrical liquid hydrogen or deuterium target, 7 cm in diameter, and was monitored by a Wilson-type quantameter (4).

The recoil protons from reactions (1) and (2) were detected by a proton telescope consisting in a thin (1 cm thickness) scintillation counter, T, followed by a thick cylindrical (30 cm thickness, 30 cm in diameter), scintillator S.

The n^0 was detected by a cylindrical total-absorption lead-glass Čerenkov counter (15 cm in diameter, 25 cm thickness) detecting the forward emitted γ-ray. In front of it a veto scintillation counter A was used to reject charged particles.

For each event we recorded, using a PDP8 computer on-line, the pulse heights in the T, S and C counters and the time of flight of the proton on a $(5 \div 8)$ m basis. The time-of-flight resolution was ~ 1 ns FWHM.

The photon energy resolution of our Čerenkov was about 16% at 500 MeV.

The bidimensional spectra of the S and T pulse heights allowed to eliminate completely the pion background in the proton telescope.

In order to know the correct number of protons in the angular region covered by the telescope and their right kinetic energy, corrections have been made for the nuclear interactions, the multiple scattering and the energy loss of the protons along their path. A small correction in the time of flight due to different pulse heights in the S-counter has been also made.

In order to evaluate the differential cross-sections from the yield, the detection efficiency of the apparatus has been calculated by the Monte Carlo method.

As far as reaction (2) is concerned we have assumed the validity of the spectator model (5) and a momentum distribution of the target nucleons following the Hulthen wave function.

NEUTRAL-PION PHOTOPRODUCTION ON PROTON FROM DEUTERIUM ETC.

In our conditions the detection efficiency drops down rapidly for momenta of the target nucleons greater than 150 MeV/c. It is worth-while noting, that, within the accuracy of our measurement, the efficiency does not depend on the various deuterium wave functions usually considered (Hulthen, Gansian, Hulthen-Gartenhaus).

The contamination due to multiple-pion photoproduction comes out to be negligible. This was checked moving the upper end of the bremsstrahlung spectrum. For each angle the experimental cross-sections for process (1) were compared with the already published results (7).

The agreement we obtained made us confident that no serious systematic error was present in our measurement.

When comparing processes (1) and (2) we have fixed the same c.m. energy $E_{\pi p}^0$ of the pion-proton final state system. Because of the Fermi motion, for a fixed energy

![Graph](image)

Fig. 2. Ratio $r = \frac{(d\sigma/dt^0)_{(\gamma\mathrm{D} \to \pi^0 p\pi^-)}}{(d\sigma/dt^0)_{(\gamma\pi^- \to pp)}}$ at different angles and vs.

$E_{\pi p}^0$, the total c.m. energy of the $\pi^0 p$, the total c.m. energy of the $\pi^- p$ system and also vs. E_{γ}, the incident-photon energy which gives on free proton a total c.m. energy $E_{\pi p}^0$: a) $\theta = 60^\circ$, b) $\theta = 90^\circ$, c) $\theta = 135^\circ$.

of the outgoing proton, E'_γ was determined, around its average value, with a resolution of the order ± 60 MeV. When using hydrogen as a target the energy resolution was of the order of ± 15 MeV.

In order to get the cross-section for the processes (1) and (2) we have subtracted the contamination ($\sim 5\%$) due to the Compton effect which was undistinguishable in our apparatus.

Table 1.

<table>
<thead>
<tr>
<th>$\theta_\eta^\circ = 60^\circ$</th>
<th>$\theta_\eta^\circ = 90^\circ$</th>
<th>$\theta_\eta^\circ = 135^\circ$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E'^γ</td>
<td>E'^γ</td>
<td>E'^γ</td>
</tr>
<tr>
<td>505</td>
<td>0.78 \pm 0.07</td>
<td>439</td>
</tr>
<tr>
<td>559</td>
<td>0.84 \pm 0.07</td>
<td>476</td>
</tr>
<tr>
<td>606</td>
<td>0.86 \pm 0.05</td>
<td>508</td>
</tr>
<tr>
<td>658</td>
<td>0.79 \pm 0.05</td>
<td>547</td>
</tr>
<tr>
<td>701</td>
<td>0.83 \pm 0.05</td>
<td>591</td>
</tr>
<tr>
<td>733</td>
<td>0.98 \pm 0.06</td>
<td>623</td>
</tr>
<tr>
<td>773</td>
<td>1.08 \pm 0.11</td>
<td>667</td>
</tr>
<tr>
<td>710</td>
<td>0.86 \pm 0.05</td>
<td>710</td>
</tr>
<tr>
<td>738</td>
<td>0.90 \pm 0.07</td>
<td>738</td>
</tr>
</tbody>
</table>

We report in Table 1 and Fig. 2 for different angles and as a function of E_{π^0} and E'_γ the ratio

$$r = \frac{\frac{d\sigma}{d\Omega^*}(\gamma p \rightarrow \pi^0 p n)}{\frac{d\sigma}{d\Omega^*}(\gamma p \rightarrow \pi^0 p)}.$$

The measurements on hydrogen have been averaged on the same energy intervals as for deuterium, to take into account the different energy resolutions in the two cases.

The errors quoted are statistical only. We are confident that by making the ratio of the cross-sections, many of the possible systematic errors cancel each other.

A deviation from 1 for the ratio r is evident in our data.

The curves which have been drawn in Fig. 2 are a theoretical evaluation which has been made (?) of this ratio by taking into account the scattering of the outgoing pion and proton with the neutron, and the contribution to the π^0 photoproduction by charge exchange effects.

These curves are in a good agreement with our data so that one could conclude that the deviation from 1 of the ratio could be interpreted as a final-state interaction effect.

The observed deviations for the π^0 photoproduction are not inconsistent at our energies with the π^+ case of isotopic spin arguments for the interactions of the outgoing pion, and the Pauli principle for the nucleons interactions are properly taken into account.

It is a pleasure for us to thank Drs. A. Piazzia, G. C. Scrinia and V. Rossi of Frascati-Rome Bubble chamber group for critical comments. We thank also our technicians V. Bidoli and I. Branco for their skillful assistance. Thanks are also due to the synchrotron staff for their assistance during the machine runs.