
Published: April 28, 2011

r 2011 American Chemical Society 2922 dx.doi.org/10.1021/pr200155f | J. Proteome Res. 2011, 10, 2922–2929

ARTICLE

pubs.acs.org/jpr

MSSimulator: Simulation of Mass Spectrometry Data
Chris Bielow,*,†,‡,§ Stephan Aiche,†,*,‡,§ Sandro Andreotti,‡,§ and Knut Reinert‡

‡Institute of Computer Science, Department of Mathematics and Computer Science, Freie Universit€at Berlin, Berlin, Germany
§International Max Planck Research School for Computational Biology and Scientific Computing, Berlin, Germany

bS Supporting Information

’ INTRODUCTION

In mass spectrometry (MS) based proteomics, often proteins
in a sample are digested and the resulting peptides are separated
by high-performance liquid chromatography (LC) before inject-
ing them into the mass spectrometer. Subsequently, data can be
obtained in two modes, the LC�MSmode, in which continuous
sampling over the whole mass range occurs and which is used
solely for quantitation, and the LC�MS/MS mode where a
fragmentation of selected sample compounds is performed to
obtain ion ladders that can be used for the identification of the
compound.

Modern mass spectrometers can easily generate thousands of
mass spectra in a short time. This ability has been an incentive for
the development of new experimental protocols and new fully
automated methods to analyze the resulting data. For the
creation of efficient and robust methods, developers of new
algorithms need benchmark data to compare their approach to
existing ones or to assess the robustness of their algorithm to
different kinds of data (e.g., another MS machine, more back-
ground noise, or more complex samples). This is a difficult task,
since carefully compiled databases of annotated test data are
scarce inmass spectrometry-based proteomics. An ideal LC�MS
data set for the evaluation of feature detection, alignment and
quantitation algorithms would contain annotations with the
positions of all peptide ion signals, their charge states, mono-
isotopic masses and abundances. Only this information would
allow meaningful comparisons between different methods and

fair benchmark studies. If in addition one could alter certain
parameters (like the background noise or the type of MS
machine), it would be possible to assess the robustness of the
newly developed algorithm.

One approach to overcome this problem is using simulated
data sets. This idea is not new and was already used by Morris
et al.1 in 2005 to benchmark their new approach for feature
extraction and quantitation by validating it on a data set
simulated by the Cromwell software presented by Coombes
et al.2 In 2008 Schulz-Trieglaff et al.3 presented a comprehensive
approach to simulate LC�MS data and used it to benchmark
different feature detection approaches. Renard et al.4 implemen-
ted a quite simple simulation approach to validate the NITPICK
feature finding algorithm. In 2009 Yang et al.5 used a simulated
data set from Morris et al.1 to benchmark different peak picking
algorithms.

However, those approaches were focusing mostly on one
particular aspect of a simulation. In this paper we present
MSSimulator, a comprehensive simulator for LC�MS and
LC�MS/MS data that includes all functionalities of the so far
most comprehensive tool LC�MSsim and extends it in many
respects. In the following part we will describe the basic steps
which can be simulated with MSSimulator and the underlying
theoretical models. Then we give some examples of how
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ABSTRACT: Mass spectrometry coupled to liquid chromatog-
raphy (LC�MS and LC�MS/MS) is commonly used to analyze
the protein content of biological samples in large scale studies,
enabling quantitation and identification of proteins and peptides
using a wide range of experimental protocols, algorithms, and
statistical models to analyze the data. Currently it is difficult to
compare the plethora of algorithms for these tasks. So far, curated
benchmark data exists for peptide identification algorithms but
data that represents a ground truth for the evaluation of LC�MS
data is limited. Hence there have been attempts to simulate such
data in a controlled fashion to evaluate and compare algorithms.
We present MSSimulator, a simulation software for LC�MS and
LC�MS/MS experiments. Starting from a list of proteins from a
FASTA file, the simulation will perform in-silico digestion, retention time prediction, ionization filtering, and raw signal simulation
(including MS/MS), while providing many options to change the properties of the resulting data like elution profile shape,
resolution and sampling rate. Several protocols for SILAC, iTRAQ orMSE are available, in addition to the usual label-free approach,
making MSSimulator the most comprehensive simulator for LC�MS and LC�MS/MS data.
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MSSimulator can be used to benchmark algorithms or conduct
an experimental robustness analysis.

’METHODS

MSSimulator is written in Cþþ as part of the OpenMS6

framework and is integrated into The OpenMS Proteomics
Pipeline (TOPP).7 The simulator is configurable via a parameter
file, which can be edited using a dedicated GUI shipped with
OpenMS. As input we use FASTA files, in addition to the
parameter file containing the configuration. The FASTA file
provides the protein or peptide sequences including modifica-
tions (we support all modifications contained in UNIMOD.8)
and can also be used to provide protein/peptide specific infor-
mation like the abundance or a specific retention time.

The user can also include contaminants into the simulation.
For a detailed description of the format see Section II, Support-
ing Information. The simulation is divided into several submo-
dules, accounting for the different steps carried out in a classical
LC�MS experiment, which will be explained in detail in the
following sections.

Digestion
Digestion can be performed in two modes or can be switched

off. The first mode does a complete in-silico digest, alsomodeling
missed cleavages. Note that when missed cleavages are used, also
the completely cleaved peptides will be contained in the sample.
To add another level of realism, the second mode uses a model
from Siepen et al.,9 which was reimplemented in OpenMS to
predict missed cleavages. The current model is based on trypsin
data but can be easily adapted simply by substituting a text file
containing the model parameters. To extend the model to other
enzymes, the log likelihood ratio data matrix described in the
original paper needs to be computed.

Peptide Separation
As prefractionation techniques, two widely used approaches

are available in MSSimulator: capillary electrophoresis (CE)
and high performance liquid chromatography (HPLC). Both
techniques yield separation of peptides according to different
properties, therefore complementing each other. In CE mode,
MSSimulator will predict a migration time based on a theoretical
linear model described below, whereas for HPLC simulation we
use a machine learning approach based on support vector
regression.
AModel for Capillary Electrophoresis. In a strong electric

field, molecules are separated based on their physicochemical
properties that determine their migration time, which is further
dependent on the background electrolyte and its properties, for
example, ionic strength, pH, type of ions.
Our migration time model concentrates on simulating the

electrophoretic mobility (μep) of analytes, while electroosmotic
flow (μeo), which is mainly governed by the viscosity of the
buffer and the capillary itself, is a parameter provided by
the user.
Electrophoretic mobilities and separations are predicted from

physicochemical properties of the peptide species, namely net
charge and mass. A common model for electrophoretic mobility
is

μep ¼ q=MWR ð1Þ
where q is the net charge of the ion, MW is its molecular weight,
andR is some constant. In a vacuum, an ions speed is proportional

to its net charge when an electric field is applied. In a medium,
however, we need to correct for frictional drag (MWR term). The
choice of R has been the topic of extensive discussion. The most
common values include 1/3, 1/2, 2/3, which all relate to theoretical
models. For details on choices of R and charge determination, see
Section III, Supporting Information.
To determine the migration time we compute:

t ¼ LdLt
ðμepþμeoÞV

ð2Þ

where Ld is the distance between injection site and detector, Lt is
the total capillary length and V is the applied voltage (see
Laughlin et al.10). Peptides with negative migration times will
be discarded (but mentioned in a summary statistic).
In contrast to HPLC where elution profiles remain constant

across the RT dimension, in CE the peak width increases as a
function of migration time due to dispersion factors and decreased
mobility. We use a linear model to account for this effect. Figure 1
shows an exemplaryCE/MSmap using ourCEmodel. The typical
charge bands can be observed easily.
Prediction of Retention Times in Liquid Chromatogra-

phy. Schulz-Trieglaff et al. already applied the Paired Oligo-
Border Kernel (POBK) presented by Pfeifer et al.11 to accurately
predict the retention times for peptides in their simulation.
We use the same approach in MSSimulator. A trained model is
provided with our software but training a custom model using
MS/MS identifications is easy using the RTModel tool which is
part of TOPP.
AModel for Elution Profile Shape. Since peptides will not

elute from the chromatography column at a single time point but
over a period of time, we need to model the shape of the signal
in the retention time dimension. In most cases this will be a
Gaussian-like shape but can also have an asymmetric character.
To be as flexible as possible, we have chosen the exponential
Gaussian hybrid12 (EGH) function

feghðtÞ ¼ Hexp
�ðt � tRÞ2

2σ2
g þ τðt � tRÞ

 !
, 2σ2

g þ τðt � tRÞ > 0

0, 2σ2
g þ τðt � tRÞ e 0

8>><
>>:

ð3Þ
where t is the retention time, tR is the center of the chromato-
graphic peak,H is the peak height, σg is the standard deviation of
the peak, and τ is the time constant of the exponential decay.

Figure 1. Raw CE/MS map of 100 proteins using default CE settings.
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MSSimulator comes with a set of default values for σg and τ
and the possibility to vary them using a Lorentzian distribution.
For details on the motivation for the Lorentzian distribution and
the determination of the parameters, see Section IV, Supporting
Information.
To reflect poor chromatographic conditions, the user can also

customize the quality of the generated elution profiles, by adding
uniformly distributed noise.

Peptide Detectability Filter
Although detectability and ionization are closely coupled, we

treat them as separate steps during simulation. To account for the
effect that not necessarily all peptides ionize with the same
efficiency, we include the peptide detectability filter presented
by Schulz-Trieglaff et al.3 It uses a support vector machine
combined with a paired oligo-border kernel to compute the
likelihood of each peptide to create a signal in a mass spectrum.
The user can define a threshold value�every peptide below the
threshold will be discarded. MSSimulator is shipped with a
trained model. Customized models can be trained using TOPP’s
PTModel.

Ionization
We support the two common ionizationmethods electrospray

ionization (ESI) and matrix-assisted laser desorption/ionization
(MALDI). For ESI, we sample charge states for each peptide
entity from a binomial distribution B(n,p) where n is equal to the
number of basic residues and p is set to 0.8 by default. We also
support custom adducts like Naþor Kþ.

For MALDI we have chosen a discrete distribution of the
charge states, with default probability values of P(q = 1) = 0.9 for
charge 1 and P(q = 2) = 0.1 for charge 2. The user can customize
the charge probabilities according to his own needs.

Modeling Peptide Signals in the Mass Spectrum
At this point, a list of peptides annotated with charge,

retention time and an elution profile shape was generated. Based
on this list MSSimulator computes the signals for each peptide
ion. Each signal has two components, that is, the shape in the
retention time dimension, which was already defined during the
simulation of the chromatographic column, and the signal inm/z
dimension.

To compute the complete isotopic envelope MSSimulator
uses a fast algorithm13 implemented in OpenMS. The shape of
each individual isotopic peak is a topic of discussion in the
literature14 and can therefore be modeled during the simulation
by either a truncated Gaussian or Lorentzian distribution. The
width of the peaks can be controlled by the user in terms of the
resolution. We additionally provide three models of resolution
behavior, which are present in common instruments. Resolution
is constant in time-of-flight (TOF) instruments; in Fourier
transform ion cyclotron resonance (FTICR) instruments, it is
known to degrade linearly with m/z, whereas in Orbitrap mass
spectrometers it degrades with the square root of m/z.15

MS/MS Sampling
The prediction of fragment peak intensity in MS/MS spectra

comprises a difficult task since the rules governing the fragmen-
tation are not yet fully understood. For the most commonly used
fragmentation method, the collision induced dissociation (CID),
several approaches to predict the intensity pattern and identify
important features with a strong influence on the fragmentation
exist. Zhang16 proposed a kinetic model to predict fragmentation
for low energy CID spectra. Other approaches apply machine

learning techniques like neural networks,17 Bayesian neural
networks,18 probabilistic decision trees19 or RankBoosting.20

In MSSimulator, the user can choose between three modes to
simulate MS/MS spectra.

The naïve simulator generates peaks for all selected ion types
(including neutral loss ions and charge variants) with a user
defined intensity.

In the second mode, a support vector machine (SVM) is
trained as a classifier to predict the abundance or absence of the
primary ion types (b- and y-ions for CID spectra). For every
peptide bond the fragment ions are encoded with the complete
set of 35 descriptors used by Zhou et al.18 (see Section VII,
Supporting Information). If no peak is found within a certain
user-defined interval around the expected m/z value, the ion is
counted as missing. The classifier is trained on a class-balanced
set of positive (abundant) and negative (missing) training samples,
and suitable values for the SVM are obtained by grid search.

The third mode uses support vector regression (SVR) to
predict the intensity of fragment ion peaks. The target value for a
training feature vector is not a class label but the normalized (see
ref 18) intensity of the observed peak. For computational
efficiency reason, we use this model only to predict the b- and
y-ion intensities. For the prediction of neutral loss ion intensities,
we use a simple Bayesian approach where we learn the probability
of observing a certain loss ion with a certain intensity, given the
predicted intensity of the corresponding primary ion. As this
approach requires discrete intensity levels, we apply intensity
binning.

The latter two modes are currently only supported for
peptides with a maximum charge of three. Customized models
can be trained on user defined data sets.

In Section VII of the Supporting Information, we present a
comparison of our SVR prediction approach with the twomodels
by Zhang16 and Zhou et al.,18 which reveals that the performance
is comparable to the other two approaches.

Simulating MSE Data. Concurrent peptide fragmentation
(i.e., MSE) is an emerging technique that could revolutionize the
way peptides are identified and quantified. Currently there are
very few algorithms capable of analyzing MSE data, for example,
ETISEQ.21 By providing simulated data, we hope to facilitate
algorithm development, as the simulator provides an easy means
to benchmark the results. MSE data is generated by alternatively
recording data in MS and MS/MS mode, where the latter has no
restriction on the precursor mass, thus all ions are fragmented
simultaneously. This has the advantage that suboptimal precur-
sor selection is no longer an issue but leads to congestedMS/MS
spectra that need to be disentangled for proper peptide identi-
fication. The simulator will create MS/MS spectra for each
peptide currently eluting from the HPLC/CE column according
to our fragmentation model, scaled by their respective intensity,
such that MS and MS/MS spectra will display proper elution
profiles, which can be used to correlate MS/MS peaks with MS
features. Subsequently, the single spectra are merged to form the
final MSE spectrum. An example can be seen in Figure 2. The
peaks are color coded by precursor.

Labeled Experiments
The simulator contains a framework which allows the easy and

fast incorporation of any labeling technique used in mass spectro-
metry.We currently provide three widely used techniques, namely
iTRAQ (isobaric tag for relative and absolute quantitation),22

SILAC (stable isotope labeling by amino acids in cell culture)23
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and 18O labeling,24 in addition to the usual label-free setup. For
each labeled channel, a FASTA input file must be given. This
allows to model different protein/peptide sets but also abun-
dances and modification states separately for each channel.
iTRAQ Labeling.The software can be used to simulate iTRAQ

MS/MS spectra with arbitrary channel allocation (using 4plex or
8plex) and customizable isotope correction matrices (the default
being the matrix provided by Applied Biosystems). The labeling
efficiency of tyrosine residues can be changed as desired, with a
default of 30%. A peptide containing a Y residue will be split into
two sibling peptides with differentmasses, each with an abundance
reflecting the labeling efficiency. N-terminus and lysine residues
are assumed to be fully labeled. The MS/MS spectra generated in
iTRAQ mode differ from normal MS/MS spectra in that they
contain the reporter ions in them/z range from 113 to 121 Th and
that the fragment ions are 145 Da heavier for every iTRAQ
modified amino acid they contain. Fragment ions with partially or
even completely cleaved iTRAQ tags seem to be missing from the
iTRAQ spectra we examined.
Stable Isotope Labeling byAminoAcids in Cell Culture.

SILAC is a prominent approach in quantitative proteomics based
on the incubation of cell lines with an isotopically labeled form of
an amino acid (e.g., deuterated leucine).
MSSimulator currently supports two channel SILAC labeling

with a user defined modification. The default is a modified lysine
and arginine introducing a mass shift of ∼6.02 Da. We assume
complete incorporation of the label into the labeled channel, but
incomplete incorporation could be easily implemented as well.

18O Stable Isotope Labeling. Labeling peptides with stable
18O isotopes is a widely used technique in quantitative proteo-
mics and therefore also supported by MSSimulator. Labeling
peptides with 18O tags is achieved by digesting the proteins with
an endoprotease (usually trypsin) in the presence of H2

18O. This
reaction exchanges two C-terminal oxygen molecules by 18O and
thereby introduces a mass shift of 4 Da. Since the labeling reaction
is not always complete, also monolabeled peptides (mass shift of
2 Da) and unlabeled peptides will occur in the labeled channel.
To account for the labeling efficiency MSSimulator splits the

total peptide amount given in the labeled channel B on the three
different states: unlabeled B0, mono- B1 and dilabeled B2. To
compute the quantities depending on the labeling efficiency f the

kinetic model of Ramos-Fern�andez et al.25 is used.

B0 ¼ Bð1� f Þ2 ð4Þ

B1 ¼ B2 f ð1� f Þ ð5Þ

B2 ¼ Bf 2 ð6Þ

Output
The user can specify multiple output files, which provide

different layers of ground truth. The most important one and the
only mandatory is the output file for the rawMS data in mzML26

format. If the user requires another PSI format, the OpenMS
FileConverter can be used for conversion.

The second optional output file is a feature map (as
featureXML) containing all simulated peptides, annotated with
charge, charge adducts, and sequence. The featureXML file can
easily be converted to an Excel sheet or csv (comma-separated
values) file. Also a list of features describing the contaminants in
the data set can be requested by the user.

Additionally, MSSimulator can provide files containing the
correct associations between the different charge variants of a
single peptide and the correct associations between the labeled
and unlabeled versions of the simulated peptides. The files are in
the OpenMS specific consensusXML format which also can be
easily converted to an Excel sheet or csv file.

Availability
The presented software is included in v1.8 of the open source

Cþþ software library OpenMS, running on all major platforms,
available at http://www.OpenMS.de. This also applies to all
TOPP tools used in this publication.

’RESULTS

Due to the wide feature range of MSSimulator, it can be easily
adapted to mimic certain instrument types. We provide exemp-
lary preset configurations for a QTOF and an FT instrument;
other instruments can be created easily. To asses the level of
realism of the simulated data, when using a similar setup (in
terms of protein mix, instrument settings etc.), we used data sets
from the Standard Protein Mix Database27 (Mix 3, low-res
QTOF and high-res Fourier Transform (FT) data) for compar-
ison to simulated data. After applying the same analysis pipeline
(centroiding, feature finding) to both data sets, we find that the
number of peptide signals, charge distribution, intensity range are
highly comparable. For a detailed comparison and configuration
files, see Section V, Supporting Information. For a visual compar-
ison, see Figure 3.

As the focus of the simulator is benchmarking of algorithms,
wewill applyMSSimulator to a wide range of tasks in the following
subsections.

Algorithm Verification for MSE Data
We used MSSimulator in MSE mode to benchmark the

ETISEQ software, which to our knowledge is the only software
publicly available for this task. A very simple data set was
generated, consisting of one protein (P62739, bovine actin),
yielding 44 peptide signals in different charge and cleavage states.
We disabled simulation of contaminants to make the spectra as
clean as possible. MS and MSE spectra were generated alternat-
ing. Additionally the simulator was configured to create the

Figure 2. Color coded detail of MSE spectrum containing seven pre-
cursor species (black). Intensities are scaled to 100% for MS and MS/MS
spectra.
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“debug”MS/MS spectra, which can used as a ground truth when
assessing the disentangled ETISEQ spectra. Before submitting
the data set via the ETISEQ webinterface (http://www.cancer-
research.unsw.edu.au/CRCWeb.nsf/page/
Elutionþtimeþionþsequencing) using default parameters
(except for “Exclude contaminant ions”: set to false), we removed
the debug spectra. Unfortunately, the data set returned by
ETISEQ was not a valid mzXML file, which we fixed by applying
regular expressions (see Section I, Supporting Information). We
are currently in contact with the authors of ETISEQ to address
further problems we encountered, and thus we cannot present
results here. However, some of these flaws (e.g., wrong precursor
information of deconvoluted MS/MS spectra) were only trace-
able due to our knowledge of ground truth and would have been
very hard to find on real data. This shows that simulated data can
indeed help to assess algorithm reliability.

Development and Quality Assessment of Labeled Quantifi-
cation Algorithms

Developing quantitation algorithms for labeled or unlabeled
mass spectrometry experiments is always a laborious task. Espe-
cially in labeled setups the algorithm optimization and comparison
is always hindered by the unavailability of the complete set of
labeled pairs or sets.

To prove the applicability of MSSimulator in benchmarking
tools for SILAC quantitation we compared two known
approaches for quantitation of stable-isotope labeling, XPRESS28

and ASAPRatio.29 We used the versions integrated into the
Trans-Proteomic Pipeline (TPP)30 v4.4.1 (VUVUZELA). The
popular MaxQuant31 unfortunately cannot be considered here,
as it only supports the commercial RAW data format as input.

Both tools use a combination of MS/MS identifications and
chromatographic peaks in the RAW data for quantitation. ASA-
PRatio, the more recently developed tool, has the more sophisticated

data handling and error analysis and is expected to show better
results than XPRESS.

To compare both quantitation approaches we generated a data
set where the second channel was labeled with a modified version
of lysine and arginine introducing a mass shift of≈6.02 Da. The
SILAC pairs were generated with the following ratios: 1:1, 1:2,
1:4 and 1:10. The data set contained 782 peptide features after
digestion using the nave trypsin model and HPLC simulation on
the default column. Following the simulation we generated exact
identification results for all peptide features, removing the effect
of inaccurate MS/MS identification in the analysis. These
identification results were converted into the pepXML (http://
tools.proteomecenter.org/wiki/index.php?title=Formats:
pepXML) format using TOPP and analyzed by XPRESS and
ASAPRatio. XPRESS as well as ASAPRatio produce annotated
pepXML containing the computed peptide ratios. Figure 4 shows
the resulting peptide ratios plotted against the simulated ratios.
Both tools reconstruct most of the simulated ratios, however
have (as expected) problems with overlapping signals. The results
shown in Figure 4 reflect the expected superiority of ASAPRatio
since it has a more robust error analysis then XPRESS.

The presented approach for the assessment of quantitation
tools can be easily extended and automated for the evaluation of
different tools under several conditions like changing noise levels,
machine types, or changes in the resolution of the data and the
effect of these changes can be quantified directly using the
available ground truth (feature positions, simulated ratios, etc.).

Map Alignment Algorithm Stability
In this study, we aim to benchmark the ability of a map

alignment strategy to correct for a retention time distortion
between two simulated data sets, when the overlap of sample
content is varied. We used the simulator to create feature maps of
decreasing overlap in terms of protein content but constant

Figure 3. Comparison of real vs simulated data for FT and QTOF instruments. For clarity, data is shown on zoomed regions of an LC�MS map. (A)
Real FT data, (B) simulated FT data, (C) real QTOF data, and (D) simulated QTOF data.
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number of features (∼4000) and applied the TOPP MapAligner
tool to reconstruct the affine retention time shift, plus a local
Gaussian distributed distortion. We chose offset = 100, scale = 1.3
and a local Gaussian distortion with sd = 3 for each feature. This
scenario can give insight on how many corresponding features
(i.e., alignment anchors) are sufficient to reconstruct the correct
alignment. Another point of view is on how inefficient the feature
identification is allowed to be on replicates, to reconstruct the RT
shift. The results (see Figure 5) show that even a very small overlap
does allow the reliable estimation of the true transformation.

Feature Detection in High-Resolution Data
Assessing the quality of feature detection algorithms is always

a cumbersome task, since the exact location and charge of the real
peptide signals are initially unknown. To overcome this problem
feature detection algorithms are often developed and tested on
manually annotated data sets.

As an addition to the established approach, we propose the use
of simulated data sets as already done in previous works.1,3 The
exact knowledge of feature positions and properties eases the

computation of essential quality values like false discovery rate
(FDR) and true positive rate (TPR). Also the influence of various
data specific properties like resolution, noise or chromatographic
conditions can be easily quantified.

To cover this scenario we used simulated data to benchmark
the performance of Hardkl€or32 an established feature finding tool
for high-resolution data and the FeatureFinder shipped with
TOPP. The data was simulated using the settings for an FT
instrument and input data described in Section V, Supporting
Information. Hardkl€or was run with slightly modified parameters
according to the “Sample Config Files” section on the Hardkl€or
Web site (http://proteome.gs.washington.edu/software/hard-
klor/config.html). The configuration files for both tools and a
description of the analysis steps can be found in Section VI,
Supporting Information.

Both tools showed a good performance with a FDR of 0.07
and a TPR of 0.855 for Hardkl€or and 0.196 and 0.814 for the
TOPP FeatureFinder respectively. To quantify the influence of
poor chromatographic conditions on the performance of both
tools, we repeated the analysis on a data set with an increased level
of distortion for the simulated elution profiles. The performance of
both tools dropped to FDR and TPR values of 0.115 and 0.798 for
Hardkl€or and 0.203 and 0.642 for the TOPP FeatureFinder.

In this scenario, we showed that with only a small effort in data
preparation (compared to manually annotating real data sets)
one could quickly benchmark existing or self-developed software
and assess the influence of data specific properties like chromato-
graphic conditions on the performance of these tools.

’CONCLUSION

MSSimulator is the most extensive collection of algorithms
and models for MS simulation and allows for easy algorithm
validation on a broad range of conditions, opening a wide range
of benchmarking scenarios, which can easily be automated. The
availability of a ground truth reduces the need for expensive
manual validation on real data sets. Also, future labeling techniques
can be added quickly by implementing our labeling interface.

We have shown that our simulated data is very similar to real
data and allows easy validation of existing algorithms.

Figure 4. Ratios computed by ASAPRatio (left) and XPRESS (right) plotted against the ratios simulated byMSSimulator. Peptide features that overlap
with at least one other feature (which is not the labeled partner) are marked with red triangles, nonoverlapping features are marked as blue squares.

Figure 5. Quality of alignment when altering peptide overlap between
the two data sets. The red triangles indicate the reconstructed offset in
comparison to the simulated offset (red dotted line). The blue squares
indicate the reconstructed scale in comparison to the simulated scale
(blue dashed line).
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We invite the community to extend the solution presented
here. Future extensions might include but are not limited to,
automatic estimation of simulation parameters (e.g., resolution,
sampling rate, noise level) from real data allowing to quickly
generate benchmark data for analysis software, prediction of
ionizability, incorporation of additional noise models, and more
instrument specific properties (e.g., shadow peaks on Orbitrap
instruments).
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