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Abstract: This paper presents a novel distributed Model Predictive Control (MPC) algorithm. This
method enjoys the following properties: (i) input and state constraints can be considered; (ii) under
mild assumptions, convergence of the closed loop control system is proved; (iii) it is not necessary for
each subsystem to know the dynamical models governing the trajectories of the other subsystems; (iv)
the transmission of information is limited, in that each subsystem only needs the reference trajectories of
the state variables of its neighbors. A simulation example is reported to illustrate the main characteristics
and performance of the algorithm.
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1. INTRODUCTION

Many large scale and spatially distributed systems, such
as power networks, transport networks and hydro power

plants (Negenborn et al., 2009; Šiljac, 1978), motivate the de-
velopment of distributed control structures with limited local
computation and transmission requirements. In the context of
Model Predictive Control (MPC), many distributed control al-
gorithms have been proposed. Specifically, completely decen-
tralized architectures (Raimondo et al., 2006; Barcelli and Be-
mporad, 2009), distributed schemes (see, e.g., Dunbar (2007);
Liu et al. (2010, 2009); Venkat et al. (2008); Stewart et al.
(2010)) and coordinated control techniques for dynamically
decoupled systems (Dunbar and Murray, 2006; Ferrari-Trecate
et al., 2009; Richards and How, 2007; Trodden and Richards,
2010) have been proposed.
According to the taxonomy proposed in (Scattolini, 2009),
distributed MPC techniques can be classified according to the
topology of the transmission network (i.e., fully connected or
partially connected networks), to the information exchange
protocol needed (i.e., non-iterative or iterative algorithms) and
to the type of cost function which is optimized (i.e., coop-
erative or non-cooperative algorithms). In Dunbar (2007) a
non-iterative, non-cooperative distributed MPC technique is
proposed for continuous-time systems based on neighbor-to-
neighbor information exchange. In Liu et al. (2009, 2010) a
non-iterative sequential (partially connected) algorithm and a
novel iterative fully connected one are proposed. In (Venkat
et al., 2008; Stewart et al., 2010) a cooperative fully connected
output-feedback MPC algorithm for discrete time systems is
discussed, where only input constraints can be assigned and
full knowledge on the system dynamics is required to all the
subsystems.
In this work we propose a non-iterative, non-cooperative MPC
algorithm where a neighbor-to-neighbor (i.e., partially con-
nected) communication network and partial (regional) struc-
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tural information are needed. The rationale of the proposed
technique is that, at each sampling time, each subsystem sends
to its neighbors information about its future reference trajectory
and guarantees that the actual trajectory lies within a certain
bound in the neighborhood of the reference one. Then, a robust
MPC approach inspired by Mayne et al. (2005) provides a tool
for the statement of the local optimization problems solved by
each subsystem.
The highlights of the proposed approach are: (i) input and state
constraints can be considered and, under mild assumptions on
the existence of a suitable decentralized auxiliary control law,
convergence of the closed loop control system is proved; (ii)
it is not necessary for each subsystem to know the dynamical
models governing the trajectories of the other subsystems (not
even the ones of the neighbors); (iii) the transmission of infor-
mation is limited, in that each subsystem needs the reference
trajectories only of the variables of one’s neighbors which ac-
tually affect its dynamics; (iv) its rationale is very similar to
the one of the MPC algorithms presently employed in industry,
where reference trajectories tailored on the dynamics of the
system under control are used.

Notation. We use the short-hand v = (v1, . . . ,vs) to denote a
column vector with s (not necessarily scalar) components v1,
. . . , vs. The symbol ⊕ denotes the Minkowski sum, namely
C = A⊕B if and only if C = {c : c= a+b, for all a∈ A,b∈B}.

We also denote
⊕M

i=1 Ai = A1 ⊕ ·· · ⊕AM . For a discrete-time
signal st and a,b ∈ N, a ≤ b, we denote (sa,sa+1, . . . ,sb) with
s[a:b]. Finally, a continuous function α : R+ → R+ is a K∞

function iff α(0) = 0, it is strictly increasing and α(s) → +∞
as s →+∞.

2. PARTITIONED SYSTEMS

Consider a process which obeys to the linear dynamics

xt+1 = Axt +But , (1)

where xt ∈R
n is the state vector and ut ∈R

m is the input signal.
Let the system (1) be partitioned in M low order interconnected
non overlapping subsystems, where a generic submodel has

x
[i]
t ∈R

ni as state vector, i.e., xt =(x
[1]
t , . . . ,x

[M]
t ) and ∑M

i=1 ni = n.
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According to this decomposition, the state transition matrices
A11 ∈ R

n1×n1 , . . . , AMM ∈ R
nM×nM of the M subsystems are di-

agonal blocks of A, whereas the non-diagonal blocks of A (i.e.,
Ai j, with i 6= j) define the coupling terms between subsystems.
The partition performed on the system induces an intercon-
nected network of subsystems, which can be naturally de-
scribed by means of a directed graph G = (V ,H ), where the
nodes in V are the subsystems and the edge ( j, i) in the set
H ⊆ V ×V models that the state of j affects the dynamics
of subsystem i. In particular, ( j, i) ∈ H if and only if Ai j 6= 0.
We denote as Ni the set of neighbors of subsystem i (which
excludes i) i.e., Ni = { j| j 6= i and ( j, i) ∈ H }.
Furthermore, we assume that the input ut can be partitioned into

a set of M input vectors u
[i]
t ∈R

mi , with i = 1, . . . ,M, where u
[i]
t

directly affects only the state of the i-th subsystem x
[i]
t . This im-

plies that B has a block diagonal structure B=diag(B1, . . . ,BM),
where Bi ∈ R

ni×mi for all i = 1, . . . ,M. It finally results that the
i-th subprocess obeys to the linear dynamics

x
[i]
t+1 = Aii x

[i]
t +Biu

[i]
t + ∑

j∈Ni

Ai jx
[ j]
t (2)

where x
[i]
t ∈ Xi ⊆ R

ni is the state vector and u
[i]
t ∈ Ui ⊆ R

mi is
the input vector. The sets Xi and Ui are convex neighborhoods
of the origin. Furthermore we define X = ∏M

i=1Xi ⊆ R
n and

U = ∏M
i=1Ui, which are convex by convexity of Xi and Ui,

respectively, for i = 1, . . . ,M. When X = R
n and U = R

m we
say that the system is unconstrained.

Our aim is to design, for each subsystem i, an algorithm for

computing an input sequence u
[i]
t based on the state x

[i]
t and

some information which is transmitted by its neighbors Ni,
which guarantees closed loop asymptotic convergence to the
origin of the state of the large scale system (1), the minimiza-
tion of a given local cost function and constraint satisfaction.
Specifically, we assume that each subsystem has a reference

trajectory x̃
[i]
t which is transmitted to the subsystems which have

i as neighbor, and which is incrementally defined (as better
specified in the following). We also assume that one can guar-

antee that, for all t ≥ 0, the real local state trajectory x
[i]
t lies in a

specified time-invariant neighborhood of x̃
[i]
t i.e, x[i]− x̃

[i]
t ∈ Ei,

where 0 ∈ Ei.

Letting w
[i]
t = ∑ j∈Ni

Ai j(x
[ j]
t − x̃

[ j]
t ), the i-th system model (2)

can be written as follows

x
[i]
t+1 = Aii x

[i]
t +Biu

[i]
t + ∑

j∈Ni

Ai j x̃
[ j]
t +w

[i]
t (3)

where the term w
[i]
t ∈Wi =

⊕

j∈Ni
Ai jE j represents a bounded

disturbance affecting equation (3) and ∑ j∈Ni
Ai j x̃

[ j]
t can be con-

sidered as a known input. Provided that, for all i = 1, . . . ,M,

the constraint x[i] − x̃
[i]
t ∈ Ei can be successfully imposed (see

Section 6 for a short discussion on this point) for all t ≥ 0, we
can cast the problem of designing a distributed MPC control
law as the problem of designing a robust control law for the
subsystem (3), for all i = 1, . . . ,M.
For the statement of the local MPC sub-problems (which will be
denoted i-MPC problems) we rely on the robust MPC algorithm
presented in Mayne et al. (2005) for constrained linear systems
with bounded disturbances. The main advantages of this ap-
proach are that no burdensome min-max problem is required to
be solved on-line, and that it naturally provides the reference

trajectory x̃
[i]
t , which is one of the key points of the algorithm

presented in this paper.

3. THE DISTRIBUTED MPC ALGORITHM

As a preliminary step to the statement of the local i-MPC prob-
lem, we define the i-th subsystem nominal model associated to
equation (3) as

x̂
[i]
t+1 = Aii x̂

[i]
t +Biû

[i]
t + ∑

j∈Ni

Ai jx̃
[ j]
t (4)

The control law for the real i-th subsystem (3) will be assigned,
for all t ≥ 0, according to

u
[i]
t = û

[i]
t +Kaux

i (x
[i]
t − x̂

[i]
t ) (5)

where Kaux
i is a suitable control gain. Letting z

[i]
t = x

[i]
t − x̂

[i]
t

from (3) and (5) we obtain

z
[i]
t+1 = (Aii +BiK

aux
i )z

[i]
t +w

[i]
t (6)

where w
[i]
t ∈ Wi. Since Wi is bounded, if (Aii + BiK

aux
i ) is

Schur, then there exists a robust positively invariant (RPI)

set Zi for (6) such that, for all z
[i]
t ∈ Zi, then z

[i]
t+1 ∈ Zi. A

method for computing polytopic, robust positively invariant,
outer approximations of the minimal robust positively invariant
set is proposed in Raković et al. (2005). From (6) it follows that,

if u
[i]
k is computed as in (5) for all k ≥ t, then

x
[i]
t − x̂

[i]
t ∈ Zi (7)

implies that x
[i]
k − x̂

[i]
k ∈ Zi for all k ≥ t.

Write x
[i]
t − x̃

[i]
t = (x

[i]
t − x̂

[i]
t )+ (x̂

[i]
t − x̃

[i]
t ) and define the set Ei

for all i = 1, . . . ,M as a set containing the origin and satisfying

Ei ⊕Zi ⊆ Ei. Since, in view of (7), x
[i]
k − x̂

[i]
k ∈ Zi for all k ≥ t, if

we also satisfy the constraint

x̂
[i]
k − x̃

[i]
k ∈ Ei (8)

for all k ≥ t, then x
[i]
k − x̃

[i]
k ∈ Ei for all k ≥ t, as required.

Now we are in the position to state the local minimization
problem for all subsystems at instant t. Given the future ref-

erence trajectory of i and its neighbors x̃
[ j]
k , k = t, . . . , t +N −1,

j ∈ Ni ∪{i}, the i-MPC problem consists in the following

min
x̂
[i]
t ,û

[i]
[t:t+N−1]

V N
i (x̂

[i]
t , û

[i]
[t:t+N−1]

) (9)

subject to the dynamic and static constraints (4), (7), (8), to

x̂
[i]
k ∈ X̂i (10)

û
[i]
k ∈ Ûi (11)

where X̂i ⊕ Zi ⊆ Xi and Ûi ⊕ K Zi ⊆ Ui, and to the terminal
constraint

x̂
[i]
t+N ∈ X̂

F
i (12)

where X̂
F
i is the i-th nominal subsystem terminal set, whose

properties will be specified in the following.

The cost function V N
i (x̂

[i]
t , û

[i]
[t:t+N−1]

) is

V N
i (x̂

[i]
t , û

[i]
[t:t+N−1]

) =
t+N−1

∑
k=t

li(x̂
[i]
k , û

[i]
k )+V F

i (x̂
[i]
t+N) (13)

where li : Rni ×R
mi →R+ is the stage cost and V F

i : Rni →R+

is the final cost. From now on, we assume that li is defined
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in such a way that li(0,0) = 0 and that there exists, for all
i = 1, . . . ,M, a K∞ function α and a matrix Ri satisfying

rank([BT
i RT

i ]
T ) = mi such that li(x

[i],u[i]) ≥ α(‖(x[i],Riu
[i])‖)

for all x[i] ∈R
ni , u[i] ∈R

mi . Note that this assumption can always
be fulfilled by a proper choice of the weight Ri in the stage cost.
As in Mayne et al. (2005), minimization is performed with re-

spect both to the nominal system initial state x̂
[i]
t and to the nom-

inal input trajectory û
[i]
[t:t+N−1]

. Letting the pair x̂
[i]
t/t
, û

[i]
[t:t+N−1]/t

be the solution to the i-MPC problem (9) at time t, we assign

the input to the nominal system (4), at time t, as û
[i]
t/t

. According

to (5), the input to the real system (2), at instant t, is

u
[i]
t = û

[i]
t/t

+Kaux
i (x

[i]
t − x̂

[i]
t/t
) (14)

Furthermore, let us define as x̂
[i]
k/t

the trajectory stemming from

x̂
[i]
t/t

and û
[i]
[t:t+N−1]/t

, in view of equation (4). The value of the

reference state variable x̃
[i]
t+N is set to

x̃
[i]
t+N = x̂

[i]
t+N/t

(15)

We stress that we do not define, at each instant t, a new

reference trajectory x̃
[i]
k , k = t + 1, . . . , t +N, but we append the

value x̃
[i]
t+N to the reference trajectory which has been already

defined for k ≤ t +N−1. For this reason x̃
[ j]
t+N , for all j ∈Ni, is

the only information which node i must receive by its neighbors
at instant t. Therefore we can conclude that, despite the off-
line design phase is rather complex, requiring the definition of
suitable sets and cost functions, the on-line computational and
communication loads are considerably limited.

4. CONVERGENCE RESULTS

The following definitions and assumptions are needed to state
the main result of the paper.

The set of admissible initial conditions x0 = (x
[1]
0 , . . . ,x

[M]
0 ) and

initial reference trajectories x̃
[ j]
[0:N−1]

, for all j = 1 . . . ,M are

defined as follows.

Definition 1. Letting x= (x[1], . . . ,x[M]), we denote the feasibil-
ity region X

N for all the i-MPC problems as the set

X
N := {x : if x

[i]
0 = x[i] for all i = 1, . . . ,M

then ∃(x̃
[1]
[0:N−1], . . . , x̃

[M]
[0:N−1]),(x̂

[1]
0/0

, . . . , x̂
[M]
0/0

),

(û
[1]
[0:N−1]

, . . . , û
[M]
[0:N−1]

) such that (2), (7), (8),

(10)-(12) are satisfied for all i = 1, . . . ,M}

We also denote, for each x ∈ X
N , the region of feasible initial

reference trajectories as

X̃x := {(x̃
[1]
[0:N−1]

, . . . , x̃
[M]
[0:N−1]

) : if x
[i]
0 = x[i] for all i = 1, . . . ,M

then ∃(x̂
[1]
0/0

, . . . , x̂
[M]
0/0

),(û
[1]
[0:N−1]

, . . . , û
[M]
[0:N−1]

) such that

(2), (7), (8), (10)-(12) are satisfied for all i = 1, . . . ,M}

Assumption 1. The matrix Aii + BiK
aux
i is Schur, for all i =

1, . . . ,M.

Assumption 2. LettingKaux =diag(Kaux
1 , . . . ,Kaux

M ), X̂=∏M
i=1 X̂i,

Û= ∏M
i=1 Ûi and X̂

F = ∏M
i=1 X̂

F
i , it holds that:

(i) The matrix A+BKaux is Schur;
(ii) X̂

F ⊆ X̂ is an invariant set for x̂+ = (A+BKaux)x̂;

(iii) û = Kauxx̂ ∈ Û for any x̂ ∈ X̂
F ;

(iv) for all x̂ ∈ X̂
F and, for a given constant κ > 0

VF
(

x̂+
)

−VF (x̂)≤−(1+κ)l(x̂, û) (16)

where VF(x̂)=∑M
i=1 V F

i (x̂[i]) and l(x̂, û)=∑M
i=1 li(x̂

[i], û[i]).

Assumption 3. Given the sets Ei and the RPI sets Zi for equa-
tions (6), there exists a real positive constant ρ̄E > 0 such that
Zi⊕Bρ̄E

(0)⊆ Ei for all i = 1, . . . ,M, where Bρ̄E
(0) is a ball of

radius ρ̄E > 0 centered at the origin.

Now we are in the position to state the main result.

Theorem 1. Let Assumptions 1-3 be satisfied and let Ei be
a neighborhood of the origin satisfying Ei ⊕ Zi ⊆ Ei. Then
the trajectory xt , starting from any initial condition x0 ∈ X

N ,
asymptotically converges to the origin, provided that the initial
reference trajectories are in X̃x0

.

Proof. See Appendix A

5. EXAMPLE

Consider a fourth-order system with two input variables. The
dynamics of the system is described by (4), where

A =

[

A11 A12

A21 A22

]

, B =

[

B1 0
0 B2

]

and

A11 =A22 =

[

0 1
−1 2

]

, A12 =−A21 =

[

0.1 0.1
0 0.3

]

, B1 =B2 =

[

0
1

]

The following constraints are set to the input signals: |u
[1]
k | ≤

2.5 and |u
[2]
k | ≤ 4. We define li(x̂

[i]
k , û

[i]
k ) = 1

2
‖x̂

[i]
k ‖

2
Qi

and

V F
i (x̂

[i]
t+N) =

1
2
‖x̂

[i]
t+N‖

2
Pi

, where P1 = P2 =diag(1,3) and Q1 =

Q2 =diag(0.4593,0.4593). Setting K1 =K2 = [1 −2], Assump-
tions 1 and 2 are verified. In the simulations, we set N = 4
and the reference trajectories are initialized by simulating the
subsystems controlled using the auxiliary control law, where

the coupling terms are neglected, that is x̃
[i]
k = (Aii +BiKi)

kx
[i]
0 ,

for k = 0, . . . , t +N − 1. A choice of the sets Zi, Ei and Wi,

−1 −0.5 0 0.5 1

−0.5

0

0.5

Z
1

−1 −0.5 0 0.5 1

−0.5

0

0.5

Z
2

−4 −2 0 2 4
−1

0

1

E
1

−4 −2 0 2 4
−1

0

1

E
2

−0.4 −0.2 0 0.2 0.4
−0.5

0

0.5

W
1

−0.4 −0.2 0 0.2 0.4
−0.5

0

0.5

W
2

Fig. 1. Sets Zi, Ei and Wi , i = 1,2, chosen in the given example. The black

dotted lines represent the real constraints exerted in the example.

i = 1,2, consistent with Assumption 3, is shown in Fig. 1
(grey ellipsoids), where the black dotted lines represent the
real constraints considered, for simplicity, in the solution of the
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constrained optimization problems i-MPC, i = 1,2.
In Fig. 2 the plots of the optimal input trajectories obtained

0 5 10
−4

−2

0

2

4
u

[1]

A

0 5 10
−4

−2

0

2

4
uhat

[1]

B

0 5 10
−4

−2

0

2

4
u

[2]

step

C

0 5 10
−4

−2

0

2

4
uhat

[2]

step

D

Fig. 2. Input trajectories. A: u
[1]
t (black solid line), input obtained with cMPC

(grey solid line), thresholds for u
[1]
t (black dotted lines). B: û

[1]
t (black

solid line), thresholds for û
[1]
t/t

(black dotted lines). C: u
[2]
t (black solid

line), inputs obtained with cMPC (grey solid line), thresholds for u
[2]
t

(black dotted lines). D: û
[2]
t/t

(black solid line), thresholds for û
[2]
t (black

dotted lines).

with the distributed MPC algorithm (dMPC) are shown and
compared with those obtained with a centralized MPC (cMPC).

Notably, at time t = 0 the constraint on û
[1]
t is active, while it

is apparent that the constraint on the real input variable u
[1]
t is

far from being violated. This clearly shows that the robustness
argument used to define the distributed MPC leads to a level
of conservativeness in the solution of the problem which is
directly proportional to the dimension of the uncertainty sets.
In Fig. 3 we compare the optimal trajectories obtained with

0 5 10
−1

−0.5

0

0.5

x
1

[1]

A

0 5 10
−1

−0.5

0

0.5

x
2

[1]

B

0 5 10

0

0.5

1

x
1

[2]

step

C

0 5 10
−0.5

0

0.5

1

x
2

[2]

step

D

Fig. 3. Controlled state variables with dMPC (black solid lines) and with

cMPC (grey solid lines), x̃
[i]
t (dotted lines) and x̂

[i]
t/t

(dashed lines). A: first

element of x
[1]
t . B: second element of x

[1]
t . C: first element of x

[2]
t . D:

second element of x
[2]
t .

dMPC with the ones obtained using cMPC. These results show
that the performance degradation of dMPC is not significant
with respect to the centralized solution.

6. CONCLUSIONS

In this paper we proposed a distributed MPC algorithm, whose
features make it suited for practical applications. For instance,
it is required limited mutual knowledge and exchange of in-
formation among neighbors, while overall convergence of the
state and the possibility to handle state and control constraints
are guaranteed. However, a number of significant details have
still to be studied in depth to completely characterize the
method (Farina and Scattolini, 2010). Among them, the need to
design a decentralized auxiliary control law with the following
properties: (a) it stabilizes both the local subsystems when ne-
glecting the interconnections and the overall large scale system;
(b) it has a Lyapunov function which basically corresponds to a
weighted sum of local Lyapunov functions. To this regard, one

can refer to milestone results (Šiljac, 1978; Sandell Jr et al.,
1978; Dashkovskiy et al., 2007).
Other aspects of interest are the computation of the sets Zi

and Ei or the definition of suitable criteria for optimal choices
of the initial reference trajectories. Note that the possibility
of satisfying the fundamental constraint (8) is subject to the
existence of sets Ei, implied by Assumption 3. The latter can
be verified a priori (Farina and Scattolini, 2010), based on the
stability properties of the decentralized auxiliary control law.
The wide potentialities of the approach have still to be fully in-
vestigated. For example, since it relies on robustness concepts,
it can also cope with model uncertainties e.g., on the mutual
effects of the state variables of adjacent subsystems.

Appendix A. PROOF OF THEOREM 1

The collective problem

Define the collective vectors x̂t = (x̂
[1]
t , . . . , x̂

[M]
t ),

x̃t = (x̃
[1]
t , . . . , x̃

[M]
t ), ût = (û

[1]
t , . . . , û

[M]
t ), wt = (w

[1]
t , . . . ,w

[M]
t )

and zt = (z
[1]
t , . . . ,z

[M]
t ). Furthermore, define the matrices

A∗ =diag(A11, . . . ,AMM) and Ã = A−A∗. Collectively, write
equations (3) and (4) as

xt+1 = A∗xt +But + Ãx̃t +wt (A.1)

x̂t+1 = A∗x̂t +Bût + Ãx̃t (A.2)

In view of (5), ut = ût +Kaux(xt − x̂t), and we collectively write
(6) as

zt+1 = (A∗+BKaux)zt +wt (A.3)

Since each i-MPC problem depends upon local variables (the

coupling terms x̃
[i]
k are fixed for k = t, . . . , t+N−1), minimizing

(9) for all i = 1, . . . ,M is equivalent to minimize

VN∗(xt) = min
x̂t ,û[t:t+N−1]

VN(x̂t , û[t:t+N−1]) (A.4)

subject to the dynamic constraints (A.2), the static constraints

xt − x̂t ∈ Z=
M

∏
i=1

Zi (A.5a)

x̂k − x̃k ∈ E=
M

∏
i=1

Ei (A.5b)

x̂k ∈ X̂ (A.5c)

ûk ∈ Û (A.5d)

for k = t, . . . , t +N − 1, and the terminal constraint

x̂t+N ∈ X̂
F (A.6)

18th IFAC World Congress (IFAC'11)
Milano (Italy) August 28 - September 2, 2011

407



Here, the cost function VN is defined as

VN(x̂t , û[t:t+N−1]) =
t+N−1

∑
k=t

l(x̂k, ûk)+VF (x̂t+N)

We also define

VN,0(x̂t) = min
û[t:t+N−1]

VN(x̂t , û[t:t+N−1]) (A.7)

subject to the dynamic constraints (A.2) and the static con-
straints (A.5b)-(A.6).

Feasibility
From Definition 1, it collectively holds that

X
N = {x : if x0 = x then ∃x̃[0:N−1], x̂0/0, û[0,N−1]

such that (A.2), (A.5) and (A.6) are satisfied}

and that, for each point of the feasibility set x ∈X
N

X̃x := {x̃[0:N−1] : if x0 = x then ∃x̂0/0, û[0,N−1]

such that (A.2), (A.5) and (A.6) are satisfied}

Assume that, at instant t, xt ∈ X
N and that x̃[t:t+N−1] ∈ X̃xt .

The optimal nominal input and state sequences obtained by
minimizing the collective MPC problem are û[t:t+N−1]/t =
{ût/t , . . . , ût+N−1/t} and x̂[t:t+N]/t = {x̂t/t , . . . , x̂t+N/t}, respec-
tively. Finally, recall that it is set x̃t+N = x̂t+N/t .

Define ûaux
t+N/t

=Kauxx̂t+N/t and compute x̂aux
t+N+1/t

according to

(A.2) from x̂t+N/t where ût+N = ûaux
t+N/t

. We obtain

x̂aux
t+N+1/t = A∗x̂t+N/t +Bûaux

t+N/t + Ãx̃t+N

since x̃t+N = x̂t+N/t , the latter is equivalent to

x̂aux
t+N+1/t = (A+BKaux)x̂t+N/t

Note that, in view of constraint (A.6) and Assumption 2,

ûaux
t+N/t

∈ Û and x̂aux
t+N+1/t

∈ X̂
F . Therefore, they satisfy con-

straints (A.5c), (A.5d) and (A.6). Also, according to Assump-
tion 2, (16) holds.
We also define the input sequence

ū[t+1:t+N]/t = {ût+1/t , . . . , ût+N−1/t , û
aux
t+N/t}

and the state sequence stemming from the initial condition
x̂t+1/t and the input sequence ū[t+1:t+N]/t i.e.,

x̄[t+1:t+N+1]/t = {x̂t+1/t , . . . , x̂t+N/t , x̂
aux
t+N+1/t}

In view of the feasibility of the i-MPC problem at time t,
we have that xt+1 − x̂t+1/t ∈ Z and x̂k/t − x̃k ∈ ∏M

i=1E for all
k = t + 1, . . . , t +N − 1. Note also that x̂t+N/t − x̃t+N = 0 ∈ E

by (15). Therefore, we can conclude that the state and the
input sequences x̄[t+1:t+N+1]/t and ū[t+1:t+N]/t are feasible at
t+1, since constraints (A.5) and (A.6) are satisfied. This proves
that xt ∈ X

N and x̃[t:t+N−1] ∈ X̃xt implies that xt+1 ∈ X
N and

x̃[t+1:t+N] ∈ X̃xt+1
.

Convergence of the optimal cost function
By optimality, VN,0(x̂t+1/t)≤ VN(x̂t+1/t , ū[t+1:t+N]/t ), where

VN(x̂t+1/t , ū[t+1:t+N]/t ) =
t+N

∑
k=t+1

l(x̂k/t , ûk/t)+VF
(

x̂aux
t+N+1/t

)

(A.8)

where it is set ût+N/t = ûaux
t+N/t

. Therefore we compute that

VN,0(x̂t+1/t)−VN,0(x̂t/t)≤−l(x̂t/t , ût/t )+ l(x̂t+N/t , û
aux
t+N/t )+

+VF
(

x̂aux
t+N+1/t

)

−VF
(

x̂t+N/t

)

(A.9)

In view of (16)

VF
(

x̂aux
t+N+1/t

)

−VF
(

x̂t+N/t

)

+ l(x̂t+N/t , û
aux
t+N/t )≤

−κ l(x̂t+N/t , û
aux
t+N/t )

and so, from (A.9), it follows that

VN,0(x̂t+1/t)≤ VN,0(x̂t/t)− l(x̂t/t , ût/t )−κ l(x̂t+N/t , û
aux
t+N/t )

(A.10)

Recall the definition of li and of matrix Ri, for all i = 1, . . . ,M,
and define R =diag(R1, . . . ,RM). Then, there exists a K∞ func-
tion αL such that l(x,u)≥αL(‖(x,Ru)‖) for all x∈R

n, u∈R
m.

This implies that l(x,u) ≥ αL(‖x‖) for all x ∈ R
n, u ∈ R

m.
Therefore

VN,0(x̂t+1/t)≤ VN,0(x̂t/t)−αL(‖x̂t/t‖)−καL(‖x̃t+N‖)

(A.11)

for all feasible sequences x̃k, k = t, . . . , t +N− 1.

Now we analyze the properties of the cost function VN∗(xt)
defined in (A.4). First, note that, by definition of x̂t/t , we have

that VN∗(xt) = VN,0(x̂t/t). By optimality, we have that

VN∗(xt+1) = VN,0(x̂t+1/t+1)≤ VN,0(x̂t+1/t)

Considering (A.11), we obtain that

VN∗(xt+1)≤ VN∗(xt)−αL(‖x̂t/t‖)−καL(‖x̃t+N‖) (A.12)

for all xt ∈ X
N and for all sequences x̃[t:t+N−1] ∈ X̃xt . This

proves that ‖x̂t/t‖→ 0 and ‖x̃t‖→ 0 as t →+∞.

Convergence of the trajectories
Let δF be a positive real number such that, if ‖x̂k‖ < δF ,
‖x̃k‖< δF , k = t, . . . , t +N and ‖ûk‖< δF , k = t, . . . , t +N −1,
then constraints (A.5b)-(A.6) are satisfied.
Define a sequence x̄k/t , k = t, . . . , t + N, stemming from the
initial condition x̄t/t = x̂t/t , whose dynamics obeys to (A.2), and
where the input is ûk = ūk/t = Kauxx̄k/t , for all k = t, . . . , t +
N − 1. Then there exists a positive real number δx < δF such
that, if ‖x̂t/t‖ < δx and ‖x̃k‖ < δx for k = t, . . . , t +N − 1, then

‖x̄k/t‖< δF , k = t, . . . , t+N, and ‖ūk/t‖< δF , k = t, . . . , t+N−
1. In fact, denoting F = A∗+BKaux, from (A.2), for i ≥ 1

x̄t+i/t = Fix̂t/t +
i−1

∑
j=0

F jÃx̃t+i− j−1 (A.13)

and ‖x̄t/t‖ = ‖x̂t/t‖ < δx < δF , ‖x̄t+i/t‖ < maxi=1,...,N ‖Fi +

∑i−1
j=0 F jÃ‖δx and ‖ūk/t‖ ≤ ‖Kaux‖‖x̄k/t‖.

Therefore, for a suitable δx, if ‖x̂t/t‖ < δx and ‖x̃k‖ < δx,
k = t, . . . , t + N − 1, then the trajectories x̄k/t , k = t, . . . , t +
N and ūk/t , k = t, . . . , t + N − 1 are feasible (since also x̂t/t

satisfies (A.5a) for the feasibility of the i-MPC problem at time
t).

Since ‖x̂t/t‖ → 0 and ‖x̃t‖ → 0 as t → +∞, there exists t̄ > 0

such that ‖x̂t/t‖ < δx and ‖x̃t‖ < δx for all t ≥ t̄, which makes
the trajectories x̄k/t , k = t, . . . , t +N, and ūk/t , k = t, . . . , t +N−
1, feasible for all t ≥ t̄. By optimality, if t ≥ t̄

VN∗(xt) = VN,0(x̂t/t)≤
t+N−1

∑
k=t

l(x̄k/t , ūk/t)+VF
(

x̄t+N/t

)

(A.14)

Recall (16). Since VF ≥ 0 by definition, one has that l(x̄k/t , ūk/t)≤
1

1+κ VF
(

x̄k/t

)

≤ VF
(

x̄k/t

)

and, from (A.14)
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VN∗(xt)≤
t+N

∑
k=t

VF
(

x̄k/t

)

(A.15)

From (A.13) and (A.15), we obtain that, for all t ≥ t̄, there exists
a K∞ function β such that

VN∗(xt)≤ β (‖(x̂t/t , x̃[t:t+N−1])‖) (A.16)

For this it follows that VN∗(xt)→ 0 as t →+∞.

Recall that x̂k/t is generated according to (A.2), stemming from
the optimal initial condition x̂t/t and inputs ûk/t . One can write
the solution to (A.2) as x̂t+i/t = vt+i/t +BiUt , where

vt+i/t = (A∗)ix̂t/t +
i−1

∑
j=0

(A∗) jÃx̃t+i− j−1,

Bi =
[

(A∗)i−1B . . . B 0 . . . 0
]

if i = 1, . . . ,N, Ut = (ût/t , . . . , ût+N−1/t). Note that, since

‖x̂t/t‖→ 0 and ‖x̃t‖→ 0 as t →+∞, also ‖vk/t‖→ 0 as t →+∞
for all k = t + 1, . . . , t + N. We also denote vt/t = x̂t/t and
B0 = 0n×Nm.

Now, consider again the function VN∗(xt):

VN∗(xt) =
t+N−1

∑
k=t

l(vk/t +Bk−tUt , ûk/t )+VF
(

vt+N/t +BNUt

)

(A.17)

From the definition of li it follows that
l(xk,uk)≥ αL(‖(xk,Ruk)‖), and so

0 ≤
t+N−1

∑
k=t

αL(‖(vk/t +Bk−tUt ,Rûk/t)‖)

+VF
(

vt+N/t +BNUt

)

≤ VN∗(xt)

Since it is proved that VN∗(xt)→ 0 as t →+∞, it follows that,
for all k = t, . . . , t +N − 1

αL(‖(vk/t +Bk−tUt ,Rûk/t)‖)→ 0

and VF
(

vt+N/t +BNUt

)

→ 0 as t →+∞. This implies that:

BUt +Vt → 0 (A.18)

as t → ∞, where

B=

[

B̄

diag(R, . . . ,R)

]

, B̄ =
[

B
T
0 . . . B

T
N

]T

and Vt = (vt/t , . . . ,vt+N/t ,0, . . . ,0). It is readily seen that, in

view of the triangular structure of B̄ and since, by definition

of Ri, i = 1, . . . ,M, rank
(

[

BT RT
]T
)

= m then rank(B) = Nm.

Since Vt → 0 as t →+∞, from (A.18) it follows that Ut → 0 as
t →+∞. Therefore ût/t → 0 as t →+∞.

Finally, recall that the state xt evolves according to the equation

xt+1 = Axt +B
[

ût/t +Kaux(xt − x̂t/t)
]

= (A+BKaux)xt +B
(

ût/t −Kauxx̂t/t

)

By asymptotic convergence to zero of the nominal state
and input signals x̂t/t and ût/t respectively, we obtain that

B
(

ût/t −Kauxx̂t/t

)

is an asymptotically vanishing term. Since

also (A+BKaux) is Schur by Assumption 2, we obtain that
xt → 0 as t →+∞. This concludes the proof of Theorem 1.
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