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Abstract Decadal climate predictions may have skill due

to predictable components in boundary conditions (mainly

greenhouse gas concentrations but also tropospheric and

stratospheric aerosol distributions) and initial conditions

(mainly the ocean state). We investigate the skill of tem-

perature and precipitation hindcasts from a multi-model

ensemble of four climate forecast systems based on cou-

pled ocean-atmosphere models. Regional variations in skill

with and without trend are compared with similarly ana-

lysed uninitialised experiments to separate the trend due to

monotonically increasing forcings from fluctuations around

the trend due to the ocean initial state and aerosol forcings.

In temperature most of the skill in both multi-model

ensembles comes from the externally forced trends. The

rise of the global mean temperature is represented well in

the initialised hindcasts, but variations around the trend

show little skill beyond the first year due to the absence of

volcanic aerosols in the hindcasts and the unpredictability

of ENSO. The models have non-trivial skill in hindcasts of

North Atlantic sea surface temperature beyond the trend.

This skill is highest in the northern North Atlantic in ini-

tialised experiments and in the subtropical North Atlantic

in uninitialised simulations. A similar result is found in the

Pacific Ocean, although the signal is less clear. The un-

initialised simulations have good skill beyond the trend in

the western North Pacific. The initialised experiments show

some skill in the decadal ENSO region in the eastern

Pacific, in agreement with previous studies. However, the

results in this study are not statistically significant

(p & 0.1) by themselves. The initialised models also show

some skill in forecasting 4-year mean Sahel rainfall at lead

times of 1 and 5 years, in agreement with the observed

teleconnection from the Atlantic Ocean. Again, the skill is

not statistically significant (p & 0.2). Furthermore, unini-

tialised simulations that include volcanic aerosols have

similar skill. It is therefore still an open question whether

initialisation improves predictions of Sahel rainfall. We

conclude that the main source of skill in forecasting tem-

perature is the trend forced by rising greenhouse gas con-

centrations. The ocean initial state contributes to skill in

some regions, but variations in boundary forcings such as

aerosols are as important in decadal forecasting.
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1 Introduction

Observations, supported by climate models, indicate that

the Earth’s climate fluctuates over a wide range of time

scales. Several regions, such as the North Atlantic and

Pacific Oceans, are characterised by variations on decadal

to inter-decadal timescales, which are manifested in sub-

stantial changes in sea surface temperature and ocean heat

storage. Through coupling with the atmosphere, these low-

frequency variations have been linked to changes in pre-

cipitation and temperature over land, hurricane activity in

the Atlantic Ocean and Indian monsoon intensity (e.g.,

Zhang and Delworth 2006; Meehl et al. 2006; Knight et al.
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2006; Smith et al. 2010). Because of their potentially large

socio-economic impact, climate predictions over interan-

nual to decadal time scales have recently gained increased

attention (Zhang and Delworth 2006; Räsänen and

Ruokolainen 2006; Ruokolainen and Räsänen 2007; Meehl

et al. 2009; Keenlyside and Ba 2010). They bridge the gap

between seasonal forecasts and century-scale climate pro-

jections for the twenty-first century and have the potential

to provide valuable information on near-future climate,

which ultimately may serve as a base to inform climate

change adaptation policy (Cox and Stephenson 2007).

Centennial-scale climate predictions are mainly deter-

mined by the prescribed boundary conditions: the scenario

chosen to describe the future emissions of aerosols and

greenhouse gases to the atmosphere, solar forcing and

volcanic activity. On shorter time scales the natural vari-

ability is larger than the trend, so that the skill of seasonal

forecasts with lead times of a month to a year is mainly due

to the initial state. Decadal predictions are intermediate to

these two: they are controlled by both the initial and

boundary conditions (Hawkins and Sutton 2009).

The importance of including realistic initial conditions

in decadal predictions has been illustrated in a number of

recent studies. Smith et al. (2007) found that initialising

with observed ocean and atmosphere conditions improves

the skill in predicting global temperature and heat content

anomalies a decade ahead. Subsequent analysis (Robson

2010) found that the regional patterns of skill presented in

Smith et al. (2007) were affected by model drifts. After

correcting for this, regional improvements through ini-

tialisation were found mainly in the North Atlantic ocean

(Robson 2010).

Other studies also found only regional improvement in

skill, mainly over the North Atlantic and Pacific Oceans.

Keenlyside et al. (2008) showed that including a sea sur-

face temperature (SST) initialisation scheme leads to

improved skill in predicting surface temperature in the

North Atlantic area, which was attributed to an improved

Atlantic meridional overturning circulation (AMOC) in the

initialised hindcasts. However, salinity was not constrained

in the initial conditions, and it is unclear whether SST

alone is sufficient to constrain the AMOC (Dunstone and

Smith 2010). The predictability over the ocean was cor-

roborated by Pohlmann et al. (2009) using ocean synthesis

fields as initial conditions. Similar results were recently

found by Smith et al. (2010); Robson (2010). For the

Pacific ocean, Mochizuki et al. (2010); Yasunaka et al.

(2011) demonstrated that proper initialisation of their

coupled atmosphere-ocean model leads to skilful predic-

tions of upper-ocean temperatures in the regions typically

affected by the Pacific Decadal Oscillation (PDO).

These investigations all used a single model, and

compared the skill over the uninitialised simulations with

the same model. Here, we investigate the hindcast skill

of a multi-model ensemble of decadal hindcasts made

within the European ENSEMBLES project (van der

Linden and Mitchell 2009). In seasonal forecasting, it

has been shown that the skill of a multi-model ensemble

frequently exceeds the skill of the best contributing

model (Hagedorn et al. 2005; Doblas-Reyes et al 2005;

Weigel et al. 2008). Unfortunately, uninitialised simula-

tions of identical models are not available. We investi-

gate the total skill of the hindcasts, and separate the skill

in a fraction proportional to a non-linear trend, and a

fraction that is not described by this simple trend. To aid

in the identification of the sources of skill we compare

the results to those of the same analysis of the multi-

model ensemble from the World Climate Research Pro-

gramme’s (WCRP) Coupled Model Intercomparison

Project phase 3 (CMIP3) multi-model dataset (Meehl

et al. 2007).

Skill in these simulations of past climate comes from the

following sources (Hawkins and Sutton 2009).

1. The rising trend of well-mixed greenhouse gases,

mainly CO2 (Keeling et al. 1976; IPCC 2007). This

trend can be predicted well on the decadal time scale.

This is included in all simulations under consideration.

2. Temporal variations in solar activity and stratospheric

aerosols due to volcanic eruptions (Robock 2000).

These variations cannot be predicted years ahead of

time (except in the case of an analysis just after a

major tropical eruption). This is included in half the

models of the the uninitialised CMIP3 ensemble but

not in the initialised ENSEMBLES hindcasts.

3. The temporal and spatial evolution of tropospheric

aerosol fields (e.g. Rotstayn and Lohmann 2002; Wild

2009). These can be predicted to some extent on the

10-year time scale based on historical data and

scenarios of emissions of aerosols and their precursors.

This is in principle included in all simulations,

although the effects differ strongly among the models

(e.g., Ruckstuhl and Norris 2009).

4. The predictable component of natural climate vari-

ability. In principle included in the initialised ENSEM-

BLES hindcasts, although deficiencies in the model

and initial state limit the skill.

We therefore see that the CMIP3 simulations include

some information that in a real forecast setting will usually

not be available (variations in solar activity and strato-

spheric aerosols), whereas the ENSEMBLES hindcasts

mainly use information that will also be available to real

initialised forecasts. From the differences in skill between

the initialised and uninitialised ensembles in the trend and

beyond the trend we attempt to distinguish between these

sources.
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2 Methods

2.1 Models

The ENSEMBLES multi-model for the decadal prediction

consists of four forecast systems denoted by ARPEGE4.6,

IFS33r1, ECHAM5 and HadGEM2. All models include the

main radiative forcings and none have flux adjustments at

the ocean surface. ARPEGE4.6 is the atmospheric model

employed by CERFACS, it was coupled to the ocean

model NEMO (Salas Mélia 2002). The weather forecast model

IFS33r1 (Bechtold et al. 2008) was used by the ECMWF at a

resolution of TL159/L62 coupled to the HOPE-E ocean model

at 1�. The ECHAM5 model (Jungclaus et al. 2006) was used by

IFM-GEOMAR coupled to ocean model MPI-OM1. UKMO

used HadGEM2-AO, an improved version of the model used

for the IPCC AR4 (Johns et al. 2006) with atmospheric reso-

lution N96/L38. Except for the ECMWF model, the forecast

systems are the same as those used for the ENSEMBLES

seasonal to annual hindcasts (Weisheimer et al. 2009).

Ten three-member ensemble hindcasts were run for

10 years starting on November 1 of 1960; 1965; . . .; 2005.

Volcanic aerosol concentrations from eruptions before the

analysis date were relaxed to zero with a time scale of one

year in ECHAM5, while the other three models did not

include any volcanic aerosol effect. In all cases, the effects

of eruptions during the hindcasts were not included to

reproduce a realistic forecasting context.

Three of the four models (the IFS33r1, HadGEM2 and

ARPEGE4.6 models) were used with a full state initiali-

sation strategy similar to the one employed in seasonal

forecasting: starting the hindcasts from an ocean analysis

that is close to the observations, with perturbations in past

wind stress and SST added to sample some of the uncer-

tainties. In contrast, IFM-GEOMAR employed anomaly

initialisation, where observed SST anomalies were added

to the model climatology and the combined SST restored

into the coupled model (Keenlyside et al. 2008). Full

details can be found in Doblas-Reyes et al (2010).

The CMIP3 ensemble used consists of 23 models (SST

was only available for 22). To cover the period up to 2010,

results from the SRES A1b scenario were used to extend the

simulations of the twentieth century (20C3M). The temper-

ature change over the last 10 years is not dependent on the

scenario chosen (Stott and Kettleborough 2002). All models

were weighted equally, i.e., first the different ensemble

members of each model were averaged, and next the model

means were interpolated to a common 2.5� grid and averaged

into a multi-model mean. Half the models (11) include vol-

canic aerosols, the majority of these also account for varia-

tions in solar radiation. This subset is denoted by CMIP3v

here. The other half that does not include volcanic aerosols

(and often solar variability) is denoted by CMIP3n.

2.2 Observations

For the global mean temperature we used the estimate

published by the National Climatic Data Center (NCDC) of

the National Oceanic and Atmospheric Administration

(NOAA) of the US (Smith et al. 2008). The results were

checked against other estimates from the Goddard Institute

of Space Science (GISTEMP, Hansen et al. 2010) and

Hadley Centre/Climatic Research Unit (CRU) (HadCRUT3,

Brohan et al. 2006) and no large differences were found

(see Fig. 1). The CO2 concentrations were taken from the

Mauna Loa series (Keeling et al. 1976) obtained from the

Earth System Research Laboratory (ESRL).

Land temperatures were taken from the National Centers

for Environmental Prediction (NCEP) GHCN/CAMS

dataset (Fan and van den Dool 2008), SST from the NCDC

ERSST V3b dataset (Smith et al. 2008). These datasets

have little coverage north of 60�N. In this area values from

the GISTEMP dataset with 1,200 km decorrelation scale

were used (Hansen et al. 2010). The large decorrelation

scale is justified for the multi-year averages investigated

here. Teleconnections were computed using the longer

CRU TS 3.0 analysis (Mitchell and Jones 2005).

Precipitation estimates were taken from the Global

Precipitation Climatology Centre (GPCC) v5 (Rudolf et al.

2010).

2.3 Verification measures

As the number of verification points is rather low (9 or 10,

depending on the lead time) we use simple measures of
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Fig. 1 Global mean 2 m temperature anomalies (Jan–Dec annual

mean relative to 1931–1960) in the CMIP3 20c3m/sresa1b experi-

ments (with/without volcanoes) compared to the NCDC, GISTEMP

and HadCRUT3 SST/T2m reconstructions. The model simulations

without volcanic aerosols are compared to observed CO2 concentra-

tion anomalies scaled by a factor that minimises the RMS difference

between the two series
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skill: the correlation coefficient r and the root mean square

error RMSE. More sophisticated probability-based mea-

sures have very large uncertainties for such a small sample

(for an example from seasonal forecasting see van Olden-

borgh et al. 2008). All forecasts have been bias corrected in

the mean, for each model separately, taking into account

the evolution of the bias with lead time. Cross-validation

was not used, note that correlation coefficients are the same

if only a single point would have been left out.

We consider three lead times: the first year (Nov–Oct)

has different characteristics from the other ones due to

important initial-condition predictability similar to that

found in seasonal forecasting. The rest of the hindcasts is

split up in equal-length near-term (years 2–5) and long-

term predictions (years 6–9). Assuming normal distribu-

tions for predictor and predictand, a one-sided Student’s

t test appropriate for a skill score shows that the p-value

p = 0.1 is reached for r = 0.44 for 10 independent data

points (year 1), whereas it has to be r = 0.47 to reach this

significance with 9 data points (years 2–5 and 6–9) (Press

et al. 1992). Serial correlations in the residuals have been

taken into account by lowering the effective number of

freedom using the lag-1 autocorrelation where this is sig-

nificantly different from zero.

2.4 Trend definition

A large part of the skill in decadal temperature forecasts is

due to the trend. To study this trend separately from vari-

ability around the trend a good definition of the trend is

required. Figure 1 shows the global mean 2 m temperature

(T2m) anomalies in the observations and in the uninitia-

lised climate model experiments for the twentieth century

and SRES A1b from 2001 onward (20c3m and sresa1b).

The simulated global mean temperature rises smoothly but

non-linearly in the mean of the 11 models without volcanic

aerosols (CMIP3n). The curve can be described very well

by the observed CO2 concentrations at Mauna Loa from

1959 onwards, scaled by the regression (11.6 ± 0.2) 10-3

K/ppm. The correlation coefficient is r = 0.994. This

indicates that over this period the global mean effect of

other anthropogenic forcings, such as aerosols, are pro-

portional to the CO2 forcing in these climate models. The

same result holds for the individual models, with of course

a larger contribution from internal variability. The regres-

sion coefficients do vary by a factor two, from (8.0 ± 0.6)

10-3 K/ppm to (18.6 ± 0.5) 10-3 K/ppm, due to the dif-

fering climate responses. In all models the global mean

temperature changes can be described well by the scaled

CO2 concentration changes. Correlations with the observed

global mean temperature are less good (r = 0.90 for the

multi-model ensemble mean). The regression of the mod-

elled global mean temperature on the observations over

1959–2009 is compatible with one (1.05 K/K, with indi-

vidual models ranging from 0.7 to 1.7 K/K).

The other 12 models in the CMIP3 database do include

the effects of large tropical volcanic eruptions (and often

variations in the solar constant). The average global mean

temperature of this subset is also shown in Fig. 1. Including

the effects of large tropical volcanic eruptions brings the

modelled temperature anomalies into closer agreement

with the observed ones (r = 0.92). The multi-model mean

of the 12 models that include volcanic aerosols is also

compatible with the observed trend 1959–2009 with a

regression of 1.11 K/K, individual model results vary from

0.9 to 1.5 K/K.

The decadal hindcasts can be expected to reproduce the

warming trend and some of the natural variability around

the trend, but not the effects of volcanic eruptions or solar

variability after the analysis date. We therefore define the

trend as the part of the signal proportional to the rising CO2

concentrations as a proxy for the smooth rise of the CMIP3

runs without volcanic aerosols. This part is determined

mainly by the boundary conditions of rising greenhouse gas

and aerosol concentrations. The residual of the fit gives the

variability around the trend. Apart from the effects of solar

variability, volcanic aerosols and tropospheric aerosols,

this also includes the natural variability of the system, part

of which may be predictable from the initial state.

For regional averages, the temperature trend has been

attributed to increased greenhouse gases (e.g., Stott 2003).

We therefore use the same trend definition on the local

scale. This does not imply that we attribute trends to

greenhouse gases on the local scale (which is hard given

the deficiencies of climate models). This trend definition

merely describes a large part of the temperature behaviour

over most of the globe (cf. Knutson et al. 2006). This is

illustrated in Fig. 2, which compares the observed local

long-term temperature trends over 1960–2010 (Fig. 2a,

estimated as the long-term regression on the CO2 concen-

tration times the rise in this concentration over 1960–2010)

with the standard deviation of running 4-year mean resid-

uals around this trend (Fig. 2b). It is clear that the trend is

much larger than the 4-year standard deviation except in

areas with low trends (North Pacific, North Atlantic).

Fig. 2c shows the part of the 4-year standard deviation that

is not explained by uncorrelated annual variability. Similar

results based on climate model ensembles were found by

Collins (2002); Boer (2004); Pohlmann et al (2004).

Given the size of the trend in comparison with other

variability in temperature predictions, we analyse the trend

separately from the variability around the trend. The trend

is mainly a forced signal but does include climate vari-

ability periods of Oð100Þ years or more (twice the 60-year

hindcast period). The variability around the trend includes

the effects of initialisation in the ENSEMBLES ensemble,
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but also the effects of forcings such as aerosols that are not

proportional to the trend. An attempt will be made to dis-

tinguish the effects of time- and space-varying forcings

from effects of the initialisation by comparing the skill

beyond the trend in the initialised ENSEMBLES ensemble

by the skill of the uninitialised CMIP3 ensemble using the

same trend definition.

In contrast to temperature, for precipitation hindcasts the

trend is not larger than natural variability and we only

consider the full hindcast skill.

The exact definition of the trend does not affect the

results. The fluctuations in the forecasts and observations

are so much larger than the non-linearities in the trend that

other choices, such as the modelled or observed global

mean temperature (used in e.g. van Oldenborgh et al.

2009a) or even a linear trend over this period, give

essentially the same results. We prefer the regression on

the CO2 concentration on physical grounds and because we

expect that it gives better extrapolations into the future than

a linear trend definition.

Note that this procedure does not attempt to assess the

effect of initialisation on the hindcasts, which would require

runs with the same models without initialisation (no-assim)

that are not available for the ENSEMBLES experiments. We

also do not attempt to separate forced variability from natural

variability, which is very hard (Solomon et al. 2011). Finally

we avoid the assumption that the trends are correctly mod-

elled by climate models. The trends are strong enough now to

identify problems with this assumption (e.g., Stainforth et al.

2005; Knutson et al. 2006; van Oldenborgh et al. 2009a). In

a comparison of an initialised run with a no-assim run, a trend

bias gives rise to a bias correction that varies as a function of

both lead time and analysis time. At lead time zero, it is small

as the trend in the analyses is close to the observed trend, but

as a function of lead time the gap between the observed trend

and modelled trend increases as the model is influenced less

by the initial state and more by the forced response. Such a

bias structure is very hard to correct for (Robson 2010).

A skilful simple statistical forecast model would be to

extrapolate the non-linear trend up to now given a CO2

concentration scenario. This analysis method addresses the

question whether climate models can do better than this

baseline forecast.

3 Global mean temperature

First we consider hindcasts of the global mean temperature

anomalies relative to their respective 1961–1990 clima-

tologies. The model hindcasts of global mean T2m are

compared to the NCDC global mean SST/T2m estimate in

Fig. 3a–c including the trend. There is good skill in the

total global mean temperature at all three lead times with

correlations coefficients well above 0.9 for the ensemble

mean. The hindcast trend is compatible with the observed

trend except in the first year, when it is slightly lower. The

skill scores are comparable to those of the CMIP3

ensemble with volcanoes included (Fig. 3d–f). The skill is

obviously mainly due to the trend.

Figure 4a–c show the skill after subtracting the trend as

defined in Sect. 2.4 in both the ENSEMBLES hindcasts

and observations, Fig. 4d–f show the same for the CMIP3

ensembles, both the subset that includes solar variability

and volcanic aerosols and the subset that does not include

these. The skill in the variations beyond the trend is still

sizeable in year 1, r & 0.8 both in the initialised ensemble

and the uninitialised one. In the initialised hindcasts this

Fig. 2 a Observed temperature trend between 1960 and 2010,

computed as the difference in CO2 levels between 1960 and 2010

times the regression of temperature on the CO2 concentration over all

data. b Standard deviation of 4-year running means of the residual of

this regression. c As in b minus the contribution from uncorrelated

interannual variability. Lighter colours indicate areas where this is not

significantly different from zero (p [ 0.1)

G. J. van Oldenborgh et al.: Decadal prediction skill in a multi-model ensemble 1267

123



can be understood as the effects of persistence of the global

SST combined with the evolution of ENSO, which can be

predicted well for the half year starting in November

(r = 0.94 ± 0.04, see also van Oldenborgh et al. 2005a)

and has a large influence on the global mean temperature

3–6 months later (r & 0.7, see e.g. Thompson et al. 2008).

The CMIP3v ensemble profits from the inclusion of vol-

canic aerosols, knowledge of which is not always available

in real forecasts. This is confirmed by the absence of skill

beyond the trend in the CMIP3n ensemble.

The multi-model initialised ensemble also does not

show any skill in years 2–5 beyond the trend. The positive

skill in years 6–9 is not significant at p \ 0.1. The negative

and positive skill scores for years 2–5 and 6–9 can be

interpreted as random fluctuations around a low correla-

tion. In contrast the CMIP3v ensemble still shows positive

correlations due to the influence of solar variability and

volcanic aerosols on the global mean temperature.

These results do not depend on the definition of the

trend. Subtracting a linear trend again gives a negative

correlation skill score for the initialised hindcasts in years

2–5 and the same skill score for years 6–9.

The low skill scores beyond the first year can be

understood from the main causes of the variability of the

global mean temperature around the trend. The largest

fluctuations in Fig. 1 are due to cooling effects after large

volcanic eruptions (Robock 2000). In the 1960–2009 time

frame these are the eruptions of Gunung Agung (1963), El

Chichón (1982) and Pinatubo (1991). These eruptions

cannot be predicted with a lead time of years and are

therefore not included in the hindcasts.

Another factor that strongly affects the 4-year averaged

global mean temperature in all simulations is the temperature

variation in Asia and North America north of 30�N. The

4-year smoothed detrended temperature in this area is

strongly correlated with the detrended global mean temper-

ature (r = 0.7 over 1960–2010). The low-frequency vari-

ability of this temperature is dominated by late winter

(January–March). This variability cannot be predicted well by

these models beyond the trend (cf. Fig. 5c, d). Variability in

these regions is mainly driven by the atmospheric variability

described by the Arctic Oscillation, Scandinavia Pattern and

Pacific-North America Pattern, which are to a large extent

driven by the chaotic nature of the mid-latitude westerly flow.
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Fig. 3 Comparison of predicted global mean temperature anomalies

(w.r.t. 1961–1990) with observed ones (NCDC) of the ENSEMBLES

decadal hindcast experiments (a–c) and the CMIP3 ensemble subsets

with (CMIP3v) and without (CMIP3n) volcanoes (d–f) for year 1 (a,

d), years 2–5 (b, e) and years 6–9 (c, f). The red line denotes the

best fit to the multi-model (a–c) and CMIP3v (d–f) data, the dashed

line the ideal 1:1 agreement. The correlation coefficient, RMSE and

regression a (with 1r error) are given for the multi-model ensemble

mean in (a–c) and for the CMIP3v mean in (d–f). The CMIP3n,v

ensembles are sampled at the same years as the ENSEMBLES

hindcasts
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4 Local temperature forecast skill

Having established that the ENSEMBLES multi-model

ensemble shows limited skill in the global mean tempera-

ture beyond the first year we next consider the spatial

distribution of forecast skill. For sea points we verify SST

against ERSST v3b, land point T2m is verified against the

GHCN/CAMS dataset and polar regions (south of 60�S,

north of 60�N) against the GISTEMP 1,200 km T2m

dataset. In Fig. 5 we show the correlation skill in the total

temperature forecasts and the skill after subtracting the

local trends in the observations and models. (Using the

model T2m fields over sea instead of SST does not make a

noticeable difference.)

The skill of the T2m/SST forecasts including trends is

shown in Fig. 5a, b. The correlation coefficients have

values of 0.5–0.8 over most of the globe. These values are

statistically significant at p \ 0.1. Exceptions are SST in

the North Pacific and Southern Oceans and T2m in parts of

the Andes where other datasets have no data. These are all

regions with low trends in the observational datasets used.

The next question is how much of the skill is due to

factors beyond the trend. We subtract local trends (i.e., the

local regressions against CO2 concentration) from both the

hindcasts and the observations, and recompute the skill

scores. (Note that the trends are not necessarily the same in

the model and the observations, the trends are compared in

Sect. 5.) The correlation coefficients are much lower

without trends, see Fig. 5c,d.

Statistically, the correlation in these maps is on average

positive. We computed the field significance of this signal

to be p & 0.1 using the method of Sterl et al. (2007),

which entails estimating the number of degrees of freedom

from the autocorrelation of the maps of local p-values

under the assumption that this autocorrelation is the same

over the whole globe. The number of degrees of freedom is

then 4p/(pa2) with a the decorrelation scale in radian.

A Monte Carlo test showed that this procedure gives

comparable results to the method of (Livezey and Chen

1983) that requires a time-dependent field. Our method

here results in an estimate of Oð200Þ degrees of freedom,

which together with the mean and standard deviation give

p & 0.1 with a one-sided t test.

However, the signal to noise ratio for each individual

region is so large that one cannot identify regions of skill

based on statistics alone. There are almost as many regions

with negative correlation coefficients as there are regions

with positive ones. Instead, we focus on two well-known

areas of low-frequency variability that have also been

identified in long climate model runs (Collins 2002; Boer

2004; Pohlmann et al. 2004). There is positive skill over

the North Atlantic (significantly in years 2–5) and the

eastern subtropical Pacific in years 6–9. Both these signals

are stronger than persistence (Fig. 5e, f), which has been

computed from the detrended observational datasets over

the same time period 1960–2009. Other areas of positive

skill can at this stage not be distinguished from random

fluctuations.
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Fig. 4 As Fig. 3 but with the trend subtracted
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The positive skill scores can either be due to the ini-

tialisation of the hindcasts or to forcings that are not pro-

portional to the smooth rise of the CO2 concentration.

Figure 6 shows the same separation between trend and

other variability for the CMIP3 multi-model ensemble,

separated in the subsets with and without volcanic aerosols.

Although consisting of different models, it shows areas in

which climate models show skill including the trend (a, b)

and in the variability around the trend (c, d). In the latter

case, the highest skill scores are obtained in the western

North Pacific, western North Atlantic and eastern Europe/

Middle East, but only when volcanic aerosols were inclu-

ded in the simulation. Intriguingly, the location down-

stream of major aerosol emitting areas (East Asia, North

America and Europe) suggests that the effect of tropo-

spheric aerosol forcing leads to skill in these areas rather

than the stratospheric volcanic aerosols. Skill in the

northern North Atlantic is lower than in the initialised runs

and may be related to the effect of volcanic eruptions on

the overturning circulation (Stenchikov et al. 2009). The

negative skill in the tropical Pacific Ocean is also unex-

pected given the reported influence of solar forcing in this

area (Meehl and Arblaster 2009). An investigation which

aspect of the forcing is responsible for these signals in the

CMIP3 ensemble is beyond the scope of this article.

Comparing Figs. 5c, d with 6c, d, the initialised

ensemble shows more skill than the uninitialised ones in

the northern North Atlantic (years 2–5) and the eastern

Pacific (mainly years 6–9). We discuss these region in

Sects. 6 and 7 respectively.

5 Trends

From Fig. 5 we concluded that in most of the world the

skill in temperature hindcasts of the ENSEMBLES multi-

model ensemble is due to the trend over 1960–2009. A high

correlation coefficient between observed and modelled

trends does not indicate accurately how well the trends are

represented in these models: as long as there is a trend in

Fig. 5 Correlation skill of

T2m/SST hindcasts for years

2–5 (a, c) and years 6–9 (b,

d) including the trend (a, b) and

the skill that is left after

subtracting the local trends

(regressions on the CO2

concentration) of both model

and observations (c, d). For

comparison the 5- and 9-year

lag correlations of 4-year

averaged detrended

observations are given (e, f).
Correlations that are not

significant at p \ 0.1 are plotted

in light colours. SST: ERSST

v3b from NCDC, T2m: GHCN/

CAMS from NCEP, polar

regions: GISTEMP (1200 km

decorrelation)
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both that is larger than the noise the correlation coefficients

will be high. A direct comparison of the modelled and

observed trends over the hindcast period, defined as a

regression of the nine or ten data points on the CO2 con-

centration, is given in Fig. 7.

We also compare the trends in the ENSEMBLES dec-

adal forecast models with those in the CMIP3 multi-model

ensemble mean. Again, these figures do not depend

strongly on the definition of the trend. A linear trend gives

virtually the same results, as the variability per grid point is

much larger than the difference between a linear increase

and the accelerating increase implied by using the CO2

concentration.

The trends are fairly similar in years 2–5 and 6–9 (cf.

Fig. 7a, b). The differences with observed trends are shown

in Fig. 7e, f). For comparison we also show the trend in the

full CMIP3 ensemble multi-model mean, and its deviation

from the observed trend over the same period. The subsets

with and without volcanoes have similar trends.

The agreement with the observed trends is similar in the

initialised ENSEMBLES ensemble and the uninitialised

CMIP3 ensemble mean outside the polar regions: the

spatial standard deviations of the trend differences aver-

aged over the ocean 60�S–60�N are indistinguishable

between the three maps Fig. 7e,f, g. The same holds for the

spatial standard deviations over the land trend biases. The

patterns are also similar, with a common failure to repro-

duce the absence of a heating trend in the North Pacific

Ocean and around Florida. Over land, the lack of temper-

ature rise over central North America is not simulated,

whereas temperature trends in Europe (van Oldenborgh

et al. 2009a) and China are underestimated by all ensem-

bles. Note that the IFS33r1 model does not include a sea

ice model, which can explain part of the poor performance

of the initialised ensemble in the Arctic.

We conclude that the initialised ENSEMBLES hindcasts

do not simulate the observed temperature trends better or

worse than the uninitialised CMIP3 hindcasts, except in the

Arctic. The poor representation of this main predictable

signal is cause for caution in using climate models for local

climate forecasts.

6 Atlantic multi-decadal oscillation

Sea surface temperature in the North Atlantic shows vari-

ability on time scales of 20 years and more, known as the

Atlantic Multi-decadal Oscillation (AMO, Schlesinger and

Ramankutty 1994). On these time scales, global warming

also affects North Atlantic SST. In model studies the effect

of AMO fluctuations on global mean temperature is fairly

small; van Oldenborgh et al (2009b) find a maximum

correlation of 0.25 in the MPI ECHAM5/OM-1 model and

in the CCSM 3 control run the correlations are even lower

(Hofer et al. 2011).1 We therefore use the AMO index

proposed by Trenberth and Shea (2006): SST anomalies

averaged over EQ–60�N, 80–0�W minus global SST

anomalies averaged over 60�S–60�N. By coincidence, this

index is also almost orthogonal to the global mean tem-

perature on the short period 1960–2009 and the response of

Fig. 6 Correlation skill over

1960–2010 of 4-year running

mean T2m/SST in the CMIP3

multi-model ensemble including

volcanic aerosols (a) and

without volcanic aerosols (b).

Panels (c, d) the same after

subtraction of local trends. Cf.

Fig. 5. Correlations that are not

significant at p \ 0.1 are plotted

in light colours

1 Priv. Comm., C. C. Raible
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the full CMIP3 ensemble. This justifies a posteriori the

method to separate the trend from the variability described

in Sect. 2.4 for this region, even in the presence of multi-

decadal variability. Note that no bias or trend is subtracted

beyond the definition of the AMO index itself.

Figure 8 shows the AMO observations and hindcasts.

The interannual variability of the AMO is not captured well

in the first year of the decadal forecasts. In contrast, the

slower variations are simulated well in years 2–5 (r =

0.74, p & 0.03 taking serial correlations into account)

and years 6–9 (r = 0.57, p & 0.05). These numbers are

similar to the ones obtained by Pohlmann et al. (2009)

(r & 0.7 for years 1–5, 0.6 for years 5–10). The amplitude

of the variations is underestimated by the multi-model

mean, however. The uninitialised CMIP3 ensemble cap-

tures some of the cooling trend around 1960, but does not

capture the warming trend of the last two decades. Con-

sequently, the correlation is much lower than for the ini-

tialised ensemble, -0.1 for all years 1960–2010 in the full

ensemble, 0.4 for the subset that includes volcanic aerosols

Fig. 7 The SST/T2m trend

[K/ppm] in the ENSEMBLES

multi-model ensemble years

2–5 (a) and 6–9 (b), for the

observations (c) and for the full

CMIP3 multi-model mean over

1960–2010 (d, T2m only). The

difference between the

ENSEMBLES multi-model

trend and the observed one is

shown in (e, f), the same for the

CMIP3 ensemble 1960–2010 in

(g). Grid boxes in which the

trend (difference) is not

significant at p \ 0.1 are plotted

in light colours
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(CMIP3v). The difference is explained by the subset that

does not include volcanic aerosols (CMIP3n) simulating a

decline of the AMO index throughout the interval.

From theoretical arguments and model analyses it is

expected that the skill in forecasting the AMO is to some

extend based on predictable fluctuations of the Atlantic

Meridional Overturning Circulation (AMOC) (Delworth

and Mann 2000; Knight et al. 2005; Dijkstra et al. 2006).

However, direct observations of the AMOC are only

available since 2004. An intercomparison of the AMOC

hindcasts does not show much coherency beyond a few

years (not shown). This may explain the relatively short

lead time of skilful forecasts compared with the time scales

of the AMO.

The predictability of the AMO with a lead time of

around five years opens the possibility to regional decadal

forecasts beyond the trend using AMO teleconnections,

although the combination of imperfect skill in the AMO

forecast and the weakness of the teleconnections (r \ 0.5

in all but a few land areas) may not lead to useful skill. An

estimate of AMO teleconnections over 1901–2006 with a

4-year running mean is shown in Fig. 9a. The comparison

with Fig. 5c shows that the positive skill in northern Africa

and the Middle East may be related to the AMO telecon-

nection to these regions, although the Middle East also

shows a clear aerosol signature (Fig. 6c, d). The AMO

teleconnection to central and eastern US temperature does

not lead to skill in temperature hindcasts in these regions

in the initialised ENSEMBLES multi-model ensemble.

Attributing skill to teleconnections requires a much more

detailed analysis of the physical mechanisms, and is

beyond the scope of this study.

7 Decadal ENSO

To investigate the skill in forecasting low-frequency vari-

ability in the Pacific Ocean we define a decadal ENSO index

as the normalised principal component of the first EOF of

detrended SST in the region 50�S - 50�N, 100�E - 70�W

for each model separately. For year 1 we take 12-month

averaged (Nov–Oct) SST, for years 2–5 and 6–9 we taken

4-year running means of Nov–Oct SST before computing

the EOFs. The EOFs are taken to be the eigenvalues of the

correlation matrix rather than the covariance matrix, i.e., the

SST variability is normalised at each grid point prior to

the computation. The resulting patterns are similar to the

Interdecadal Pacific Oscillation (Power et al. 1999), but not

constrained to be orthogonal to the trend by construction.

The regressions of the associated time series on SST are

shown in Fig. 10 for the observations and the four decadal

forecast models.
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Fig. 8 Comparison of predicted AMO index with observed ones

based on ERSST v3b for year 1 (a), years 2–5 (b) and years 6–9 (c).

Panels d and e show the same for the CMIP3 ensemble with and

without volcanic aerosols. No bias or trend correction has been

applied. The correlation coefficient, RMSE and regression a (with 1r
error) are given for the ENSEMBLES multi-model ensemble mean in

(a–c) and for the CMIP3 models with volcanic aerosols in (d–e)
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For one-year means this decadal ENSO index is highly

correlated to the Niño3.4 index (r & 0.9). For 4-year

means the pattern becomes much wider meridionally and

the correlation drops to r & 0.6. The decadal ENSO index

of years 2–5 and 6–9 is more similar to the Pacific Decadal

Oscillation (r & 0.8). Like the PDO, our decadal ENSO

index is almost orthogonal to global warming as both are

characterised by a dipole SST pattern. The orthogonality

also holds for the short verification period 1960–2009.

For the ENSEMBLES initialised multi-model ensemble,

we computed the EOFs for each model separately in order

to capture the differences in the patterns of the different

models. The normalised time series were then averaged

into a multi-model mean. For the CMIP3 ensembles we

Fig. 9 Observed a AMO and b decadal ENSO teleconnections to

temperature based on correlations of the AMO and decadal ENSO

indices defined in the text with detrended CRU TS 3 temperatures,

ERSST v3b SST and GISTEMP 1,200 km (polar regions) using a

4-year running mean over 1901–2006. The detrending was against the

observed CO2 distribution. Areas with correlations with p \ 0.1 are

denoted by light colours

Fig. 10 First EOF of 4-year

mean detrended Pacific SST

(50�S–50�N, 100�E–70�W) in

a the observations (ERSST), the

b IFS33r1, b HadGEM2,

c ARPEGE4.6 and d ECHAM5

decadal forecast models at years

2–5. The accompanying

Principal Components (time

series) have been normalised to

one
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used the observed pattern to define time series of decadal

ENSO variability and checked the results with the patterns

of the initialised ensemble, Fig. 10.

Figure 11 compares the decadal ENSO indices in the

hindcasts and observations. As ENSO can be predicted

well for the first half year from November, the good skill

(r = 0.67) of the initialised models in year 1 is not unex-

pected. In years 2–5 and 6–9 there is an indication of

possible skill, r & 0.4, in agreement with Fig. 5c, d. Sta-

tistically this is not significant at p \ 0.1, but it is in

agreement with other reports of skill in decadal hindcasts

(Mochizuki et al. 2010; Yasunaka et al. 2011). As expec-

ted from Fig. 6c, d, the uninitialised models do not show

skill in simulating this Pacific-wide pattern with correlation

coefficients ranging from -0.2 to ?0.1 depending on the

pattern used. The subset with volcanic aerosols does not

show more skill (-0.25 to ?0.25).

The strongly positive skill scores over Alaska in Fig. 5c, d

is probably for only a small part due to the teleconnection

from decadal ENSO (r & 0.5 in the observations, Fig. 9b)

combined with the low skill in predicting decadal ENSO

itself. The high skill score results from the correct hind-

casts of only three cold events that coincided with extended

La Niña events, indicating that chance fluctuations played a

major part.

Conversely, some of the the negative skill scores in the

western Pacific can be understood from the difference of

modelled decadal ENSO patterns with he observed ones. In

the observations SST in this area is strongly anti-correlated

to the eastern Pacific (Fig. 10a). Most climate models

extend the equatorial cold tongue too far into the central

Pacific (e.g., Guilyardi 2006) and hence represent ENSO

activity too far to the west (e.g., van Oldenborgh et al.

2005b). In all ENSEMBLES models this results in a dec-

adal ENSO pattern in which the region positively corre-

lated to the eastern Pacific extends all the way to the

tropical West Pacific, three even into the maritime conti-

nent (Fig. 10b–e). A point-wise SST verification hence

produces negative correlations in these areas. Taking

model pattern biases into account (e.g., with a procedure as

in Coelho et al. 2006 or Shongwe et al. 2006) could

transform them into positive scores.

8 Local precipitation forecast skill

The skill of the ENSEMBLES multi-model ensemble

precipitation hindcasts is shown in Fig. 12a, b. In precipi-

tation the trends are less important than in temperature as

they are smaller than the natural interannual and decadal

variability over 1960–2009, with the exception of small

areas such as Scandinavia, northern Canada and the south

coast of West Africa. We therefore show the total skill

without subtracting the trends first (Fig. 13).
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Fig. 11 Comparison of predicted decadal ENSO index with observed

ones based on ERSST v3b for year 1 (a), years 2–5 (b) and years 6–9

(c). Panels (d) and (e) show the same for the CMIP3 ensemble with

and without volcanic aerosols. The correlation coefficient, RMSE and

regression a (with 1r error) are given for the multi-model ensemble

mean in (a–c) and for the CMIP3 models with volcanic aerosols in

(d–e)
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The skill scores are compared with teleconnections of

4-year averaged precipitation with the AMO and decadal

ENSO over the period 1901–2007 from observations.

Given the skill in forecasting the AMO and to some extent

decadal ENSO, one expects that the areas with positive

(orange/red) or negative (green/blue) teleconnections in

Fig. 12c,d will translate to some extent into areas of

positive (orange) skill in Fig. 12a, b. As was argued in the

case of temperature teleconnections, the added effects of

the unexplained variance in the AMO forecast and the

weakness of the AMO teleconnection implies that one

should not expect correlations higher then roughly 0.5,

which are both at the edge of statistical significance in the

limited data sample and of limited practical value. For

comparison, the same skill scores are also plotted for the

uninitialised CMIP3v and CMIP3n ensembles (Fig. 12e, f).

In the Sahel there is positive but pointwise not significant

skill in hindcasting rainfall both in years 2–5 and 6–9, both

in the initialised ENSEMBLES hindcasts and in the unini-

tialised CMIP3v ensemble with volcanic aerosols. The

ENSEMBLES multi-model mean area-averaged rainfall

over 10�-20�N, 18�W-20�E has a correlation skill of

r = 0.38 (p & 0.2 taking serial correlations into account)

in years 2–5, r = 0.46 ± 0.20 (p & 0.1) in years 6–9. For

the CMIP3v ensemble with volcanic aerosols we obtain

0.54-0.28
?0.13 for 4-year means 1960–2010, which is signifi-

cantly different from zero at p \ 0.06. The CMIP3n

ensemble without volcanic aerosols however does not show

any skill (r = - 0.11-0.11
?0.36). The errors are 1r errors

determined with a non-parametric bootstrap method taking

the serial correlations into account.

Although not or barely statistically significant, com-

bined with the expected physical teleconnection to the

AMO (e.g., Zhang and Delworth 2006; Ting et al. 2009)

and PDO (Fig. 12c,d) and the effect of aerosol cooling of

SST (Rotstayn and Lohmann 2002) these numbers indicate

that probably 4-year mean Sahel rainfall is to some extent

predictable with a lead time of one year with a relatively

low skill. The slightly higher skill in the CMIP3v ensemble

including volcanic eruptions cannot be regarded as evi-

dence for predictability as these eruptions are not predict-

able and the CMIP3n ensemble without them does not

Fig. 12 Correlation skill of

precipitation hindcasts for years

2–5 (a) and years 6–9 (b) over

1960–2007. This is compared

with observed teleconnections:

the correlation of 4-year

averaged precipitation with the

AMO index (c) and decadal

ENSO index (d) over

1901–2007. Also shown are the

corresponding skill maps of the

full CMIP3 ensemble (e) and

the subset implementing

volcanic aerosols (f) over

1960–2010. Areas in which the

correlation were not significant

at p \ 0.1 are plotted in light
colours. Precipitation is taken

from the GPCC v5 analysis

1901–2007, demanding at least

one observation per 2.5�
grid box
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show any skill. However, there are other differences

between the three ensembles that make it impossible to

draw firm conclusions. Only experiments with the same

multi-model ensemble with and without different forcings

and initialisation can show where the skill comes from.

A good independent check on the skill would be to perform

hindcasts in the 1950s, although the limited ocean data for

this period is problematic. A simulation of the high

anomalies in that decade would strengthen confidence in

the skill.

The skill is even lower in the central and western USA,

where we expect predictability due to weak teleconnec-

tions to the AMO and stronger ones to decadal ENSO

(McCabe et al. 2004). In spite of the fact that these tele-

connections were also active over the period 1960–2009,

the multi-model ensemble does not show skill in these

regions, nor in other regions with AMO or decadal ENSO

teleconnections.

In Scandinavia there is a strong trend in the observed

precipitation (0.15 ± 0.03 %/ppm averaged over the land

points north of 60�N and west of 30�E over 1901–2007)

that is reproduced to some extent by the ENSEMBLES

(0.05 ± 0.02 %/ppm in years 2–5, 0.09 ± 0.02 %/ppm

in years 6–9) and CMIP3 (0.07 ± 0.01 %/ppm) multi-

model means, giving rise to positive skill. The underesti-

mation of the trend in this area is common to most climate

models (Zhang et al. 2007; Bhend and von Storch 2008).

To summarise, there seems to be some skill in fore-

casting 4-year averaged Sahel rainfall with a lead time of

one year, but it is unclear whether this is due to the ocean

initialisation or the aerosol forcing. In Scandinavia the

trend in (winter) precipitation gives skill, although the

magnitude of the trend is underestimated. Other regions do

not show skill in the precipitation hindcasts of this

ensemble.

9 Conclusions

A 4-model 12-member ensemble of 10-year hindcasts has

been analysed for skill in SST, 2 m temperature and pre-

cipitation. The main source of skill in temperature is the

trend, which is primarily forced by greenhouse gases and

aerosols. This trend contributes almost everywhere to the

skill. Variation in the global mean temperature around the

trend do not have any skill beyond the first year. However,

regionally there appears to be skill beyond the trend in the

two areas of well-known low-frequency variability: SST in

parts of the North Atlantic and Pacific Oceans is predicted

better than persistence. A comparison with the CMIP3

ensemble shows that the skill in the northern North Atlantic

and eastern Pacific is most likely due to the initialisation,

whereas the skill in the subtropical North Atlantic and

western North Pacific are probably due to the forcing.
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Fig. 13 Comparison of predicted Sahel rainfall anomalies (mm/dy)

against observed anomalies (GPCC V5 and monitoring analysis)

for year 1 (a), years 2–5 (b) and years 6–9 (c). Panels d and e show

the same for the CMIP3 ensemble with and without volcanic aerosols.

The correlation coefficient, RMSE and regression a (with 1r error)

are given for the ENSEMBLES multi-model ensemble mean in

(a–c) and for the CMIP3 models with volcanic aerosols in (d–e)
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In the Atlantic, the ensemble shows clear skill in pre-

dicting an AMO index that is orthogonal to the trend

in years 2–5, and reasonable skill in years 6–9. The skill in

decadal ENSO is lower, not statistically significant, but in

agreement with other studies. The CMIP3 ensemble shows

less skill in both these indices. There is also an indication

of skill in hindcasting decadal Sahel rainfall variations,

which are known to be teleconnected to North Atlantic and

Pacific SST. The uninitialised CMIP3 ensemble that

includes volcanic aerosols reproduces these variations as

well, but the models without volcanic aerosols do not. It

therefore remains an open question whether initialisation

improves predictions of Sahel rainfall.

The modelled trends agree well with observations in the

global mean, but the agreement is not so good at the local

scale.

These experiments are only a first step towards decadal

forecasting using non-optimised methods from seasonal

forecasting. The skill assessment does not take into account

the considerable biases and drift of the models. It is based

on only nine or ten data points and hence suffers from large

statistical uncertainties. Larger ensembles sizes per model

and more frequent and earlier starting dates will be

required to characterise the skill of decadal forecasts better.

The verification of decadal hindcasts can then be used to

improve the climate models, their forcings and initialisa-

tion procedures to give more reliable and skilful climate

forecasts.
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