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[1] Three 10 year ensemble decadal forecast experiments have been performed with the
European Centre for Medium‐Range Weather Forecasts coupled forecast system using an
initialization strategy common in seasonal forecasting with realistic initial conditions.
One experiment initializes the ocean in a standard way using an ocean‐only simulation
forced with an atmospheric reanalysis and with strong relaxation to observed sea surface
temperatures. The other two experiments initialize the ocean from a similar ocean‐only run
that, in addition, assimilates subsurface observations. This is the first time that these
experiments were performed. The system drifts from the realistic initial conditions toward
the model climate, the drift being of the same order as, if not larger than, the interannual
signal. There are small drift differences in the three experiments that reflect mainly the
influence of dynamical ocean processes in controlling the adjustment between the
initialized state and the model climate in the extratropics. In spite of the drift, the
predictions show that the system is able to skillfully predict some of the interannual
variability of the global and regional air and ocean temperature. No significant forecast
quality benefit of the assimilation of ocean observations is found over the extratropics,
although a negative impact of the assimilation of incorrect expendable bathythermograph
profiles has been found for the global mean upper ocean heat content and the Atlantic
multidecadal oscillation. The results illustrate the importance of reducing the important
model drift and the ocean analysis uncertainty.
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1. Introduction

[2] Climate change projections and near‐term climate pre-
diction (also known as decadal prediction) attempt to satisfy
a growing demand for climate information for this century.
It is well established that, on the basis of knowledge of the
initial conditions, important aspects of regional climate are
partially predictable up to a year ahead. Predictability at this
time scale is primarily, though not solely, associated with
the El Niño Southern Oscillation (ENSO). While climate
forecasting is currently addressing the problem of climate
prediction up to one year [e.g., Doblas‐Reyes et al., 2009;
Weisheimer et al., 2009], decadal prediction focuses on time
scales of several years to a few decades [e.g., Smith et al.,
2007; Meehl et al., 2009].

[3] There have been attempts to predict interannual‐to‐
decadal climate variations using empirical models that take
into account changes in boundary conditions, i.e., atmo-
spheric composition and solar irradiance, as well as internal
variability [e.g., Lean and Rind, 2009; Hawkins et al., 2011].
Others [e.g., Räisänen and Roukolainen, 2006; Roukolainen
and Räisänen, 2007; Laepple et al., 2008] have employed
the radiatively forced climate projections performed as part
of the Third Coupled Model Intercomparison Project
(CMIP3) [Meehl et al., 2007], from where the part of the
simulations corresponding to the first few years of the
twenty‐first century were used to issue climate predictions
for the near term. Near‐term climate will be considered in
this paper as the 10–30 year period counting from a refer-
ence time, which in a forecast will correspond to the start of
the prediction. As a slightly more ambitious alternative,
dynamical decadal prediction explores the ability of the type
of climate model employed in the Intergovernmental Panel
on Climate Change (IPCC) assessments to predict regional
climate changes in the near future by exploiting both initial‐
condition information and changes in the radiative forcing.
This approach aims to take advantage of the predictability of
natural climate variability to make predictions.
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[4] The relative importance of the initial conditions in
climate prediction is likely to vary with the time scale, but
has been assumed to be a continuous function that decreases
with forecast time, becoming negligible after several dec-
ades [Hawkins and Sutton, 2009b]. Ocean initial conditions
are more relevant than variations in atmospheric composi-
tion in seasonal forecasting [Doblas‐Reyes et al., 2006],
except perhaps after an explosive volcanic eruption, while
atmospheric composition has primary importance after
several decades [Hawkins and Sutton, 2009b]. For the time
scales ranging between a few seasons to a couple of dec-
ades, previous work [Smith et al., 2007, 2010; Keenlyside
et al., 2008; Pohlmann et al., 2009; Mochizuki et al., 2010]
has shown evidence that the initial state of the climate
system can influence climate forecasts a decade or more
ahead. Hence, for any decadal prediction system, it is critical
to determine to what measure initialization improves pre-
dictions beyond the level achievable by simulating the
response to naturally and anthropogenically forced climate
change alone. However, the question that is addressed in
this manuscript is how the quality of uncertain initial con-
ditions, in particular those of the ocean, impacts on forecast
quality.
[5] The strategy followed for the initialization of decadal

predictions has so far been different from that used in sea-
sonal forecasting. For instance, Smith et al. [2007, 2010]
and Mochizuki et al. [2010] used the so‐called anomaly
initialization method, where ocean observations are assimi-
lated in the form of anomalies into the coupled model tak-
ing, or not, into account the error covariance of the coupled
model. In the work of Keenlyside et al. [2008] only
observed sea surface temperature (SST) anomaly informa-
tion was used to initialize the coupled system, with no
further restrictions in deeper ocean temperature or salinity.
In seasonal forecasting, however, it is common practice to
separately initialize the ocean and the atmosphere, data
assimilation being used to bring the state of each component
of the coupled model close to the observed state. This
approach is discussed by G. J. van Oldenborgh et al. (Decadal
prediction skill in a multi‐model ensemble, submitted to
Climate Dynamics, 2011) with a multimodel experiment.
Balmaseda and Anderson [2009] showed that for seasonal
forecasting this strategy works better than an approach
equivalent to that used by Keenlyside et al. [2008].
[6] In this study, we use the European Centre for Medium‐

Range Weather Forecasts (ECMWF) coupled system to
investigate how the initialization strategy used in seasonal
forecasting behaves in decadal forecasting. The assessment
also deals with the impact of the quality of different sets of
ocean initial conditions on forecast quality. Similar studies,
with a different experimental design, have been undertaken
by Yasunaka et al. [2011] and J. Krüger et al. (Impact of
different ocean reanalyses on decadal climate prediction,
submitted to Climate Dynamics, 2011). The criteria for the
assessment is the extent to which atmospheric and ocean
variables are skillfully predicted in the forecast range from
1 to 10 years, i.e., beyond the generally accepted limit of
ENSO‐related predictability. Problems related with sample
and ensemble sizes in the context of the protocol set up
in the ongoing Coupled Model Intercomparison Experi-
ment, known as CMIP5 (http://www.clivar.org/organization/

wgcm/references/Taylor_CMIP5.pdf), for initialized dynam-
ical decadal predictions are also discussed.
[7] A summary of the experiment follows in section 2.

The most relevant characteristics in terms of model drift and
forecast quality results are given in sections 3 and 4. The
main conclusions are summarized in section 5.

2. Description of the Experiment

2.1. Experimental Setup

[8] To address the key uncertainties at the source of
decadal forecast error, such as uncertainties in the initial
conditions and in model formulation [Palmer, 2000;
Anderson et al., 2009], ensemble methods have been pro-
posed. They involve not only running a single model several
times with slightly different initial conditions, but also
employing multimodel or perturbed‐parameter approaches
[Doblas‐Reyes et al., 2009]. In this paper, three sets of
single‐model ensemble reforecasts have been carried out
with the IFS/HOPE coupled system. The forecast system
[Anderson et al., 2007] was based on the atmospheric IFS
cycle 35r3 [Bechtold et al., 2008] with a horizontal trun-
cation of TL159 and 62 vertical levels extending up to 5 hPa.
IFS uses a climatological annual cycle of four types of
aerosol (sea salt, desert dust, organic matter, black carbon)
in a scheme where only the direct aerosol effect is included.
The system includes the interannual evolution of global
mean annual greenhouse trace gases (CO2, CH4, N2O and
CFCs) and specified anthropogenic sulfate aerosols, as well
as interannual variations of total solar irradiance. Carbona-
ceous aerosols are not included. Information on the volcanic
aerosol load prior to the start date is not used during the
hindcasts, in contrast with what is done in other decadal
forecast systems [Smith et al., 2007, 2010; Keenlyside et al.,
2008]. The ocean model has a horizontal resolution of 1°,
with an equatorial refinement of 0.3°, and 29 levels in the
vertical. There is no sea‐ice module and the initial sea‐ice
extent is relaxed to climatological values with an e‐folding
time of one month. The coupler OASIS2 is used to inter-
polate the fields exchanged once per day between the ocean
and atmospheric grids. No relaxation or flux correction was
active during the forecast.
[9] The three‐member ensemble reforecasts were started

once every 5 years over the period 1960 to 2005, i.e., in
1960, 1965, and so on. This experimental setup is based on the
decadal reforecast experiment of the ENSEMBLES (http://
www.ecmwf.int/research/EU_projects/ENSEMBLES/
exp_setup/stream2.html) project, which is similar to the core
CMIP5 decadal experiment, although none of the experi-
ments contributed to the ENSEMBLES multimodel (van
Oldenborgh et al., submitted manuscript, 2011). The atmo-
sphere and land surface initial conditions were taken from
the ERA‐40 reanalysis [Uppala et al., 2005] for all start
dates but for 2005, for which the operational ECMWF
analyses were used. Each simulation started at 00:00
geomagnetic time on 1 November of each year and ran for
120 months. The ensemble was generated by introducing
singular vector perturbations to the atmospheric initial
conditions.
[10] The baseline experiment uses ocean initial conditions

from the ORA‐S3 ocean reanalysis [Balmaseda et al.,
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2008], from which only one of the five reanalyses available
has been used. All available observations of temperature and
salinity, as well as altimetric sea level anomalies, have been
used in this reanalysis. The atmospheric fluxes are from the
ERA‐40 reanalysis for the period January 1959 to June 2002
and ECMWF operational analysis thereafter. The SST is
strongly relaxed to analyzed daily SST maps from the OIv2
SST [Reynolds et al., 2002] product from 1982 onward.
This experiment will be referred to henceforth as Assim. An
alternative initialization consists in using data from an ocean
simulation forced with the ECMWF atmospheric fluxes and
the SST relaxation, but with no ocean data assimilated. This
second experiment will be named NoOcObs. As the ocean
model attractor inevitably differs from the attractor of the
actual climate system, the lack of observed ocean data in
NoOcObs will produce ocean initial states closer to the
ocean model attractor, unlike in the case of the Assim
experiment. Hence, in absence of error in the atmospheric
model, the NoOcObs method would produce balanced
ocean initial conditions. A third experiment has been per-
formed using a reanalysis similar to ORA‐S3, but where
corrected XBT (expendable bathythermograph) profiles
according to Wijffels et al. [2008] and Ishii and Kimoto
[2009] have been assimilated. The third experiment will
be referred to as XBT‐C.

2.2. Computation of the Anomalies

[11] Various measures of forecast quality have been used
to assess the differences between the experiments. The
scores include the anomaly correlation coefficient and
RMSE of the ensemble mean. The forecast quality measures
have used different data sets. To verify near‐surface tem-
perature, a merged data set using land air temperatures from
the GHCN/CAMS data set [Fan and van den Dool, 2008]
and SST from the NCDC ERSST V3b data set [Smith and
Reynolds, 2003], while outside the band between 60°N
and 60°S the GISSTEMP data set with 1200 km decorr-
elation scale was used [Hansen et al., 2010]. GPCP [Adler
et al., 2003] was taken as the reference for precipitation. For
the ocean variables, the reanalysis performed with the cor-
rected XBT profiles (ORA‐XC henceforth) has been used
over the period 1960–2005.
[12] Every forecast quality measure has been computed

taking into account the systematic error of the forecast
systems. Forecast anomalies have been estimated in cross‐
validation mode by removing the mean model climate for
the specific forecast period using the reforecasts for which
there are reference data available, as it is commonly done in
seasonal forecasting. For instance, to obtain the anomalies
of the average 6–10 year forecast period from the reforecast
initialized in November 1970, the model climate is esti-
mated by averaging the data for the 6–10 year forecast
period from all the reforecasts for which there are reference
data, except the reforecast started in November 1970. This
implies that data from the 1960, 1965, 1975, 1980, 1985,
1990, 1995 and 2000 reforecasts (eight start dates) are used,
because no reference data for the period 2011–2015 (i.e., the
verifying dates of the reforecasts with start date in 2005)
were available. The anomalies for the reference data set are
estimated for the same calendar period. Figures 1a and 1b
illustrate the process of a posteriori removal of the drift,
an estimate of which appears in Figure 1c for global mean

near‐surface air temperature. The raw reforecast values
appear in Figure 1a, while the anomalies resulting after the
drift estimate has been removed appear in Figure 1b. The
reader should be aware that this linear method assumes that
there is no relationship between the model drift and the
anomalies.
[13] This method of computing the anomalies is different

from the approach that would be adopted in an operational
context, where the anomalies would be computed using only
past information. However, the shortness of the sample,
with just ten reforecasts available, prevents the authors from
using a more robust computation of the anomalies. In other
decadal prediction experiments prediction anomalies have
been estimated using a model climate estimate from a set of
simulations of the twentieth century climate that do not
assimilate observations [e.g., Smith et al., 2007; Doblas‐
Reyes et al., 2010a]. This is not possible here because
(1) there is no twentieth‐century control simulation available
for our forecast system, and (2) even if a control simulation
was available, as the coupled model is initialized from
realistic initial conditions the model climate in the reforecasts
depends on the forecast time because of the unavoidable
drift, making a unique model climate estimate from a long
simulation inappropriate.

3. Mean State and Model Drift

[14] Model inadequacy causes forecasts to drift away from
the observed climate toward an imperfect‐model climate.
This drift, which can be understood as the evolving sys-
tematic error, depends on the forecast time, especially when
using the full‐initialization approach. Previous publications
on decadal forecasting [Smith et al., 2007; Keenlyside et al.,
2008; Hawkins and Sutton, 2009a] rarely illustrate the dif-
ferences between the model and reference climates, probably
because they used extensively referenced climate models.
Sometimes model drift is not described in detail because the
initialization of the reforecasts is carried out by assimilating
observed anomalies into the model climate [Smith et al.,
2007, 2010; Keenlyside et al., 2008; Pohlmann et al., 2009;
Mochizuki et al., 2010], a method that is expected to reduce
the model drift. These approaches rely on the idea that the
drift is small enough to not destroy the initial‐condition
information. Here we consider that forecast drift is an
important feature of the decadal forecasting problem
when a full‐state initialization is adopted and, hence, worth
discussing.
[15] Figure 1 shows the global mean near‐surface air

temperature. The model and observed temperatures deviate
from one another quickly in every reforecast (Figure 1a)
and, regardless of the initialization data set, the mean error
reaches around 1 K after 4 years for global mean tempera-
ture (Figure 1c), while the global mean SST error is around
−0.4 K after a similar forecast time (not shown). The fore-
cast drift in the first few years is slightly different for the
Assim/XBT‐C and NoOcObs experiments, showing a
sharper decline in the Assim and XBT‐C experiments dur-
ing the first 2 years. After the third forecast year the drift
differences due to the initial conditions almost completely
vanish (Figure 1c). In terms of global mean land tempera-
tures, Assim and XBT‐C are slightly warmer than NoOcObs,
although both experiments have a cold bias (not shown).
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[16] As an example, Figure 2 displays the mean system-
atic error of the boreal winter (December to February) near‐
surface air temperature of the XBT‐C experiment for the
forecast period 2 to 5 years. The experiments have in gen-
eral air temperatures cooler than the reference, in agreement
with Figure 1. This is particularly obvious over the tropical
regions, where the cooling is slightly alleviated in Assim
(not shown). This pattern is also found in summer, except
for a strong warm bias over the equatorial eastern Atlantic,
which is typical of both IPCC and seasonal forecast
experiments (C. Caminade, personal communication, 2010).
The differences in the mean systematic error between the
three experiments (not shown) are much smaller than the
systematic error itself, which suggests that the type of ini-
tialization has a small impact on the drift reduction. A broad
similarity has also been observed for estimates of the
interannual standard deviation of both experiments (not
shown).
[17] Figure 2 also shows the mean systematic error of the

winter (December to February) ocean temperature averaged
over the top 300 m (a proxy for the upper‐ocean heat con-
tent) for the forecast period 2 to 5 years. The mean error has
been computed with respect to the ORA‐XC ocean reanal-

ysis. The systematic error in the ocean temperature bears
some similarity with the pattern found for near‐surface air
temperature, although there are some differences: the trop-
ical cooling is not as widespread and the western equatorial
Pacific is actually warmer than in the reanalysis resembling
a La Niña pattern. There are also differences in the western
boundary currents, which are warmer in the coupled model
than in the verifying reanalysis with a pattern typical of the
low‐resolution systems used for climate change projections
[van Oldenborgh et al., 2009]. Overall, the large‐scale
patterns in the upper‐ocean heat content suggest that there
are errors in the ocean circulation and not just in the surface
heat fluxes. As with the near‐surface air temperature, the
three experiments depict a similar degree of cooling with
respect to the ocean reanalysis, with some nonsignificant
local differences. Small differences in the drift between the
experiments (at least one order of magnitude smaller than
the drift itself) can also be found for other ocean variables.
[18] To better illustrate the differences between the

experiments in the upper‐ocean heat content drift, Figure 3a
shows the drift of the global mean upper‐ocean heat content.
There is a cold drift in the global mean after the first forecast
year in the three experiments. The XBT‐C drift is toward a

Figure 1. (a) Global mean near‐surface air temperature (K) for the 10 three‐member ensemble refore-
casts of the XBT‐C (green), NoOcObs (blue), and Assim (orange) experiments. (b) Anomalies with
respect to the corresponding climate over the period 1960–2010. Data from GHCN/ERSST/GISS data
set (see text for details) are shown in black. All time series have been smoothed out with a 24 month
centered moving average that removes data for the first and last years of each time series. (c) Drift (K)
and (d) ensemble mean correlation of the global mean near‐surface air temperature for the XBT‐C
(green), NoOcObs (blue), and Assim (orange) experiments. The drift and the correlation have been com-
puted using the GHCN/ERSST/GISS data set (see text for details) and three‐member ensemble reforecasts
for the period 1960–2000. A 12 month moving average has been applied to the drift estimates to illustrate
the fast growth rate of the drift, while the correlation has been computed with a moving window of 4 year
averaged anomalies to retain the interannual variability that is beyond the ENSO typical frequency.
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slightly cooler state than in the other two experiments.
The largest drift occurs over the Southern Hemisphere
(Figure 3b), where the upper‐ocean is warmer than the
reanalysis in the first year, especially for NoOcObs. As the
forecast time increases, the model ocean heat content is up
to 0.2 K cooler than in the reanalysis, especially for Assim
and XBT‐C. The difference of those two experiments with
NoOcObs (which is the warmest experiment in this region)
is almost constant with forecast time.
[19] These results point at a strong latitudinal dependence

of the upper‐ocean heat content drift, which is also appli-
cable to the associated SSTs. The drift differences between
the experiments, although much smaller than the drift itself,
also show a latitudinal dependence. While differences
between NoOcObs and XBT‐C only last for the first few
forecast years in the tropical band (30°S–30°N), poleward of
30° the initial‐condition differences are much more persis-
tent and remain during the whole duration of the forecasts.

The differences between NoOcObs and Assim grow with
time in the tropical band and are very similar to differences
between NoOcObs and XBT‐C outside of the tropics. In the
extratropics the differences are the result of the initial dif-
ferences, although these drift differences show dynamical
properties, with propagation both zonally and meridionally.
The SST drift differences have an impact on the atmosphere
mainly via changes in the surface latent heat flux and the
surface shortwave radiation. An in‐depth description of the
drift differences can be found in the work of Doblas‐Reyes
et al. [2010b].
[20] Another example of how much the ocean mean state

can differ between experiments is illustrated in Figure 4,
which shows the zonally integrated meridional velocity
across the Atlantic basin at 36°N, a proxy for the intensity of
the Atlantic meridional overturning circulation (AMOC).
The AMOC in the NoOcObs initial conditions is shallower
and weaker (∼20 Sv) than in the verifying analysis XBT‐C

Figure 3. Drift (K) with respect to ORA‐XC of (a) the global mean and (b) Southern Hemisphere (south
of 20°S) ocean temperature averaged over the top 300 m for the three‐member ensemble reforecasts of the
(green) XBT‐C, (blue) NoOcObs, and (orange) Assim experiments. Three‐member ensemble reforecasts
for the period 1960–1995 have been used. The time series have been smoothed out with a centered annual
running mean that removes data for the first and last 6 months of each time series.

Figure 2. Winter (December to February) (a) near‐surface air temperature (K) and (b) ocean temperature
averaged over the top 300 m (K) mean systematic error over the forecast period 2 to 5 years of the XBT‐C
experiment. The systematic error has been estimated with respect to the GHCN/ERSST/GISS (Figure 2a)
data set and ORA‐XC (Figure 2b) (see text for details). Three‐member ensemble reforecasts for the period
1960–2000 have been used.
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(∼24 Sv), in agreement with Balmaseda et al. [2007]. The
AMOC in the ocean reanalyses with ocean data assimilation
also show a stronger interannual variability (not shown).
The reader should be aware that the differences in the
AMOC characteristics between the three reanalyses men-
tioned here reflect the large uncertainty of these measures,
for which observational evidence is scarce (Krüger et al.,
submitted manuscript, 2011). The Assim and XBT‐C simu-
lations experience a transition after the first 2 forecast years
toward a shallower (by ∼500 m) AMOC cell, weakening the
northward branch and strengthening the southward one.
Such a drift is slower in NoOcObs (not necessarily a posi-
tive feature in a full‐state initialization context), for which
the AMOC cell is already shallower than in the ORA‐XC
analysis at the beginning of the simulations. As for the
atmospheric variables, the three experiments evolve toward
a similar state at the end of the integrations. As a conse-
quence of the shallowing of the meridional overturning cell
and the reduction of its vertical gradient, the AMOC
intensity, estimated as the maximum of the vertically inte-
grated meridional transport (the integration is done from the
surface to the bottom layer by layer) across the Atlantic at
36°N (which is the latitude where the maximum intensity
occurs in the reanalyses), decreases to around 10 Sv. Other
model results [e.g., Drijfhout et al., 2008; Lozier, 2010]
suggest that whereas the interannual variability in the ocean
overturning is largely driven by surface winds, variability on

decadal and longer time scales (and probably the drift too) is
primarily driven by buoyancy fluxes. Contributions to the
buoyancy fluxes comprise fresh water forcing by precipi-
tation, evaporation, runoff and sea‐ice melting or formation,
and thermal forcing by turbulent fluxes (sensible and latent
heat), radiative fluxes and the latent heat of fusion associ-
ated with formation or melting of sea ice. It is possible that
errors in most of these processes, in particular the missing
ones such as those related to sea‐ice melting and formation
of unresolved ocean eddies, are responsible for the drift of
the AMOC in this model. However, it is difficult to assign
the error to specific processes.

4. Forecast Quality

4.1. Atmospheric Variables

[21] A subset of the reforecasts has been used to estimate
the forecast quality of the experiments. This is because there
is not a complete reference data set available to compare to
the 2005 start date simulation beyond 2010. In other words,
at the time of writing there is no full verification available
for the forecast period 6–10 years of the 2005 start date.
[22] The near‐surface air temperature anomalies obtained

using the verification data available to compute the model
climate are shown in Figure 1b. No substantial differences
between the reforecasts of the three experiments are found at
first sight. Every experiment reproduces the upward trend

Figure 4. Zonally integrated meridional water velocity (103 m2 s−1) across the Atlantic basin at 36°N for
the (a) ORA‐XC ocean reanalysis, (b) NoOcObs, (c) XBT‐C, and (d) Assim experiments as a function of
depth and forecast time. The horizontal axis covers 120 months and represents the mean seasonal cycle of
the reanalysis repeated ten times and the drift from the reforecasts. The vertical axis starts at 150 m and
goes to 4000 m. All estimates have been computed using three‐member ensemble reforecasts for the
period 1960–1995.

DOBLAS‐REYES ET AL.: INITIALIZATION OF DECADAL FORECASTS D19111D19111

6 of 13



that is especially noticeable from 1975 onward. The
ensemble mean correlation for 4 year mean predictions
computed using a centered moving window is shown in
Figure 1d, where no meaningful difference can be found
between the three experiments. Note that only a reduced
range of forecast times is available because a 4 year mean
allows predictions for forecast periods ranging from months
25 to 96 (i.e., forecast time 3 to 8 years). In spite of the
nonnegligible drift, the correlation of the anomalies com-
puted linearly with respect to the drift estimates is high and
statistically significant with 95% confidence. There are
already examples in the literature [Smith et al., 2007, 2010]
that suggest that, to first order, this high skill is due to the
projection of forced climate change rather than the impact of
forecast initialization. An explicit separation of the initial-
ized and forced component of the skill would require par-
allel uninitialized reforecast ensembles which, as explained

in section 2, are not available for these experiments. Hence,
the quantification of the relative contributions of the two
effects is beyond the scope of this paper. Contrary to the
conventional dependence of forecast skill with lead time,
where skill decreases with lead time in short‐range,
medium‐range, subseasonal, and seasonal prediction, the
correlation does not decrease with forecast time. This fea-
ture, a likely consequence of the relevance of radiatively
forced long‐term trends, has also been observed [Doblas‐
Reyes et al., 2010a] when the same calculation is carried
out on the predictions described by Smith et al. [2010] and
Keenlyside et al. [2008].
[23] Figure 5 shows the ensemble mean correlation for

near‐surface temperature computed for the 4 year winter
averages covering the forecast period 2 to 5 years. Large
areas with positive skill appear in all experiments, a con-
sequence of both correctly projected climate change and
forecast initialization. Assim and XBT‐C have both higher
skill than NoOcObs over the tropical Pacific and Atlantic,
while NoOcObs gives better skill over the tropical Indian
Ocean. Results for other seasons are similar. The different
tropical skill is consistent with the results found in a similar
seasonal reforecast experiment [Balmaseda and Anderson,
2009]. Instead, several extratropical regions such as Europe
and the Arctic show NoOcObs as having slightly higher
skill than the two other experiments. It is important to bear
in mind that the differences in skill between the experiments
should be considered in the context of the correlations being
computed with very small samples and, hence, not statisti-
cally significant.
[24] A clearer picture of the differences in forecast quality

between the three experiments for different forecast periods
is shown in Figure 6, which depicts the anomaly correlation
of near‐surface air temperature over the Northern Hemi-
sphere and the tropical band for different forecast periods.
To obtain each anomaly correlation coefficient, the spatial
variance/covariance between the ensemble mean and the
corresponding reference is computed for each one of the
reforecasts available. The set of variances and covariances is
then averaged over the set of start dates before the final
correlation is computed. Confidence intervals for the scores
have been computed using a bootstrap method, where the
reforecast/reference pairs were resampled with replacement
1000 times [Lanzante, 2005; Jolliffe, 2007]. The scores were
then computed for each of the 1000 samples, ranked and the
intervals for specific confidence levels estimated [Doblas‐
Reyes et al., 2009]. The reader should bear in mind that
these correlations are lower than those obtained for global
mean variables due to the additional requirement of an
adequate spatial distribution of the signal. Most cases dis-
play positive skill, with typically higher values for the
tropical band than for the northern extratropics. Estimates
for predictions of the first forecast year have been included
to illustrate the impact of the time averaging. The scores for
the tropical region are all statistically significantly different
from zero, which is not always the case over the northern
extratropics. The extratropical scores show a hint of sea-
sonal variation of skill, with higher scores for boreal sum-
mer than for winter. Similar results have been found for the
Southern Hemisphere (not shown). The skill is larger for
longer forecast times, a likely consequence of the stronger
impact of climate change for longer forecast times in this

Figure 5. Ensemble mean correlation for near‐surface air
temperature with respect to the GHCN/ERSST/GISS data
set (see text for details) for winter (December to February)
over the forecast period 2 to 5 years of the (a) NoOcObs,
(b) XBT‐C, and (c) Assim experiments. Three‐member
ensemble reforecasts for the period 1960–2005 have been
used. The black dots depict the grid points where the
correlation is significantly different from zero with 95%
confidence.
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type of experiment. As in previous examples, the experi-
ments display a similar forecast quality, with almost iden-
tical scores over the tropical band and small differences for
the northern extratropics. Correlations for precipitation are
much lower and in most cases nonsignificant.
[25] Figure 6 also contains information about the behavior

of the ensemble. The ratio between the spread, computed as
the standard deviation of the ensemble members around the
ensemble mean, and the RMSE has traditionally been used
as a measure of the degree of calibration of the ensemble
[Palmer et al., 2007]. However, the small ensemble size of
these experiments prevents the spread estimates from being
robust enough to obtain meaningful results. Instead, the
so‐called perfect‐model anomaly correlation has been used.
This estimator measures the spread relative to the variability
of the predictions and should not be interpreted as an upper
level of skill because it is model dependent. The perfect‐
model anomaly correlation is computed as the ensemble
mean anomaly correlation mentioned above, but in this
instance taking one ensemble member as the reference. In
other words, this estimator assumes that the reference
is drawn from the same population as the reforecasts
(a hypothesis that is rarely true in an actual context), hence
the use of the words “perfect model.” The set of variances
and covariances is computed taking each one of the
ensemble members as reference in turns and then averaging
the other two, prior to the computation of the correlation.

[26] The higher values found in Figure 6d for the first year
suggest that the ensemble spread over the tropics is smaller
at the beginning of the reforecasts, the spread increasing
with time, something that in most single‐model forecast
systems is a desirable feature because of their tendency to
underestimate the spread [Weigel et al., 2008]. The decrease
in perfect‐model correlation from the first year is not found
for the northern extratropics, where a slight seasonality is
found with similar characteristics to that found for the cor-
relation against the observations. Also for this measure, no
substantial differences are found between the experiments.
However, as mentioned above, the current experimental
setup, which is shared with the one proposed for CMIP5,
makes it difficult to make conclusive statements about
the ensemble spread because of the small sample. Larger
ensemble sizes will be needed to address the question of an
appropriate ensemble generation that would take into
account the specific characteristics of decadal forecasting.
[27] The perfect‐model anomaly correlation has been used

here as a measure of ensemble spread. It is sometimes also
considered as a measure of the upper limit of the skill of a
forecast system. This use is not appropriate because, apart
from this interpretation being valid only in the case of
unbiased models, the perfect‐model anomaly correlation
could only be considered as an upper estimate of the skill of
an imperfect system, that unavoidably misses important
processes to formulate skillful predictions, in a stationary

Figure 6. (a and b) Ensemble mean correlation and (c and d) perfect‐model correlation for near‐surface
air temperature over the Northern Hemisphere (north of 30°N, Figures 6a and 6c) and the tropical band
(20°N–20°S, Figures 6b and 6d) for different forecast periods of the NoOcObs (blue bars), XBT‐C (green
bars), and Assim (orange bars) experiments. The sets of three bars correspond, from left to right, to the
first calendar year of forecast (months 3–14, computed with reforecasts for the period 1960–2005),
the winter, summer, and annual mean of the 2–5 year forecast period (computed with reforecasts for
the period 1960–2005), and the winter, summer, and annual mean of the 6–10 year forecast period (com-
puted with reforecasts for the period 1960–2000). The black dots depict the sample values and the bars
show the 95% confidence intervals. The estimates have been computed using the GHCN/ERSST/GISS
data set (see text for details) and three‐member ensemble reforecasts.
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climate. By construction, the perfect‐model correlation
cannot take into account the effect of the long‐term trends
on the skill, which is a substantial contribution to the fore-
cast quality. As an indication, the reader will note that in
most cases in Figure 6 the anomaly correlation estimates are
larger than the corresponding perfect‐model anomaly cor-
relations suggesting that the initial‐condition predictability
in this system is modest and that the correlation against
observations has an important contribution from the cor-
rectly reproduced long‐term trends and low‐frequency var-
iability. This also suggests that some estimates of decadal
predictability based solely on ensemble agreement measures
[e.g., Boer and Lambert, 2008] underestimate the actual
skill.

4.2. Ocean Variables

[28] Early results suggest that skillful projections of ocean
heat content are one obvious mean by which initializing
climate models may increase some aspects of decadal pre-
dictability. Figure 7 displays anomalies of the global mean
upper‐ocean heat content from the three experiments.
Anomalies for the XBT‐C ocean reanalyses are also dis-
played in Figure 7 as a reference. There are differences

between the three ocean reanalyses used to initialize the
experiments of up to 20% in the interannual variability,
which are due to the large uncertainty in the estimates of the
ocean state (not shown). The reanalysis shows an upward
trend after 1970 that is matched by the reforecast anomalies.
The main difference between the experiments is that the
Assim predictions have a larger variability from one refor-
ecast to the next in the early half of the period, to the point
that they do not always overlap as the ensembles of the other
two experiments do. This agrees with the caveat of the
ORA‐S3 reanalysis, which has been affected by the error in
the dropping rate of the XBTs that caused spurious inter-
annual variations in the ocean heat content estimates.
[29] The ensemble mean correlation of the global mean

upper‐ocean heat content with respect to ORA‐XC is higher
for NoOcObs and XBT‐C than for the Assim experiment
(Figure 7c), which illustrates the impact of the observational
error in decadal forecast initialization in agreement with
Yasunaka et al. [2011]. The low correlation for Assim is in
contrast with what has been found for the global mean near‐
surface air temperature (Figures 1 and 6) and SST (not
shown). The differences between the experiments are also
clear in the tropical upper‐ocean heat content reforecasts

Figure 7. Anomalies of (a) global mean and (b) tropical (20°N–20°S) ocean temperature (K) averaged
over the top 300 m for the 10 three‐member ensemble reforecasts of the XBT‐C (green), NoOcObs (blue),
and Assim (orange) experiments. Anomalies are computed with respect to the corresponding climate over
the period 1960–2005 (eight reforecasts). Each reforecast is illustrated with lines of a different color.
Anomalies from the ORA‐XC ocean reanalysis are shown in black solid lines. All time series have been
smoothed out with a 24 month centered moving average that removes data for the first and last years of
each time series. Also shown are the ensemble mean correlation of the (c) global mean and (d) tropical
averaged ocean temperature averaged over the top 300 m of the XBT‐C (green), NoOcObs (blue), and
Assim (orange) experiments and have been computed using ORA‐XC data and three‐member ensemble
reforecasts for the period 1960–1995. The correlation has been computed with a moving window of 4 year
averaged anomalies.
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(Figure 7b), which show a less‐pronounced upward trend
than the global mean. The ensemble mean correlation for the
tropical band (Figure 7d) is noticeably lower than for the
global average, and not statistically significant with 95%
confidence for most of the forecast range. The highest skill
is found for the NoOcObs experiment, a contradictory result
when considering that no substantial differences in skill
were found for near‐surface air temperature. This type of
result suggests that this issue requires more investigation
with larger samples.
[30] Previous studies [e.g., Collins et al., 2006] suggest

that an accurate initialization of the AMOC could allow
skillful predictions of the Atlantic multidecadal variability
(AMDV) a few years in advance. However, past AMOC
fluctuations have been poorly observed and a large uncer-
tainty in ocean reanalyses exists [Doblas‐Reyes et al.,
2010a; Krüger et al., submitted manuscript, 2011]. This
uncertainty is found even when ocean reanalyses carried out
using the same ocean model are considered [Doblas‐Reyes
et al., 2010b], as seen in Figure 8 where the AMOC from
the reanalyses used to initialize the XBT‐C and NoOcObs
experiments is shown. The uncertainty in the ocean refer-
ence implies that an assessment of the forecast quality of the

AMOC predictions would necessarily give highly uncertain
estimates.
[31] The XBT‐C experiment has been initialized with

ocean states that are expected to give the most reliable
estimate of our initialized estimates of true AMOC vari-
ability because it uses the most complete and correct set of
ocean data, while the ocean initial conditions used in the
NoOcObs experiment underestimate both the mean AMOC
intensity and its variability (Figure 8a). This is in agree-
ment with the ocean circulation results shown in Figure 4.
Figure 8 shows the anomalies of the AMOC intensity and
of an index of the AMDV known as the Atlantic multi-
decadal oscillation (AMO) index. The AMO index is cal-
culated in this manuscript as the average North Atlantic
SSTs north of 10°N from which the contemporaneous
global mean SST between 60°S and 65°N has been removed
[Trenberth and Shea, 2006]. The AMOC reforecast
anomalies show interannual oscillations of amplitude similar
to those from the ORA‐XC analysis. The Assim reforecasts
show interannual variations of similar amplitude as those of
ORA‐XC, and their corresponding ensembles agree well in
several instances, especially for the 2005 start date. This
behavior has to be put in the context of the strong AMOC

Figure 8. (a) Atlantic meridional overturning circulation (AMOC) intensity (Sv) and (b) Atlantic multi-
decadal oscillation (AMO) index in K, computed as the North Atlantic, 10°N–65°N, average SST minus
the global average 60°S–65°N SST) anomalies for the ten decadal three‐member ensemble reforecasts of
the XBT‐C (green), NoOcObs (blue), and Assim (orange) experiments. Anomalies are computed with
respect to the corresponding climate over the period 1960–2005. Anomalies from the ORA‐XC
(NoOcObs) ocean reanalysis are shown in black solid (dashed) lines in Figure 8a. Data from ERA‐40/
ERA‐Interim are shown in black in Figure 8b. All time series have been smoothed out with a 24 month
centered running mean that removes data for the first and last years of each time series. Also shown are
the ensemble mean correlation of the (c) AMOC and (d) AMO with respect to ORA‐XC and ERA‐40/
ERA‐Interim for XBT‐C (green), NoOcObs (blue), and Assim (orange), which has been computed with
three‐member ensemble reforecasts for the period 1960–1995 on 4 year running mean anomalies.
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drift described in section 4.1. The ensemble mean AMOC
correlation (Figure 8c) has positive values in the first few
forecast years although lower than 0.6 for most forecast
times, with large differences between the three experiments
but with the highest skill for NoOcObs in the first half of the
forecast and XBT‐C during most of the second one. As
suggested by Hawkins and Sutton [2008], some predict-
ability of this order of the AMOC is expected from persis-
tent changes in the thermohaline circulation at decadal time
scales in the North Atlantic. It is very difficult though, on
the basis of these results, to claim that one experiment is
better than any other as the largest difference in correlation
has a confidence of 85%, a low value even before taking
into account the obvious serial correlation of the time series.
[32] As suggested by Dijkstra et al. [2006], some agree-

ment is expected between the AMOC and AMO indices
from the reference data sets. The AMO has been considered
as a proxy indicator for the intensity of the AMOC, and
some indications along these lines can be observed when
comparing Figures 8a and 8b. However, the correspondence
between the AMO and AMOC reference estimates is low in
the reference data used in this paper, the simultaneous cor-
relation between the two time series being 0.35. The SSTs
averaged over the North Atlantic (not shown) are highly
skillful, with correlations above 0.6, because they correctly
reproduce the upward trend observed since the mid 1970s.
Although the AMO index used here discounts for most of
this warming by removing the global mean SSTs, the
ensemble mean correlation of the 4 year average predictions
is higher than 0.4 in all instances, increasing with forecast
time. A comparison of the AMOC and AMO correlations as
a function of forecast time (Figure 8) also suggests that in
the systems and time scales dealt with here, a strong rela-
tionship between the two indices should not be expected.
The AMO skill is similar for the NoOcObs and XBT‐C
experiments, and systematically lower for the Assim experi-
ment, a result that again points at the detrimental impact on
the decadal forecast quality of the assimilation of incorrect
XBT data. More pessimistic skill scores have been found
with an alternative AMO index estimated as SST averaged
over a northern (40°N–60°N, 60°W–10°W) and a southern
(40°S–60°S, 50°W–0°W) Atlantic box [Latif et al., 2006].
In this case, the strong SST drift over the southern Atlantic
Ocean (Figure 2) might adversely affect the simulations and
limit the reproducibility of that specific AMO index.

5. Summary and Discussion

[33] The drift and forecast quality of three sets of decadal
reforecasts carried out with the IFS/HOPE coupled system
have been analyzed. The three experiments are different in
their initial conditions. The Assim experiment has been
initialized with an ocean reanalysis that includes ocean data
assimilation, the XBT‐C experiment is initialized with data
from an ocean reanalysis similar to the one used for Assim
but with an important correction in the XBT data assimilated
while the NoOcObs experiment has been initialized with
data from an ocean‐only simulation where no subsurface
ocean data have been assimilated. All ocean reanalyses were
performed with a strong relaxation to observed SSTs. This is
the first time that a parallel set of decadal predictions has
been carried out in an attempt to assess the relevance of

ocean data assimilation in decadal prediction with realistic
initialization.
[34] As the reforecasts are initialized with a realistic state

of the climate system, a sizable drift develops during the
forecast time in both ocean and atmospheric variables. There
are many possible reasons for the existence of the drift,
starting from the lack of balance between the radiation
budget used to produce the ocean and atmospheric reana-
lyses, and including the intrinsic systematic errors of the
atmospheric and ocean models due to missing processes.
For instance, the atmospheric model does not properly
simulate the tropical Sc clouds and has excessively weak
trade winds, while the ocean model does not correctly rep-
resent the most relevant eddies. We made efforts to reduce
the model drift, and that was the reason for introducing
changes in the cloud microphysics that reduced the atmo-
spheric model cold bias by increasing the surface solar
radiation, but much more remains to be done. Furthermore,
in a seamless climate prediction spirit [Hurrell et al., 2009],
reducing the drift for decadal forecasting benefits monthly
and seasonal forecast systems, which are affected by a
similar problem.
[35] Although all experiments have a similar drift, cold

over the tropical oceans and warm over certain areas of the
northern continents and the southern oceans, there are dif-
ferences of the order of tenths of a degree, and hence much
smaller than the drift itself, between the three experiments.
The tropical SST drift becomes virtually equal in the three
experiments following an increased surface latent heat flux
into the atmosphere over the west Pacific in Assim and
XBT‐C with respect to NoOcObs, which is linked to an
increase in outgoing top of the atmosphere net radiation. In
contrast with the tropics, the small extratropical drift dif-
ferences persist for the whole duration of the simulations,
the differences concentrating on specific basins as forecast
time increases. This suggests that small‐amplitude signals in
the extratropical ocean initial conditions can have an impact
a long time after the forecast is started.
[36] In spite of the model drift and the fact that several

climate processes, such as those related to sea‐ice formation,
export and melting, are not represented in the model, the
decadal prediction experiments described here show a pos-
itive forecast quality that is statistically significant over
several areas and that is comparable to experiments pub-
lished previously. Positive correlation with observations is
found for tropospheric air temperature and upper‐ocean heat
content, the correlation increasing with forecast time in most
cases. The regions with significant skill and the skill level
obtained will depend strongly on the reforecast period con-
sidered because of the different phases of the low‐frequency
variability to be predicted and the strength of the anthro-
pogenic climate change, which is the likely source of the
increase of skill with forecast time. Precipitation does not
show significantly positive skill beyond the first year.
[37] The experiments show very similar forecast quality.

In those cases where some differences appear, the differ-
ences are not statistically significant with a high confidence
level. This leads to apparent contradictory results that might
not hold with longer samples and larger ensembles. For
instance, while no substantial skill differences between the
experiments are found for near‐surface air temperature, the
predictions of the upper‐ocean averaged temperature are for
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some regions more skillful for NoOcObs than for XBT‐C or
Assim. The ability to predict interannual variations of the
AMOC is difficult to assess because of the uncertainty in
AMOC estimates from ocean reanalyses [Doblas‐Reyes
et al., 2010a]. The reforecasts show anomalies with oscil-
lations that resemble those observed in an ocean reanalysis
and encourage a more in‐depth analysis of the skill in pre-
dicting interannual variations of the AMOC. An estimate of
the AMO has been used as a proxy of the AMOC intensity.
The AMO index also shows positive skill, as for the AMOC
intensity, that increased with forecast time.
[38] A negative impact of the assimilation of corrupted

XBT data in the ocean reanalysis used to initialize the
decadal forecasts has been found in the AMO index and the
global mean upper‐ocean heat content. This is in agreement
with results described by Yasunaka et al. [2011]. However,
many other instances have been found where no clear
signs of the negative effect of the corrupted XBT data are
evidenced. In fact, in some cases such as the tropical aver-
aged upper‐ocean heat content or the Arctic near‐surface air
temperature, the reforecasts initialized using a reanalysis
without ocean data assimilation show a consistently better
skill.
[39] The insignificant differences found between the three

experiments might be disappointing, but have an important
aspect. It is difficult to obtain statistical significance with
limited samples, but this does not necessarily mean that the
differences do not have a physical basis. The finding that the
less‐complete initialization method can apparently give
better results at times is interesting, and points to the need
for more detailed investigation. The small forecast quality
differences might also be due to the important model drift
that, as shown in the seasonal forecasting context [Balmaseda
and Anderson, 2009], could prevent the model from making
the most of the additional information available in the
experiment initialized from reanalysis that use ocean data
assimilation. The use of an a posteriori linear bias‐correction
scheme is just a very simple approach to make the refor-
ecasts tractable because the interaction between the forecast
anomalies and the drift can be highly nonlinear. The option
of initializing the reforecasts in anomaly mode [Smith et al.,
2007] with the same forecast system for the realistic ini-
tialization should be explored.
[40] The experiments described in this paper use the

experimental setup defined in the ENSEMBLES project.
This setup shares many characteristics with the CMIP5
decadal prediction exercise. One of the main caveats of the
results in this paper is that the differences between experi-
ments are so subtle and the uncertainty in the forecast
quality estimates so large that it is difficult to extract sig-
nificant conclusions with the short samples, high interval
between start dates and small ensemble size considered.
Unfortunately, both the sample and ensemble sizes are,
instead, limited by the important computing resources
required to run even the experiments described here. We
believe that similar difficulties are likely to be found when
this type of experiment will be used to determine how the
decadal prediction forecast quality is improved when using
initialization with respect to uninitialized predictions.
[41] The results of the few initialized decadal forecast

experiments carried out to date as well as the results shown
here suggest that although there is some skill in predicting

air temperature, the skill for other variables is rather limited.
However, some decadal predictability and gain in skill of
multiyear averages of atmospheric variables and ocean cir-
culation from initializing with respect to uninitialized pre-
dictions has been found [Smith et al., 2010]. As happened
already in the field of seasonal forecasting, a reduction of
the model drift, improved observational reference data sets
and a better understanding of the processes at the origin of
the interannual and decadal predictability should produce
more skillful multiyear useful predictions in the future, as
well as an increased benefit from a better informed initial-
ization of the predictions.
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