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Abstract—The increasing number of network attacks causes
growing problems for network operators and users. Thus, de-
tecting anomalous traffic is of primary interest in IP networks
management.

In this paper we present a novel method for network anomaly
detection, based on the idea of discovering Heavy Change (HC)
in the distribution of the Heavy Hitters in the network traffic. To
assess the validity of the proposed method, we have performed
an extensive experimental evaluation phase, during which our
system performance have been compared to a more “classical”
HC-based approach. The performance analysis, presented in this
paper, demonstrates the effectiveness of the proposed method.

Index Terms—Anomaly Detection, Sketch, Heavy Hitter, Heavy
Change

I. INTRODUCTION

Uncovering anomalies in large ISPs and enterprise networks
is challenging because of the wide variety of such anomalies.
They can come from activity with malicious intentions (e.g.,
scanning, DDoS, prefix hijacking), or from misconfigurations
and failures of network components (e.g., link failures, routing
problems, outages in measurement equipment).

In the literature, the problem of detecting anomalies in
the network traffic has often been seen as equivalent to the
problem of detecting heavy changes (HCs) in some traffic
descriptors. In this context a wide variety of approaches has
been proposed.

Nevertheless most of them analyzes the single traffic flows,
resulting to be unscalable and thus not applicable in modern
backbone networks.

For this reason, in this work we have decided to analyze
traffic aggregates, so as to obtain a more scalable system, and
in more detail we have designed our system to work on the
top of probabilistic structures, namely the sketches, that allow
us to obtain a scalable real-time system (that analyzes the
traffic flows after having randomly aggregated them), while
simultaneously improving the detection rate of “classical”
systems [4].

Given this substrate, our method is based on a statistical
analysis of the distribution of the Heavy Hitters (HHs) in
the network traffic. The idea behind this approach is that the
distribution of the big flows should change between normal
and attacks period, especially in the case of DoS/DDoS
attacks, bot-nets, network scans, and so on.

Hence, in this paper we present a novel method for network
anomaly detection, based on the idea of discovering HC in the
distribution of the HHs in the network traffic. In more detail,

we have explored the combined use of several forecasting al-
gorithms and HC-based methods, applied to the HH evolution
in time. To assess the validity of the proposed method, we
have performed an extensive experimental evaluation phase,
during which our system performance have been compared to
a more “classical” HC-based approach.

The remainder of this paper is organized as follows: Section
II presents some relevant related works. Then Section III
describes the theoretical background useful for fully under-
standing the proposed technique, while Section IV provides a
detailed description of the implemented system. Then Section
V presents the experimental results and finally Section VI
concludes the paper with some final remarks.

II. RELATED WORKS

In the area of data mining, there has been an extensive
research of algorithms for HH detection.

The general problem of finding HHs in data streams has
been studied extensively in [5], [15], [21], and [7]. The algo-
rithms presented in these papers maintain summary structures
that allow element frequencies to be estimated, within a pre-
specified error bound; the algorithms differ in whether they
provide deterministic or probabilistic guarantees on the error
bound, and whether they operate over insert-only streams or
streams where elements can be inserted and also deleted.

The connection of these algorithms to the computer net-
works field is first made in [12], [22], [10].

In [12], Estan et al. initiate a new direction in traffic
measurement by recommending concentrating on large flows
only, i.e., flows whose volume is above a certain threshold. The
authors also propose two algorithms for detecting large flows:
Sample and Hold algorithm and Multistage Filters algorithm.
Theoretical results show that the errors of these two algorithms
are inversely proportional to the memory available. Further-
more, in [12], the authors note that network measurement
problems bear a lot of similarities to measurement problems in
other research areas such as data mining, and thus initiate the
application of data streaming techniques to network anomaly
detection.

In [22], the authors propose the Sticky Sampling algorithm
and the Lossy Counting algorithm to compute approximate
frequency counts of elements in a data stream. The proposed
algorithms give guaranteed error bounds and require small
memory. Thus, these algorithms also provide powerful tools
for solving the HH detection problem in high-speed networks.
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In [10], Cormode et al. introduce the Count-Min Sketch
method to HH and hierarchical HH detection. Sketches are
probabilistic summary data structures based on random pro-
jections (the sketches will be detailed in next Section). The
authors note that it is an open problem to develop extremely
simple and practical sketches for data streaming applications.

In all these works, the application of such techniques to
network anomaly detection is not explicitly discussed, only in
[28] the authors propose a method based on the detection of
the anomalies in the time series that contribute to the HHH.
The main drawback of this work is the heavy computational
complexity, due to the need of: at first estimating the HHH,
then reconstructing the time series that contribute to the HHH
(that is not always possible) and after that performing the real
“detection” of anomalies.

On the other hand, in the context of anomaly detection,
HC detection has been extensively studied as an important
component of statistics based IDS.

Thus, several works have faced the problem, by proposing,
among the others, techniques based on the use of “general”
algorithms for detecting changes in data streams [16] and [11],
neural networks [13], Markov models [27], and clustering al-
gorithms [26]. Unfortunately most of the existing HC detection
techniques can typically handle a relatively small number of
time series. Given today’s traffic volume, directly applying
existing techniques on a per-flow basis cannot scale up to the
needs of such massive data streams.

In this context, sketches have shown great potential. In [24]
the authors first apply sketch to the HC detection problem.
The input data are summarized using k-ary sketches and then
different time series forecast models are implemented on top of
the aggregate. The forecast errors are used to identify whether
there are significant changes in the stream.

Finally, in [8] the authors introduce the concept of deltoid
for HC detection, where a deltoid is defined as an item that has
a large variability. The authors propose a framework based on
a structure of Combinational Group Testing to find significant
deltoids in high speed networks.

The method proposed in this paper extends all these previ-
ous works, by first proposing the idea of detecting HC in the
distribution of the HH in the network traffic, without any need
of reconstructing the original time series.

III. THEORETICAL BACKGROUND

A. Data streaming model

In the last years, several data models have been proposed
in the literature. In this paper, we describe the streaming data,
by using the most general model: the Turnstile Model [23].

According to this model, the input data are viewed as
a stream that arrives sequentially, item by item. Let I =
σ1, σ2, . . . , σn be the input stream.

Each item σt = (it, ct) consists of a key, it ∈ (1, . . . , N),
and a weight, ct. The arrival of a new data item causes
the update of an underlying function U [it] += ct, which
represents the sum of the weights of a given key over the
time.

Given the underlying function U [it] for all the keys of the
stream, we can define the total sum St, at step t, as follows:

St =
∑
it

U [it] (1)

This model is very general and can be used in quite different
scenarios. As an example, in the context of network anomaly
detection, the key can be defined using one or more fields of
the packet header (IP addresses, L4 ports), or entities (like
network prefixes or AS number) to achieve higher level of
aggregation, while the underlying function can be the total
number of bytes or packets in a flow.

B. Sketch

Sketches are powerful data structures that can be efficiently
used for keeping an accurate estimate of the function U .

In general, sketches are a family of data structures that use
the same underlying hashing scheme for summarizing data.
They differ in how they update hash buckets and use hashed
data to derive estimates. Among the different sketches, the one
with the best time and space bounds is the so called count-min
sketch [9], which is basically the one used in this work.

In more detail, the sketch data structure is a two-dimensional
D × w array T [l][j], where each row l (l = 1, . . . , D) is
associated to a given hash function hl. These functions give
an output in the interval (1, . . . , w) and these outputs are
associated to the columns of the array. As an example, the
element T [l][j] is associated to the output value j of the hash
function l.

Fig. 1. Sketch: Update Function

Let I = {(it, ct)} be an input stream observed during a
given time interval. When a new item arrives, the sketch is
updated as follows:

T [l][hl(it)]← T [l][hl(it)] + ct (2)

The update procedure is realized for all the different hash
functions as shown in figure 1.

In this work, the sketches have been used for two distinct
reasons, which will be clearer in the following: on one hand
they allow the storing of big quantities of data (in our case
we have to store the traffic generated by more than 220000 IP
addresses) with big memory savings, on the other hand they
permit a random aggregation of the traffic flows.

To be noted that, given the use of hash functions, it is
possible to have some collisions in the sketch table. In more
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detail, this last fact implies that each traffic flow will be part of
several random aggregates, each of which will be analyzed to
check if it presents any anomaly. This means that, in practice,
any flow will be checked more than once (within different
aggregates), thus, it will be easier to detect an anomalous flow.
Indeed an anomalous flow could be masked in a given traffic
aggregate, while being detectable in another one.

C. Heavy Hitter

A HH, in a data set, is an element whose relative frequency
exceeds a specified threshold.

In more detail, given an input stream I = {(it, ct)} with
the associated total sum S, a HH is a key, whose associated
underlaying function U [i] is no smaller than a specified
proportion of the expected size of the whole data set.

The problem can be formalized as follows. Given a thresh-
old ξ (0 < ξ < 1) the set of HH is defined as:

HH = {i | U [i] > ξ · S} (3)

In the context of network anomaly detection, a HH is an
entity which accounts for at least a specified proportion of
the total activity measured in terms of number of packets,
bytes, connections, etc. A HH could correspond to an indi-
vidual flow or connection. It could also be an aggregation of
multiple flows/connections that share some common property,
but which themselves may not be HH.

Given this, we define the HH detection problem as the
problem of finding all the HHs, and their associated values,
in a data stream.

As an example, let us consider that the destination IP
address is the key, and the byte count the weight; then
the corresponding HH detection problem is to find all the
destination IP addresses that account for at least a proportion
ξ of the total traffic.

D. Heavy Change

A Heavy Change (HC) is a key i, whose associated
underlaying function U [i], evaluated in a given time bin,
significantly differs in size from the same function evaluated
in the previous time bins.

For sake of simplicity, let us suppose that we want to detect
the HC related to two adjacent time bins. In this case, a key is
a HC if the difference between the values of U [i] in the two
time bins exceeds a given threshold ψ.

The problem can be formalized as follows. Let U1[i] and
U2[i] be the values associated to the key i, evaluated in the
time bin 1 and 2 respectively, and let Di be the difference,
defined as Di = |U1[i]−U2[i]|. Then the set of HC is defined
as follows:

HC = {i | Di > ψ} (4)

As an example, in the context of network anomaly detection,
the goal of HC detection can be to identify the flows that have
significant changes in traffic volume from one time period to
another.

E. Forecasting algorithms

A forecasting algorithm is an algorithm able to forecast the
next value of a given time series starting from the past samples.
In our work these algorithms will be used to forecast the next
value of the sketch table.

In more detail, we have inspected two commonly used
forecasting algorithms:
• Exponentially Weighted Moving Average (EWMA)
• Non-Seasonal Holt-Winters (NSHW)
Note that we have not analyzed algorithms belonging to

the class of linear time series forecasting techniques since
they model the time series behavior on the basis of several
past samples requiring the storing of a huge quantities of
data, hence not resulting suitable for the on-line detection of
network anomalies.

1) Exponentially Weighted Moving Average: the EWMA
algorithm [19] forecasts the object at time bin i starting from
the forecasted sample and the observed sample, both in time
bin i− 1 .

In more detail, let Zi be the forecast for time bin i, Zi−1

the previous forecast, and Y i−1 the observed value at time bin
i− 1, then the forecast model can be described as follows:

Zi =
{
αY i−1 + (1− α)Zi−1 if i > 2
Y 1 if i = 2 (5)

The parameter α is called smooting constant and can assume
values in the range [0, 1]. It reflects the weight given to the
current observation (Yi−1) in calculating the forecasted values
Zi. In more detail, the value of α determines the degree of
smoothing and how responsive the model is to fluctuation
in the time-series data. The value for α is arbitrary and is
determined both by the nature of the data and the feeling by
the forecaster as to what constitutes a good response rate. In
practice, a smoothing constant close to zero leads to a stable
model while a constant close to one is highly reactive.

2) Non-Seasonal Holt-Winters: simple exponential smooth-
ing usually works best for series exhibiting no marked sea-
sonality or trend. When a series does have a strong trend or
cyclical component, we can use a more complex smoothing
model. The NSHW algorithm [3] is a double exponential
smoothing algorithm and, in this case, two components must
be updated at each step: a smoothing component, Zs, and a
trend component, Zt. The forecast is then Zi = Zi

s + Zi
t .

The equations for the computation of the two components
are reported in the following:

Zi
s =

{
αY i−1 + (1− α)Zi−1 if i > 2
Y 1 if i = 2 (6)

Zi
t =

{
β(Zi

s − Zi−1
s ) + (1− β)Zi−1

t if i > 2
Y 2 − Y 1 if i = 2

(7)

where α ∈ [0, 1] and β ∈ [0, 1] are two tunable smoothing
parameters.
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IV. SYSTEM ARCHITECTURE

In this section we detail the system we have implemented
to detect anomalies in the network traffic.

Figure 2 presents the general architecture of the system The
proposed approach is called Method 2 in the figure, while
Method 1 refers to a “classical” HC-based method [24] that is
used as a benchmark for results comparison. The following
subsections describe the significant blocks of the proposed
system.

A. System Input

First of all the input data are processed by the data for-
matting module. Indeed, this module is responsible of reading
the Netflow [6] traces and of transforming them in ASCII
data files, by means of the Flow-Tools [1]. The output of this
first block is given by text files containing on each line an IP
address and the number of bytes received by that IP in the last
time bin.

In more detail, in our implementation we have in input
Netflow data, measuring the traffic gone through a given router
over five minutes time-bins. Thus, this module will output a
distinct file for each considered time bin; let us denote by N
the distinct time bins.

Note that the modularity of the system allows great flexi-
bility. Indeed, instead of considering the number of bytes sent
by a given IP, the system administrator can easily choose of
using another traffic descriptor that better allows her to detect
the different attacks.
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Fig. 2. System Architecture

B. Sketch module

After the data have been correctly formatted, they are passed
as inputs to the hash functions responsible for the construction
of the sketch tables. In more detail, for each line of each file,
the IP address is considered as the key it, while the number of

bytes is considered as the weight ct. Each file, corresponding
to a time bin, is thus used to build a distinct sketch table.

Note that in our implementation we have used D = 16
distinct hash functions, which give output in the interval
(0, 1, . . . , w − 1), that means that the resulting sketch tables
will be ∈ ND×w, where w can be varied. As far as the the
hash functions are concerned, we have chosen to use functions
belonging to the 4-universal hash family1 [25], obtained as:

h(x) =
3∑

i=0

ai · xi mod p mod w (8)

where the coefficients ai are randomly chosen in the set
(0, 1, . . . , p − 1) and p is a random prime number (we have
considered the Mersenne numbers).

At this point, given that we had N distinct time bins,
we have obtained N distinct sketch tables Tn

D×w, where
n ∈ (1, 2, . . . , N) is the time bin.

C. Detection Phase

1) Method 1: Method 1 represents a classical HC-based
method, used in this work as a benchmark for evaluating
the system performance. Hence, we have chosen a slightly
improved version of a simple, yet effective, model known in
the literature [24].

In more detail the system compares the data related to two
adjacent time bins, that is two consecutive sketch tables.

In practice, the system computes the euclidean distance dij

between each element T [i][j] of the current sketch table and
the corresponding element T ref[i][j], where T ref[i][j] is the
element T [i][j] corresponding to the last non anomalous time
bin.

In more detail, assuming that the system is processing the
time bin n, then each element of the sketch table Tn is
compared with the corresponding element of the “reference”
sketch table T ref, where T ref is equal to the “last occurred”
non anomalous sketch table, i.e., T ref = Tn−r for some
(r = 1, 2, . . . , n). Note that this algorithm has been introduced
to avoid the “masking effect” that can be caused by anomalies
that span over multiple time bins.

If the computed distances exceed a given threshold (dn
ij > ξ)

in at least H distinct rows of the sketch table (where H is a
tunable parameter), the system considers the current time bin
as anomalous and then performs the anomaly identification for
revealing the responsible IP flows.

2) Method 2: This methods, that represents the novel con-
tribution of this work, is much more complex than the first one,
but it still results to be (as demonstrated in the experimental
section) suitable for on-line detection of anomalous flows.
Basically, it tracks the variations in the HH distribution of
the network traffic.

1A class of hash functions H : (1, . . . , N)→ (1, . . . , w) is a k-universal
hash if for any distinct x0, · · ·xk−1 ∈ (1, . . . , N) and any possible
v0, · · · vk−1 ∈ (1, . . . , w):

Prh∈H = {h(xi) = vi; ∀i ∈ (1, . . . , k)} = 1
wk
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The forecast module takes in input its own output at the
previous step and the “reference” sketch table T ref, that is -as
in the previous case- the “last occurred” non anomalous sketch
table, and uses these two elements for forecasting the value of
the next sketch table.

Note that the use of T ref has been introduced, as in method
1, to avoid the “masking effect” due to “long” anomalies.

The prediction phase is performed by using either the
EWMA algorithm,

T̂n = αT ref + (1− α)T̂n−1

or the NSHW algorithm,

T̂n = T̂n
s + T̂n

t

with
T̂n

s = αT ref + (1− α)T̂n−1

T̂n
t = β(T̂n

s − T̂n−1
s ) + (1− β)T̂n−1

t

Given this step, regardless of the used algorithm, the system
has two distinct values for the sketch table at time bin n, the
real value Tn and the predicted value T̂n. Both these tables
are fed to a module, responsible for computing an empirical
distribution of the HHs.

This “distribution” is computed by evaluating the HHs
present in the traffic, that is the traffic aggregates (namely
the sketch buckets) that exceed a given threshold, given by a
percentage of the total traffic in the time bin, Sn. The related
buckets are then updated by inserting the quantity of traffic for
which that aggregate exceeds the threshold, while all the other
buckets are set to one byte. Finally each row of the matrix is
normalized so as that its elements sum to one.

This matrix is named Mn
HH if computed starting from Tn

and M̂n
HH if calculated starting from T̂n.

Given these two matrices, the system compares the actual
HH distribution in MHH with the forecasted one in M̂HH . To
perform such task the system computes the Jensen-Shannon
Divergence (JSD) [14] between each line of the two matrices.
Note that JSD has been introduced in this system to overcome
the potential limitations given by the asymmetric nature of
more “classical” statistical distance, as like as the Kullback
Leibler divergence.

To decide if the considered time bin is anomalous, we
have implemented a voting algorithm, that is if the computed
distance exceeds a given threshold ψ for more than H rows
of the matrix, the system reveals an anomalous time bin and
the anomaly is thus identified.

V. EXPERIMENTAL RESULTS

As it is known a serious issue in testing IDSs is represented
by the lack of complete datasets provided with a ground truth.
Indeed, the only one (DARPA IDEVAL) dates back to 1999
[18] and it is not representative of real traffic [20]. Thus, it is
a common choice to use a real data-set and to synthetically
add some anomalies [17].

The proposed system has been tested using a publicly
available data-set, composed of traffic traces collected in the

Threshold Total Anomalies Synthetic Anomalies
ξ1 1969 154
ξ2 1920 48
ξ3 1381 28
ξ4 1269 23

TABLE I
EXPERIMENTAL RESULTS: HC-BASED METHOD

Threshold Total Anomalies Synthetic Anomalies
ξ1 2015 154
ξ2 2000 153
ξ3 1976 138
ξ4 1946 91
ξ5 1900 70
ξ6 1687 46
ξ7 1660 22
ξ8 1657 17
ξ9 1652 15
ξ10 1650 15

TABLE II
HC-BASED METHOD WITH FORECASTING (w = 512, EWMA α = 0.2,

JSD)

Abilene/Internet2 Network [2], a hybrid optical and packet
network used by the U.S. research and education community.

The used traces consist of the traffic related to nine distinct
routers, collected in one week, and are organized into 2016
files, each one containing data about five minutes of traffic
(netflow data). To be noted that the last 11 bits of the IP
addresses are anonymized for privacy reasons; nevertheless
we have more than 220000 distinct IP addresses.

Since the data provided by the Internet2 project do not have
a ground truth file, we are not capable of saying a priori if
any anomaly is present in the data. Because of this reason we
have performed a manual verification of the data (according to
the method presented in [17]), analyzing the traces for which
our system reveals the biggest anomalies. Moreover we have
synthetically added some anomalies in the data, so as to be
able to correctly interpret the offered results.

In more detail, we have added anomalies that can be
associated to DoS and DDoS attacks, represented by four or
five distinct traffic flows, each one carrying a traffic of 5 · 108

bytes (154 anomalies in total), either spanning a single or
multiple time bins. It is worth noticing that in all the cases
the original traces already presented traffic flows of that order.

As already stated in the previous section, we have consid-
ered as input to the system the number of bytes received
by a given IP address. This choice is supported by the
obtained experimental results. Nevertheless, it is possible to
feed the system with another metric, just simply modifying
the first block, if the “new” metric can result more suitable
for detecting some attacks.

Since, given the nature of the data set, we cannot plot a
ROC curve, in the presented tables we report the total number
of detected anomalies and the number of synthetic anomalies
detected by the system. Note that the tables have been obtained
varying the values of the thresholds, ξ and ψ for the two
algorithms. The real values of such thresholds are not reported
since are not significant in themselves, just consider that the
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Threshold Total Anomalies Synthetic Anomalies
ψ1 310 154
ψ2 256 152
ψ3 199 148
ψ4 179 144
ψ5 172 142
ψ6 167 137
ψ7 163 133
ψ8 151 123
ψ9 135 111
ψ10 115 94

TABLE III
OUR METHOD (EWMA α = 0.2)

Threshold Total Anomalies Synthetic Anomalies
ψ1 473 154
ψ2 333 153
ψ3 246 150
ψ4 208 146
ψ5 190 144
ψ6 172 137
ψ7 167 134
ψ8 150 121
ψ9 1697 117
ψ10 125 100

TABLE IV
OUR METHOD (EWMA α = 0.5)

first values (namely ξ1 or ψ1) always correspond to the highest
threshold value for which the system is able to detect all
the 154 synthetic anomalies. Hence, in general, the system is
always able to obtain a 100% detection rate (revealing all the
154 synthetic anomalies), but the performance can be strongly
different depending on the total number of detected anomalies
that has a direct impact on the number of false alarms.

For the sake of brevity we do not present the results related
to the study on the impact of the sketch dimension w on the
system performance; all the presented results correspond to a
sketch table of dimension w = 512.

To start with, let us analyze the performance offered by the
“classical” HC-based system, reported in Table I. In this case,
we can easily see that for detecting all the synthetic anomalies,
we have to accept a total number of detection equal to 1969,
which is not acceptable. Moreover the number of detected
synthetic anomalies suddenly decreases when increasing the
threshold, while the number of total detected anomalies re-
mains quite stable, making very hard the application of the
system in the “real world”.

The same considerations are valid for the results presented
in Table II, which shows the performance offered by the “clas-
sical” HC-based system, applied together with a forecasting
algorithm (EWMA, α = 0.2) and JSD.

Concerning the method presented in this paper, two distinct
sets of experimental tests have been conducted to tune the
parameter of the forecasting algorithms, EWMA and NSHW
respectively.

In more detail, Tables III, IV, and V present the results
achieved by the system using three distinct values of the
smoothing parameter of the EWMA algorithm, namely α =
0.2, α = 0.5, and α = 0.8.

Threshold Total Anomalies Synthetic Anomalies
ψ1 688 154
ψ2 344 152
ψ3 284 149
ψ4 225 146
ψ5 1320 142
ψ6 276 136
ψ7 157 122
ψ8 1697 119
ψ9 1767 109
ψ10 126 85

TABLE V
OUR METHOD (EWMA α = 0.8)

From the tables we can notice that when increasing the
value of the smoothing parameter, we have an increase in the
number of total detection. Indeed for detecting all the synthetic
anomalies the system detects a total number of anomalies
equal to 310 (case α = 0.2), 473 (case α = 0.5), or 688
(case α = 0.8).

In this case, to really evaluate the performance of the
system, we have performed a manual verification of the data
set, checking the additional detections of the system. From
that, we can conclude that, the cases α = 0.5 and α = 0.8
take to a significant number of false alarms, while almost
all the additional detections obtained with α = 0.2 (310
total detections minus the 154 synthetic anomalies) are real
anomalies already present in the traces.

Moreover, note that, in any case, event though all of the
additional detections obtained with α = 0.2 would not be
“real” anomalies they would correspond to a maximum false
alarm rate of 8.3% that could be considered as “acceptable”.

We can also easily notice, by analyzing Table III, that the
number of detected synthetic anomalies varies quite slowly
when increasing the value of the threshold, while the number
of total detection decreases much faster that make easy the
tuning of the system.

Finally, additional tests (not shown for the sake of brevity)
have demonstrated that varying the smoothing parameter
around the value 0.2 (i.e., α ∈ [0.1, 0.3], does not take to
any significant variation in the system performance.

From these considerations we can conclude that the best
performance are obtained when α = 0.2. Note that this is also
supported by the literature, indeed it is known that 0.2 is in
the typical range for the smoothing parameter.

Moreover, using a low value for the smoothing parameter
implies the use of a model not much responsive to the
fluctuations in the data. This has a direct impact on our
system performance. Indeed, by analyzing Tables IV and V
we can notice that the system present a “strange” behavior.
Indeed the total number of detections is not always decreasing,
when increasing the value of the threshold. This is due to
the presence of “noisy samples” in the data and it is hence
mitigated when the parameter α tends to zero.

Analogously to what done for tuning the smoothing pa-
rameter of the EWMA algorithm, Tables VI - VIII present an
analysis of the system performance obtained varying the value
of the parameter β of the NSHW algorithm (for sake of brevity
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Threshold Total Anomalies Synthetic Anomalies
ψ1 402 154
ψ2 299 152
ψ3 237 146
ψ4 206 144
ψ5 187 139
ψ6 166 133
ψ7 159 128
ψ8 137 111
ψ9 122 98
ψ10 107 87

TABLE VI
OUR METHOD (NSHW α = 0.2 β = 0.2)

Threshold Total Anomalies Synthetic Anomalies
ψ1 531 154
ψ2 372 153
ψ3 279 150
ψ4 237 144
ψ5 196 139
ψ6 185 133
ψ7 165 129
ψ8 154 118
ψ9 1695 113
ψ10 122 94

TABLE VII
OUR METHOD (NSHW α = 0.2 β = 0.5)

we do not show the results corresponding to different values
of α, since they are similar to those obtained for EWMA). In
more detail the presented results have been obtained by using
α = 0.2 and three distinct values of β, namely β = 0.2 (Table
VI), β = 0.5 (Table VI), and β = 0.8 (Table VI).

For these tables, the considerations done for the previous
set of tests are still valid and take us to conclude that the best
value for the β parameter is β = 0.2.

Given these results, we can make a comparison between the
use of the EWMA and the NSHW algorithms, by comparing
Table III and VI that correspond to the best settings for the
two considered cases. The inspection of the data set takes us
to conclude that the best performance are achieved when using
the EWMA algorithm.

Table IX present the results of the system when disabling the
forecasting module (M̂HH is directly computed starting from
T ref). By comparing this table with the previous ones, we can
see that disabling the forecasting module takes to worsen the
performance. This result was predictable, indeed disabling the
forecasting module is equivalent to use the EWMA algorithm

Threshold Total Anomalies Synthetic Anomalies
ψ1 660 154
ψ2 436 152
ψ3 322 150
ψ4 252 145
ψ5 206 140
ψ6 186 137
ψ7 185 132
ψ8 158 121
ψ9 1696 115
ψ10 146 99

TABLE VIII
OUR METHOD (NSHW α = 0.2 β = 0.8)

Threshold Total Anomalies Synthetic Anomalies
ψ1 968 154
ψ2 538 153
ψ3 329 150
ψ4 276 147
ψ5 1326 146
ψ6 412 136
ψ7 1319 127
ψ8 1768 122
ψ9 1767 111
ψ10 659 89

TABLE IX
OUR METHOD (NO FORECASTING)

with α = 1, and the previous analysis had already highlighted
that the best performance are achieved with low values of the
smoothing parameter.

After this analysis we can thus conclude that the presented
system outperforms the “classical” HC-based methods and
that the best settings are those corresponding to the results
presented in Table III, that is EWMA algorithm with α = 0.2.

Finally, to evaluate the computational complexity in time
and memory space of the proposed system, we have used
a general purpose PC, equipped with an Intel Core 2 Duo
processor at 3GHz and 2GB of RAM. The experimental results
have shown that the system (using the best configuration
parameters) is able to process a whole week of traffic from
the Abilene/Internet2 network in about 531s, with a maximum
memory consumption of 0.9% (about 1.8 MB).

In more detail the system has demonstrated to be able to
analyze a single time-bin of 5 minutes of traffic related to a
single router in about 29ms, demonstrating to be suitable for
the on-line detection of anomalies in backbone networks.

VI. CONCLUSIONS

In this paper we have presented a novel anomaly detection
method, based on the analysis of the behavior of the HH in
the network traffic. In more detail, our system is based on
the monitoring of the HCs in the HH distribution, by means
of a combined use of sketches, forecasting algorithms and
statistical distances.

To assess the validity of the proposed solution, we have
tested the system over a week of traffic collected in the
Internet2/Abilene network. The performance analysis has been
targeted at first to the tuning of the different parameters of the
method and then to extensively verify the effectiveness of the
system. Such analysis has highlighted that, for a proper choice
of the parameters, the implemented system obtains very good
results, detecting all the synthetic anomalies and some more
anomalies already present in the original data-set.

In conclusion, the proposed system has proved to outper-
form the “classical” HC-based methods, demonstrating that
improvements in the performance can be obtained by perform-
ing the change detection on the set of the HHs, instead of
using the whole traffic, and by applying a forecasting module.
Moreover the system has resulted to be suitable for the on-line
detection of anomalies in backbone networks.
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