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a b s t r a c t

This work focuses on the problem of modelling and controlling a Ducted-Fan Miniature unmanned
Aerial Vehicle (DFMAV) considering explicitly the interaction with the environment and the resulting
constraints that affect the systemdynamics. The goal is to address a scenario inwhichDFMAVs accomplish
tasks requiring contact between the aerial vehicle and the environment such as remote manipulation,
docking and flight in cluttered environments. Since the system’s dynamics may be dramatically different
when contacts happen andwhen they do not, an overall description of the system is obtained by collection
of the different behaviours into a hybrid automaton. For this particular class of hybrid dynamical systems,
a framework for robust control of the system based on a path following strategy is developed and tested
on a scenario in which the DFMAV is required to dockwith and undock from a vertical surface. Simulation
results are also presented to show the effectiveness of the proposed framework.

© 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Recent advances in the design of flight control systems for
Unmanned Aerial Vehicles (UAV) have allowed a great variety of
civil andmilitary applications to be accomplished by sophisticated
autonomous systems (Castillo, Lozano, & Dzul, 2003; Feron &
Johnson, 2008; Hughes, 2007; Sullivan, 2006). The effectiveness of
UAV in real applications is one of the main reasons for the growing
interest in this research field that is often referred to as ‘‘aerial
robotics’’. Despite the important results already achieved, the
design of control systems for UAV has to face the new challenges
posed by future applicative scenarios. Autonomous missions, in
fact, more often require vehicle operations next to other vehicles
or infrastructure. These operations include, inter alia, take-off
and landing –Theodore et al. (2005) – obstacle avoidance –
Scherer, Singh, Chamberlain, and Saripalli (2007) – and docking
and refuelling –Hansen, Murray, and Campos (2004). These kind
of applications are behind the manufacture of miniature VTOL
(Vertical Take-Off and Landing) unmanned aircraft, which have
shown incredible flight manoeuvrability, as testified for example
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in Frank, McGrew, Valenti, Levine, and How (2007) and Gavrilets
(2003), and seem to have a large potential that has so far been
little investigated. The primary reason is probably the fact that the
more frequently adopted configuration, the helicopter, has fragile
moving blades which should be kept safely away from any rigid
obstacle.

A successful VTOL configuration, which overcomes the limita-
tion imposed by the presence of the rotor while at the same time
maintaining the manoeuvrability of standard helicopters, is rep-
resented by the ducted-fan (Johonson & Turbe, 2005; Naldi, Gen-
tili, Marconi, & Sala, 2010; Pflimlin, Binetti, Trouchet, Soueres, &
Hamel, 2007). This class ofminiatureUAV is characterised by a very
simple mechanical structure, composed only of two main subsys-
tems: the propulsive subsystem, composed of a propeller and an
electric or endothermicmotor, and the attitude control subsystem,
composed of a set of profiled actuated flaps. Both the propeller and
the flaps are protected by the presence of a cylindrical fuselage, the
duct, which can be designed in order to improve the flying qualities
Ko, Ohanian, and Gelhausen (2007).

Drawing inspiration from the potential of these VTOL aircraft,
the focus of this work is on the modelling and control of miniature
aerial vehicles in an innovative scenario in which the interaction
with the environment, in terms of desired or even unpredictable
contacts, is explicitly considered. The main motivation behind
this endeavour is to allow aerial systems to accomplish advanced
robotic tasks such as remote manipulation, sample picking,
inspections of buildings, etc.

In all the situations inwhich contacts between the aerial vehicle
and the environment occur, the dynamics of the system may
dramatically change and the development of a robust control law
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able to handle all the possible interactions becomes a challenge. For
this reason we start by investigating the dynamics of the system
considering explicitly the possible constraints deriving from the
interaction with the environment and, drawing inspiration from
recent advances in robotics –Egerstedt (2000) – manoeuvre-based
control –Frazzoli, Dahleh, and Feron (2005) and Sanfelice and
Frazzoli (2008) – and hybrid control systems theory –Goebel,
Sanfelice, and Teel (2009) and Matveev and Savkin (2000) – we
collect a set of different lower complexity dynamical models, each
one describing only a particular flight condition, to form a hybrid
automaton, Lygeros, Johansson, Simić, Zhang, and Sastry (2003)
and Tavernini (1987).

With the hybrid automaton in hand, in the second part of the
paper we develop a control framework to govern the DFMAV in
presence of uncertainties. The developed control framework rests
upon a path following strategy, Skjetne, Fossen, and Kokotovic
(2004), in which the reference trajectory used for control purposes
is characterised by a geometric path parametrised by a time law.
The resulting control architecture is constituted by a set of low
level controllers, associated to the specific operative modes of the
vehicle, and a supervisor properly enabling the low level controller
and setting the appropriate time law according to the actual
operativemode and state of the vehicle and to the desired task. The
control architecture is tested on a manoeuvre in which the vehicle
is required to dockwith a vertical surface starting from a free-flight
configuration, to slide along it by tracking a desired state reference
signal, and, finally, to undock from the vertical surface by reaching
again a free-flight configuration. Simulation results are presented
to show the effectiveness of the proposed framework.

The manuscript is organised as follows. Section 2 presents the
dynamics of the miniature aerial vehicle of interest for this paper
and the interaction scenario. Section 3 discusses the framework
for the control of the DFMAV with special emphasis towards the
docking–undocking test manoeuvre. Simulation results are shown
in Section 4. Finally, Section 5 concludes with final remarks.
Notations.

R and R+ denote respectively the field of real and positive real
numbers. For x ∈ Rn, |x| denotes the Euclidean norm and, for A a
closed subset of Rn, |x|A = miny∈A |x − y| denotes the distance of
x from A. For a bounded function f : D → Rn,D ⊂ R, ‖f ‖∞

denotes the infinity norm defined as supt∈D |f (t)|. For a vector
x ∈ Rn, the notation Bµ(x) denotes the n-dimensional ball of
radius µ with centre in x. For a closed set A ⊂ Rn and a positive
integerµ, the notationA+Bµ denotes the set {x ∈ Rn

: |x|A ≤ µ}.
The notation f : D ⇒ C denotes a set-valued map.

2. DFMAVmodelling and interaction scenario

We focus on a miniature ducted-fan configuration, sketched
in Fig. 1, composed of a fixed pitch propeller (without collec-
tive/cyclic pitches and tail rotor as in the helicopter) and of a num-
ber of actuated flaps positioned below the propeller that deviate
the air flow in order to generate anti-torque and the forces/torques
needed to gain full controllability, Johonson and Turbe (2005),
Marconi and Naldi (2006) and Pflimlin et al. (2007). The system
has all the degrees-of-freedom of a helicopter but with a very sim-
ple and reliable mechanical structure. Furthermore, the shroud al-
lows the vehicle to safely interact with the environment avoiding
dangerous collisions between themoving blades and obstacles. For
the sake of simplicity, we limit the analysis only to the ‘‘planar dy-
namics’’ on the configuration manifold S1 × R2 (see Fig. 1). The
general ‘‘spatial dynamics’’, defined on the configuration manifold
SO(3)×R3, can be dealt with in a similar, though heavier, way from
a notational viewpoint.

We consider the DFMAV in the two possible flight modes
denoted as ‘‘free flight’’ and ‘‘vertical interaction’’ (see Fig. 1), with
the latter representative of a possible scenario in which the vehicle
slides in contact with the environment in order to perform robotic
tasks (such as sample picking, data collection by contact, grasping,
etc.). Specifically, we address the control task in which the vehicle
is required to dock with and to undock from the vertical surface.
In this respect the DFMAV is considered as a rigid body which may
come into contact with rigid surfaces through the contact points
PV1 and PV2 (see Fig. 1). From a technological viewpoint, it is also
assumed that the points PV1 and PV2 are equipped with contact
sensors (such as force or tactile sensors, Nicholls & Lee, 1989), so
that the specific operative mode in which the DFMAV operates is
known.

2.1. Force/torque generation mechanism

To model forces and torques generation mechanism, standard
aerodynamic arguments are considered Stengel (2004) by assum-
ing the system in almost stationary flight and by neglecting all
possible aerodynamic forces caused by the forward speed of the
system except for the aerodynamic resistance, Johonson and Turbe
(2005), Ko et al. (2007) and Pflimlin et al. (2007).

Each flap is modelled as a wing with area Sflap immersed into
a relative wind velocity denoted as Ve, so that the aerodynamic
lift force is approximated by F = 0.5ρSflapCLV 2

e , where ρ is
the air density and CL is the lift coefficient. By assuming airfoil
profiles with small Reynolds numbers and with reasonably small
angles of attack, the lift coefficient can be approximated by CL =

aFuF , with aF a constant coefficient that depends on the geometry
of the flap, and where uF , the angle of attack with respect to
the propeller downwash, represents the control input used to
manipulate the flap’s force. Drag forces are neglected by assuming
an aerodynamically efficient flap subsystem.

The flap’s relative wind velocity Ve is assumed equal to the
output velocity of the air generated by the rotor given by Ve =√
uM/(2ρSdisk) inwhich uM is the propeller thrust and Sdisk denotes

the area of the propeller disk. Hence, the expression of the flap
lift F can be rewritten as F = kFuFuM where kF = aFSflap/Sdisk.
It is assumed that uM and uF are the available control inputs
whose amplitude is limited by physical constraints. In particular,
the propeller thrust, which can be applied in one direction and it is
limited by the maximum power characterizing the electric motor,
ranges in the set uM ∈ [uM , ūM ], with 0 < uM ≤ ūM and ūM
greater than the gravity force, while uF , because of mechanical and
aerodynamical limitation, ranges in the set uF ∈ [−ūF , ūF ], with
ūF a given positive number.

2.2. Free flight model

The Newton–Euler equations of motion of a rigid body in the
configuration manifold S1 × R2 are used to model the free flight
mode, Naldi et al. (2010). With Fi = {Oi,

−→
i i,

−→
j i} and Fb = {Ob,

−→
i b,

−→
j b} respectively an inertial and body coordinate frame fixed

in the centre of mass of the aircraft, and with θ ∈ R the angle
parametrising the S1 manifold (see Fig. 1), the position col(x, z)
of the centre of mass in Fi is governed by the differential equations

Mẍ = uM sin θ + kFuMuF cos θ − F x
drag

Mz̈ = uM cos θ − kFuMuF sin θ − Mg − F z
drag

J θ̈ = −kτuMuF

(1)

in which M and J are respectively the vehicle mass and inertia,
kτ = daFSflap/Sdisk, with d the lever arm of the flap’s force with
respect to the centre of mass of the vehicle, and F x

drag and F z
drag

model the aerodynamic drag forces along the longitudinal and
vertical direction.
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Fig. 1. The two operative modes considered in this paper, namely free-flight (a) and vertical interaction (b) on the configuration manifold S1 × R2 .
Motivated by the fact that the value of kF ūF is very small,
the model (1) can be simplified by neglecting the body forces
kFuMuF cos θ and kFuMuF sin θ acting on the ẍ and z̈ dynamics
(see also Hauser, Sastry, & Meyer, 1992). Moreover, by following
the analysis in Ko et al. (2007) and Pflimlin et al. (2007) that
shows how, at moderate speed, the most relevant drag effect is
represented by the so-called ram-drag, we obtain F x

drag ≈ λxẋ and
F z
drag ≈ 0, with λx a constant coefficient. The free-flight dynamics
is then rewritten as

Mẍ = uM sin θ − λxẋ
Mz̈ = uM cos θ − Mg

J θ̈ = −kτuMuF .

(2)

While the simplified model (2) is used for control design purposes,
(1) is used in simulation to test the effectiveness of the proposed
solution.

2.2.1. Interaction with a vertical fixed surface
In this sectionwemodel the system in the ‘‘vertical interaction’’

scenario in which the UAV slides along a vertical surface by
possibly rotating around the pivot PV1 (see Fig. 1). For the sake of
simplicity, we just consider the cases in which the impact takes
place with a vertical (i.e. oriented along the Zi axis) surface located
on the right side of the vehicle at x = ᾱ. More complicated
scenarios involving the interaction with shaped surfaces can
be treated by properly adapting the forthcoming analysis. This
operative mode may be representative of situations in which the
UAV is required to accomplish specific tasks by interaction, such
as data acquisition by contact or others robotic tasks.

Denoting byβ = z−ℓV sin(θ+γM
V ) the position of PV1 along the

Zi axis, the generalised forcesFθ (uM , uF ) andFβ(z, ż, θ, θ̇ , uM , uF )
acting on the vehicle with respect to the generalised coordinates θ
and β are given by

Fθ
Fβ


= G(θ)


uM

uMuF


−Λβ̇ (3)

in which

G(θ) :=


ℓV cos γM

V −kFdV sin γ F
V

cos θ −kF sin θ


Λ =


0
λV


(4)

where λV is the viscous friction of the vertical surface, and γM
V and

γ F
V are the angles between the body axis Xb and the arm of lengths
ℓV and, respectively, dV in Fig. 1. We observe that the matrix G(θ)
in (4) is invertible for any θ satisfying

− γM
V < θ < γ F

V . (5)
Fig. 2. The hybrid automaton referring to the restricted interaction scenario
considered in the paper.

The Lagrangian function of the system, by considering kinetic and
potential energies, can be computed as

L =
1
2
M

β̇ + 2ℓV cos(θ + γM

V )β̇θ̇ + ℓ2V θ̇
2

−Mg

β + ℓV sin(θ + γM

V )


(6)

and it is governed by the Lagrangian equations

d
dt
∂L

∂β̇
−
∂L

∂α
= Fβ ,

d
dt
∂L

∂θ̇
−
∂L

∂θ
= Fθ ,

which, after simple computations, yield

M

β̈ + ℓV cos(θ + γM

V )θ̈ − ℓV sin(θ + γM
V )θ̇

2
+ g


= Fβ(z, ż, θ, θ̇ , uM , uF ),

M

ℓV β̈ cos(θ + γM

V )+ ℓ2V θ̈ + gℓV cos(θ + γM
V )


= Fθ (uM , uF ).

(7)

This is a 4-th order systemwith state (β, β̇, θ, θ̇ ) (or, alternatively,
by the definition of β , with state col(z, ż, θ, θ̇ )), and inputs uM and
uF . In this operative mode, the lateral coordinate x is constrained
to be x = ᾱ − ℓV cos(θ + γM

V ).
For control purposes, it is worth developing the model (7) by

introducing two new ‘‘virtual’’ control inputsF1 andF2 defined, in
terms of the generalised forces Fθ ,Fβ , as

F1
F2


= L(θ)−1


Fθ
Fβ


+Λβ̇


(8)

in which
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L(θ) := M


ℓ2V ℓV cos(θ + γM
V )

ℓV cos(θ + γM
V ) 1


andΛ is defined as in (4). In terms of the new inputs F1 and F2 the
dynamics (7) read as

θ̈ = F1 − ℓθ (θ, θ̇ , β̇, λV ) β̈ = F2 − ℓβ(θ, θ̇ , β̇, λV ) (9)

where

ℓθ (θ, θ̇ , β̇, λV ) :=
cos(θ + γM

V )θ̇
2

sin(θ + γM
V )

−
λV β̇ cos(θ + γM

V )

MℓV sin2(θ + γM
V )

ℓβ(θ, θ̇ , β̇, λV ) := g −
ℓV θ̇

2

sin(θ + γM
V )

+
λV β̇

M sin2(θ + γM
V )
.

In the subsequent sections we use, for control purposes, the model
(9) instead of (7). In this respect, by (3) and by invertibility of G(θ)
for all θ satisfying (5), the relation between the ‘‘virtual’’ inputs
(F1,F2) and the ‘‘real’’ inputs (uM , uF ) is given by

uM
uMuF


= G−1(θ)L(θ)


F1
F2


(10)

for all θ such that (5) holds. Hence, with uM ∈ [uM , ūM ], uM > 0,
the real inputs (uM , uF ) can be always retrieved from the virtual
inputs (F1,F2) provided that θ satisfies (5). Furthermore, we
regard the viscous friction λV as uncertain with a nominal value
denoted by λV0.

2.3. A hybrid dynamical model of the overall dynamics

A description of the overall dynamics is obtained by means
of a hybrid automaton (see Goebel et al., 2009), whose hybrid
states correspond to the possible operative modes described
above (see Fig. 2). In this part we briefly review the definition
of hybrid automaton by focusing on the UAV framework. The
hybrid automaton captures also un-ideal situations characterizing
realistic flight conditions, such as undesired ‘‘rebounds’’ that the
UAV might undergo in the manoeuvre of docking with a vertical
surface starting from a free-flight configuration.

For notational convenience, let

ξ =

x ẋ z ż θ θ̇

T and u =

uM uF

T
the state and the inputs of the considered system and by U the
set in which the control inputs are allowed to range, i.e. U =

[uM , ūM ]× [−ūF , ūF ]. Then a hybrid automaton is identified by the
following objects:

• A set of operative modes Q which, in the framework addressed
in the paper, is given by two modes denoted by Q = {FF , VI}
with the following meanings:
– FF, Free Flight. None of the points PHi and PVi, i = 1, 2, are in

contact with the environment;
– VI, Vertical Interaction. The point PV1 (or, alternatively, PV2) is

in contact with the vertical surface.
• A domain mapping D : Q ⇒ R6

× R2 that defines, for any
q ∈ Q , the set of whole state and input space where the
continuous variable ξ and control input u may range in the
specific operative mode. The domain state and input space is
assumed to be a Cartesian product denoted byD(q) = Dξ (q)×
Du(q). By the analysis in the previous subsections, the domain
mapping, for the operative modes FF and VI, is defined in the
following way:
– D(FF) = R6

× U;
– D(VI) = Dξ (VI)×U withDξ (VI) = {ξ ∈ R6

: x+ℓV cos(θ+

γM
V ) ≥ ᾱL}, with ᾱL the lower bound of the position ᾱ, i.e.
ᾱ > ᾱL.
• A locally Lipschitz flow map f : Q × R6
× R2

→ R6 which
describes the continuous evolution of the dynamics while a
specific operative mode is active. For every q ∈ Q , the flow
map is only defined on D(q). In our framework, according to
Section 2, the flow maps are specified as follows:
– f (FF , ξ , u), defined for (ξ , u) ∈ D(FF), is given by the 6-th

order dynamics (2);
– f (VI, ξ , u), defined for (ξ , u) ∈ D(VI), is given by the 4-th

order dynamics (7).
• A set of edges E ⊂ Q × Q that identifies pairs (q1, q2) such that

the transition from the operativemode q1 to q2 is possible under
certain conditions. In our simplified framework the two pairs
{FF , VI} and {VI, FF}belong toE . Furthermore, in order tomodel
realistic cases in which the impact with the vertical surface is
impulsive but non-completely inelastic, and thus the UAVmight
undergo ‘‘rebounds’’ while docking, a ‘‘self-loop’’ in the hybrid
state FF is also considered. Hence, also the edge {FF , FF} belongs
to E .

• A guard mapping G : E ⇒ R6
× R2 that, for each (q1, q2) ∈ E ,

identifies the set G(q1, q2) to which the continuous state ξ and
the control inputs u have to belong for the transition from q1 to
q2 to be enabled.
A special role in the computation ofG({FF , VI}),G({VI, FF}) and
G({FF , FF}) is played by

FX (θ, uM , uF ) = uM sin θ + kFuMuF cos θ (11)

that represents the resultant force acting on the vehicle along
the Xi axis, and by αV (x, θ) := x+ ℓV cos(θ + γM

V ) that denotes
the horizontal position of the contact point PV1. Furthermore,
according to the impact theory of rigid bodies (see Brogliato,
1996), possible rebounds can be characterised in terms of
the value of the so-called coefficient of restitution cR along
the lateral direction. The latter is a dimensionless coefficient
relating the lateral velocity α̇V of the contact point PV1 before
and after the impact. It takes value in the interval [0, 1], with
cR = 0 and cR = 1 modelling a totally inelastic and elastic
impact, respectively. The value of the coefficient depends on a
number ofmechanical features of the impacting bodies (such as
viscoelastic properties of the materials and plastic deformation
and geometry of the contact surfaces, see Goldsmith, 1960), and
its structural properties are affected by the value of FX and α̇V
at the impact, i.e. cR(FX , α̇V ). Large forces and small speed at the
impact typically result into inelastic impacts (i.e. cR = 0) and
thus absence of rebounds. On the contrary, small lateral forces
and large lateral speed result in elastic impacts with the exact
value of cR ∈ (0, 1] dependent on mechanical properties of
the impacting materials. The dependence of cR on (FX , α̇V ) can
be obtained by considering a damped compliant impact model
(see Brogliato, 1996). Specifically, denoting by ν the lateral
deformation of the impacting material, it is assumed that, in
the small interval of time δTi in which the impact dynamics
take place, the deformation is governedby the linear differential
equation

M(ν̈ + kdν̇ + keν) = FX (θ, uM , uF ) (12)

where kd and ke denote the dissipative and elastic coefficients of
the material, respectively. The initial conditions of the previous
dynamics at the impact time ti are (ν(ti), ν̇(ti)) = (0, α̇V (ti)).
By assuming FX (t) ≡ FX (ti) = const, for t ∈ [ti, ti + δTi]
(assumptionmotivated by the negligible duration of the impact
interval in relation to the time constants of the vehicle state
and input variables), the impact can be considered inelastic (i.e.
cR = 0) if ν(t) ≥ 0 for all t ∈ ti + δTi, and elastic otherwise.
In the latter case cR = c̄R with c̄R ∈ (0, 1] dependent on the
properties of the impacting material.
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With these functions at hand, the guard mappings involving FF
and VI are naturally defined as follow:
– G({FF , VI}) = {(ξ , u) ∈ D(FF) : FX (θ, uM , uF ) ≥ 0, αV
(x, θ) ≥ ᾱ, cR(FX , α̇V ) = 0};

– G({FF , FF}) = {(ξ , u) ∈ D(FF) : FX (θ, uM , uF ) ≥

0, αV0xub(x, θ) ≥ ᾱ, cR(FX , α̇V ) > 0};
– G({VI, FF}) = {(ξ , u) ∈ D(VI) : FX (θ, uM , uF ) < 0}.

• A reset map R : E × R6
× R2

→ R6 that, for each (q1, q2) ∈ E
and (ξ , u) ∈ G(q1, q2), identifies the jump of the state variable
during the transition from q1 to q2. The reset maps of interest
can be specified as follows:
– R({FF , VI}, (ξ , u)) can be computed under the inelastic im-

pact assumption discussed above and by energy conservation
arguments. For the sake of simplicity we assume that the im-
pact takes place with zero vertical speed, i.e. ż = 0 at the
impact time. Let (ẋ−, θ̇−) and (ẋ+, θ̇+) be the lateral and an-
gular velocity just before and after the impact, respectively.
The kinetic energy of the vehicle before and after the impact
can be computed respectively as E−

= M(ẋ−)2/2+ J(θ̇−)2/2
and E+

= MℓV (θ̇+)2/2. The latter, in view of the inelastic im-
pact assumption, has been computed by modelling the UAV
as a pendulum constrained at PV1 with mass M and length
ℓV . With cE ∈ (0, 1] an energy loss coefficient (modelling
the energy loss due to plastic deformation of the material,
see Brogliato, 1996), we have (E+)2 = cE(E−)2 by which
θ̇+

= cE((ẋ−/ℓV )
2
+ (J/M)(θ̇−/ℓV )

2)1/2. Then, by consider-
ing the expression ofD(VI), ẋ+

= ℓV sin(θ+γM
V )θ̇

+. Overall,
the map R({FF , VI}, (ξ , u)) is thus a function that associates
to (ξ , u) ∈ D(FF) the element

ξ ′
= col

x, cEℓV sin(θ + γM
V )


ẋ2

ℓ2V
+

J θ̇2

Mℓ2V
, z, ż,

θ, cE


ẋ2

ℓ2V
+

J θ̇2

Mℓ2V

 .
– We derive now R({FF , FF}, (ξ , u)) by assuming, as above,

that ż = 0 at the impact time. The reset relation for
θ̇ is obtained by the same energy conservation arguments
used before for R({FF , VI}, (ξ , u)), by assuming that, at
the impact, the vehicle undergoes an instantaneous angular
acceleration while pivoting around the contact point PV1. It
turns out that θ̇+

= cE((ẋ−/ℓV )
2

+ (J/M)(θ̇−/ℓV )
2)1/2. As

far as the reset relation for ẋ is concerned, the arguments
above cannot be used any more as αV is not constrained
after the impact. Rather, by the definition of cR, the lateral
velocity α̇V of PV1 before and after the impact satisfies α̇+

V =

−cR(FX (θ−, u−

M , u
−

F ), α̇
−

V ) α̇
−

V with obvious meaning of the
acmes ‘‘−’’ and ‘‘+’’. By this and the definition of αV it follows
that ẋ+

= ℓV sin(θ+
+γM

V ) θ̇
+

− cR(FX (θ−, u−

M , u
−

F ), α̇
−

V ) α̇
−

V .
Thus, using the fact that θ+

= θ− (instantaneous impact),
the map R({FF , FF}, (ξ , u)) is a function that associates to
(ξ , u) ∈ D(FF) the element

ξ ′
= col

x, ℓV cE sin(θ + γM
V )


ẋ2

ℓ2V
+

J θ̇2

Mℓ2V

− cRα̇V , z, ż, θ, cE


ẋ2

ℓ2V
+

J θ̇2

Mℓ2V


with cR = cR(FX (θ, uM , uF ), α̇V ). In the previous model it is
clearly assumed that value of cE is such that the overall kinetic
energy of the vehicle after the impact is lower or equal to the
one before the contact.

– Finally, R({VI, FF}, (ξ , u)) is simply the identity, namely
R({VI, FF}, (ξ , u)) = ξ .
3. DFMAV control over desired manoeuvres

With the hybrid automaton in hand, a few results regarding the
control of the aerial vehicle in order to execute desiredmanoeuvres
are now presented. For compactness, attention is focused on a
specific test manoeuvre in which the aerial vehicle, starting from a
free-flightmode, is required to dockwith a vertical surface, to slide
along it by tracking a desired state reference signal, and, finally,
to undock from the vertical surface by reaching again a free-flight
configuration (see Fig. 4).

The control architecture rests upon a path following strategy,
in which the reference trajectory used to design the control law
is characterised by a geometric path parametrised by a variable
usually referred to as the time law. Path following was already
shown to be a successful strategy in several control fields, such
as robotics Coelho and Nunes (2005), aerospace Scharf, Ploen,
and Hadaegh (2003), underwater vehicles Antonelli, Fossen, and
Yoerger (2008). It is also effective in handling robustness issues,
Aguiar, Hespanha, and Kokotovic (2005) and Skjetne et al. (2004).

The resulting control architecture is constituted by a set of
low level controllers, associated to the specific operative modes
in which the vehicle operates (FF and VI for the considered test
manoeuvre), and a supervisor. The role of the latter is to enable the
appropriate low level controller and a time law strategy according
to the actual state and operative mode of the vehicle and to the
desired task.

A preliminary step in the design of the control law consists of
the computation of state and input reference trajectories according
to the path following strategy. This is done in the next subsection.
Then, in the subsequent two subsections, the low level control
synthesis and the design of the supervisor are addressed.

3.1. Reference manoeuvres

With ϱ : R → R a smooth function and ϱ(t) := (ϱ(t)
ϱ̇(t) · · · ϱ(s−1)(t)), s > 0, a reference manoeuvre for the
system in the operative mode q ∈ Q is given by a smooth function
ξ ⋆(ϱ(t)) ∈ D(q), denoted as state manoeuvre, and a bounded
function u⋆(ϱ(t)) ∈ U , denoted as an input manoeuvre, satisfying

dξ ⋆(ϱ(t))
dϱ

ϱ̇(t) = f (q, ξ ⋆(ϱ(t)), u⋆(ϱ(t))) (13)

for almost all t and for some s > 0. We refer to the vector ϱ(t)
and to the set gr (ξ ⋆, u⋆)|Σ := {(ξ ′, u′) ∈ D(q) : (ξ ′, u′) =

(ξ ⋆(ϱ), u⋆(ϱ)), ϱ ∈ Σ} respectively as the time law and the
geometric-path of the manoeuvre. In the previous definitionΣ ⊂

Rs is the set where the time law is supposed to range while s is
a positive number related to the relative degree of the system.
Referencemanoeuvres can be obtained by nominal inversion of the
systemdynamics as detailed inAppendixA for the operativemodes
FF and VI.

Due to the presence of possible parametric/dynamic uncertain-
ties, exogenous disturbances and others un-ideal initial conditions
that make the controlled plant behaving differently from desired
manoeuvres, a crucial step is to generate robust reference manoeu-
vres whose practical (and not perfect) tracking does not generate
unwanted switches between operativemodes in the actual motion
of the plant. In the following, robustness is quantified bymeans of a
positive parameterµ that, roughly, quantify how far the actualmo-
tion of the plant can bewith respect to the referencemanoeuvre in
order to avoid unplanned changes of operativemodes and to effec-
tively switch to the desired operative mode. With reference to the
docking–undocking test manoeuvre, robust referencemanoeuvres
of interest can be characterised as follows:
• a. Docking reference manoeuvre. This is the first manoeuvre

designed to have the vehicle approaching the vertical surface
starting from a free-flight configuration. Mathematically, the
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reference manoeuvre is a smooth function ξ ⋆a (ϱ(t)) ∈ D(FF)
and a bounded function u⋆a(ϱ(t)) ∈ U of the form specified
in Appendix A, where ϱ(t) ⊂ R5 is the specific time law. The
latter is supposed to range in the set Σa ⊂ R5 to be properly
designed, along with the geometric-path, so that the reference
manoeuvre lends itself to design control laws effective in
enforcing the desired docking manoeuvre. Specifically, it is
supposed that there existΣ ′

a,Σ
′′
a ⊂ Σa such that the following

properties hold:

(gr(ξ ⋆a , u
⋆
a)|Σa + Bµ)

 
{FF ,q}∈E\{FF ,VI}

G({FF , q})


= Ø;

(gr(ξ ⋆a , u
⋆
a)|Σ ′

a
+ Bµ)

 
{FF ,q}∈E

G({FF , q})


= Ø;

(gr(ξ ⋆a , u
⋆
a)|Σ ′′

a
+ Bµ) ⊂ G({FF , VI}).

(14)

The first condition simply asks, in geometric terms, that the
reference manoeuvre lies at least µ-distant from all the
guard sets that, if intersected, would enable a switch to a
different undesired (i.e. different from VI) operative mode. This
guarantees that each state and input trajectory evolvingµ-close
to the referencemanoeuvre is possibly subject to a switch to the
mode VI only. On the other hand, the second condition requires
that, as long as ϱ(t) ∈ Σ ′

a, any manoeuvre taking place µ-close
to the reference is guaranteed to remain in the FFmode. Finally,
the last condition ensures that for each ϱ(t) ∈ Σ ′′

a , any state and
input trajectories µ-close to the reference is necessarily inside
G({FF , VI}). Thus, under the assumption (to be fulfilled by an
appropriate design of the control law) that the actual state and
input trajectory evolve µ-close to the reference, the previous
properties hide a supervisor strategy for choosing the time law
so that the system evolves robustly in FF (ϱ(t) ∈ Σ ′

a), or evolves
in FF by possibly switching to VI (ϱ(t) ∈ Σa), or definitely
switches the operative mode to VI (ϱ(t) ∈ Σ ′′

a ).
• b. Sliding reference manoeuvre. This is the second reference

manoeuvre designed to slide along the vertical surface.
Mathematically, the reference manoeuvre is a smooth function
ξ ⋆b (ϱ(t)) ∈ D(VI) and a bounded function u⋆b(ϱ(t)) ∈ U of the
form specified in Appendix A, where ϱ(t) ⊂ R3 is the specific
time law. The latter is supposed to range in the set Σb ⊂ R3

that, as above, is chosen alongwith the geometric path to fulfil a
number of properties. Specifically, it is supposed that there exist
Σ ′

b,Σ
′′

b ⊂ Σb such that the following properties, interpretable
as we did for (14), hold:

(gr(ξ ⋆b , u
⋆
b)|Σb + Bµ)

 
{VI,q}∈E\{VI,FF}

G({VI, q})


= Ø;

(gr(ξ ⋆b , u
⋆
b)|Σ ′

b
+ Bµ)

 
{VI,q}∈E

G({VI, q})


= Ø;

(gr(ξ ⋆b , u
⋆
b)|Σ ′′

b
+ Bµ) ⊂ G({VI, FF}).

(15)

• c. Undocking reference manoeuvre. This is the last manoeuvre
associated to the final phase in which the vehicle definitely
undocks from the vertical surface and evolves in the operative
mode FF. Mathematically, the referencemanoeuvre is a smooth
function ξ ⋆c (ϱ(t)) ∈ D(FF) and a bounded function u⋆c(ϱ(t)) ∈

U of the form specified in Appendix A, where ϱ(t) ⊂ R5 is
the specific time law taking value in a set Σc ⊂ R5. The main
property required to this manoeuvre is to take place µ-distant
from any guard set in order to avoid unplanned switches to
others operative modes (such as a further contact with the
vertical surface). Geometrically, this condition can be simply
expressed as


gr(ξ ⋆c , u⋆c)|Σc + Bµ

 
{FF ,q}∈E

G({FF , q})


= Ø. (16)

The overall docking–undocking manoeuvre is thus the com-
bination of (ξ ⋆a , u

⋆
a), (ξ

⋆
b , u

⋆
b) and (ξ ⋆c , u

⋆
c) fulfilling conditions

(14)–(16).

3.2. Control synthesis

We present possible low-level control laws for the operative
modes FF and VI of interest for the docking–undockingmanoeuvre
under consideration. The control laws depend on specific reference
manoeuvres and are parametrised by the respective time laws. The
provided stability properties hold for all possible time laws in a
given compact set. This feature allows one, in the selection of the
supervisor strategy, to freely choose themost appropriate time law
profiles to accomplish desired task without requiring re-design of
the controllers.

3.2.1. Free-flight control law
The control law is given in terms of a reference manoeuvre

that, according to the path following strategy illustrated above, is
written as (ξ ⋆(ϱ), u⋆(ϱ))with ξ ⋆(ϱ) and u⋆(ϱ) as in (A.1). The time
law vector ϱ(t) is supposed to be sufficiently smooth and such
that ϱ(t) ∈ Σ for all t , where Σ is a known set. The set Σ is
assumed to be fixed such that for all ϱ ∈ Σ the thrust u⋆M(ϱ) and
the attitude θ ⋆(ϱ) fulfil the physical constraints u⋆M(ϱ) ∈ (uM , ūM)
and |θ ⋆(ϱ)| ≤ π/2 − c , for some c < π/2.

The proposed inputs uM (thrust) and uF (flap’s angle of attack)
are given by

uM(ϱ) =
1

cos θ


u⋆M(ϱ) cos θ

⋆(ϱ)− k1z̃ + k2 ˙̃z


uF (ϱ) =
1

uM(ϱ)

[
u⋆M(ϱ)u

⋆
F (ϱ)+ KP


KD

˙̃
θ

+ tan(θ̃ + θ ⋆(ϱ))− tan θ ⋆(ϱ)+ θout

] (17)

where z̃ := z−z⋆(ϱ), ˙̃z := ż−ż⋆(ϱ), θ̃ := θ−θ ⋆(ϱ),
˙̃
θ := θ̇−θ̇ ⋆(ϱ),

θout := λ2σ


K2

λ2
η


, η := ˙̃x + λ1σ


K1

λ1
x̃

,

x̃ := x − x⋆(ϱ), ˙̃x := ẋ − ẋ⋆(ϱ)
(18)

with k1, k2, KP , KD, and (λi, Ki), i = 1, 2, design parameters and
σ(·) a saturation function defined as any differentiable function
σ : R → R satisfying |σ ′(s)| := |dσ(s)/ds| ≤ 2 for all s, sσ(s) > 0
for all s ≠ 0, σ (0) = 0, σ(s) = sgn(s) for |s| ≥ 1, and |s| <
|σ(s)| < 1 for |s| < 1. The proposed control structure rests upon
the design idea proposed in Isidori, Marconi, and Serrani (2003),
Marconi and Naldi (2007) and, as discussed in those papers, can be
interpreted as a cascade control structure constituted by an inner
loop, controlling the angular (θ, θ̇) dynamics, and an outer loop
governing the lateral (x, ẋ) and vertical (z, ż) dynamics.

The main properties achievable by the previous controller
are detailed in the next proposition that refers to the nominal
dynamics (2) perturbed by an additive disturbance δFF (ϱ), i.e.

ξ̇ = f (FF , ξ , u)+ δFF (ϱ). (19)

The disturbance δFF (ϱ) is assumed of the form δFF (ϱ) = (0, δFF ,x,
0, δFF ,z, 0, 0)T and it is meant to model the effect of neglected
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dynamics (such as drag forces, see Section 2.2) and of exogenous
disturbances (such as wind-gusts) that might perturb the vehicle
in free-flight. It is proved that, for any µ > 0, the proposed
controller succeeds in keeping the actual state and input trajectory
(ξ(t), u(t))µ-close to any reference manoeuvre characterised by
ϱ(t) ∈ Σ provided that the initial state of the system is sufficiently
close to the initial value of the state manoeuvre, and that δFF is
sufficiently small.

Proposition 1. Let Σ be a given compact set and assume that
|θ(0)| ≤ ρ < π/2. Let (k1, k2) be positive numbers and let (λi, Ki)
be chosen as λi = ϵ i−1λ⋆i , Ki = ϵK ⋆i , i = 1, 2, where ϵ is a design
parameter and the λ⋆i ’s and K ⋆i ’s satisfy

λ⋆2

K ⋆2
<
λ⋆1

4
, 8K ⋆1λ

⋆
1 < µLλ

⋆
2, 24

K ⋆1
K ⋆2

<
1
6
µL

µU
(20)

where µL = uM cos(c) and µU = ūM . There exist positive numbers
K ⋆D, K

⋆
P (KD) and ϵ⋆(KP) such that for any positive KD ≤ K ⋆D and

KP ≥ K ⋆P (KD) and ϵ ≤ ϵ⋆(KP) and for all µ > 0, there exist ∆FF ,0
and∆FF ,d such that if

|ξ(0)− ξ ⋆(ϱ(0))| ≤ ∆FF ,0 and |δFF (ϱ(t))| ≤ ∆FF ,d

for all ϱ(t) ∈ Σ , then, for the closed-loop system (17) and (19), (18),
|θ(t)| ≤ π/2 andξ(t)u(t)


−


ξ ⋆(ϱ(t))
u⋆(ϱ(t))

 ≤ µ

for all t ≥ 0, and for all smooth ϱ(t) ∈ Σ .

The proof of this proposition is in Appendix B. The proof shows
how the value of the restrictions ∆FF ,0 and ∆FF ,d are mainly
affected by the value of µ and ϵ: the larger are µ and ϵ, the larger
are ∆FF ,0 and ∆FF ,d. In this respect we observe that a small value
of ϵ is only required to offset critical attitude initial conditions
|θ(0)| close to π/2 and to avoid that the vehicle overturns (see the
first part of the proof). Regarding the practical tuning of the design
parameters in (17) and (18), we defer the reader to Section 4.

3.2.2. Vertical interaction control
As motivated in Section 2.2.1, we consider (F1,F2) as equiva-

lent virtual control inputs related to the physical inputs (uM , uF )
by relation (10) (well-defined if θ satisfies (5)). The control laws
for (F1,F2) are given in terms of a reference manoeuvre written
as (ξ ⋆(ϱ), u⋆(ϱ))with ξ ⋆(ϱ) and u⋆(ϱ) as in (A.3). The time law vec-
tor ϱ(t) ∈ R3 is supposed to be sufficiently smooth and such that
ϱ(t) ∈ Σ for all t , whereΣ ⊂ R3 is a known set. Consistently with
Appendix A, in view of (5), it is supposed that θ ⋆(ϱ) satisfies

− γM
V + c1 ≤ θ ⋆(ϱ) ≤ γ F

V − c1 ∀ ϱ ∈ Σ (21)

for some positive c1 < min{γ F
V , γ

M
V }.

The proposed control law is of the form (see (10))

uM(ϱ) =

1 0


G−1(θ)L(θ)


F1(ϱ)
F2(ϱ)


,

uF (ϱ) =
1

uM(ϱ)


0 1


G−1(θ)L(θ)


F1(ϱ)
F2(ϱ)

 (22)

with

F1(ϱ) = F ⋆
1 (ϱ)− KP(θ̃ + KD

˙̃
θ), θ̃ := θ − θ ⋆(ϱ),

F2(ϱ) = F ⋆
2 (ϱ)− KP(β̃ + KD

˙̃
β),

˙̃
θ := θ̇ − θ̇ ⋆(ϱ),

β̃ := β − β⋆(ϱ),
˙̃
β := β̇ − β̇⋆(ϱ)

(23)

where (F ⋆
1 (ϱ),F

⋆
2 (ϱ)) are as in (A.4) and KP and KD are positive

design parameters. The stability result presented in the next
Fig. 3. Control architecture.

proposition emphasises the robustness of (23) with respect to
uncertainties on the value of the friction parameter λV in (9)
whose nominal value λV0 has been used to compute the reference
manoeuvre (see Appendix A). The statement of the proposition
refers to a signal δVI(ϱ) defined as follow

δVI(ϱ) :=
λV − λV0

M
β̇⋆(ϱ)


cos(θ ⋆(ϱ)+ γM

V )

ℓV sin2(θ ⋆(ϱ)+ γM
V )

1
sin2(θ ⋆(ϱ)+ γM

V )


and claims, besides others, that θ(t) ∈ (−γM

V , γ
F
V ) so that G−1(θ)

and, in turn, (22) are well-defined.

Proposition 2. Let Σ be a fixed compact set and let KD be an
arbitrary positive number. There exists K ⋆P > 0 such that for all
KP ≥ K ⋆P and µ > 0 there exist positive∆VI,0 and∆VI,d such that if

|ξ(0)− ξ ⋆(ϱ(0))| ≤ ∆VI,0 and |δVI(ϱ(t))| ≤ ∆VI,d

for all ϱ(t) ∈ Σ , then, for the closed-loop system (9) and (23),
θ(t) ∈ (−γM

V , γ
F
V ) andξ(t)u(t)


−


ξ ⋆(ϱ(t))
u⋆(ϱ(t))

 ≤ µ

for all t ≥ 0, and for all smooth ϱ(t) ∈ Σ .

The proof of this proposition is sketched in Appendix C.

3.3. Design of the supervisor

In the overall control architecture, sketched in Fig. 3, the role
of the supervisor is to activate the specific control law (17)–(18)
or (22)–(23) according to the actual operative mode of the vehicle,
and to feed the controllers with the appropriate time law profile
ϱ(t) according to the desired task and to the state of the vehicle.

The starting point in the supervisor strategy is the notion of ref-
erence manoeuvre that, for the specific docking–undocking task,
are given by the three manoeuvres (ξ ⋆a (ϱ), u

⋆
a(ϱ)), (ξ

⋆
b (ϱ), u

⋆
b(ϱ))

and (ξ ⋆c (ϱ), u
⋆
c(ϱ)) introduced in Section 3.1, and the resulting FF

and VI control laws given in Section 3.2.
By defining uFF (ϱ) := (uM(ϱ), uF (ϱ)) with uM(ϱ) and uF (ϱ)

given by (17)–(18), and uVI(ϱ) := (uM(ϱ), uF (ϱ)) with uM(ϱ) and
uF (ϱ) given by (22)–(23), the switching strategy among controllers
is simply of the form

u(t) = uq(t)(ϱ(t)) (24)

with q(t), the actual flight mode, taking values in the set {FF , VI}
and with ϱ(t) a degree-of-freedom to be chosen by the supervisor
according to the desired task. The value of q(t) is thus assumed to
be known. It might come from contact sensors, such as tactile or
force sensors, appropriately positioned in the DFMAV structure.

Themain result regarding the supervisor is specified in the next
proposition. In order to make the statement of the proposition
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shorter we fix the underlying framework beforehand. Specifically,
let Σa ⊂ R5,Σb ⊂ R3 and Σc ⊂ R5 be fixed compact sets
such that properties (14)–(16) are fulfilled for some µ > 0 and
someΣ ′

a,Σ
′′
a ,Σ

′

b andΣ
′′

b . Withµ andΣa,Σb andΣc given, let the
design parameters of controller (17)–(18) (respectively (22)–(23))
be fixed once and for all according to Proposition 1 (respectively
Proposition 2) by consideringΣ = Σa∪Σc (respectivelyΣ = Σb)
so that the properties indicated in the propositions are fulfilled
for some positive (∆0,FF ,∆d,FF ) and (∆0,VI ,∆d,VI). Finally, with
t1, t2, t3 positive numbers, let ϱa(t) : [0, t1] → Σa ⊂ R5,
ϱb(t) : [0, t2] → Σb ⊂ R3, and ϱc(t) : [0, t3) → Σc ⊂ R5

be arbitrary smooth functions with ϱa(t) and ϱb(t) satisfying the
following properties:
(a) ϱa(t) ∈ Σ ′

a for all t ∈ [0, t ′1], with t ′1 < t1, and ϱa(t1) ∈ Σ ′′
a ;

(b) ϱb(t) ∈ Σ ′

b for all t ∈ [0, t ′2], with t ′2 < t2, and ϱb(t2) ∈ Σ ′′

b .
In this framework the following result, proved in Appendix D,
holds.

Proposition 3. For all ξ(0) and for all bounded δFF (t) fulfilling

|ξ(0)− ξ ⋆a (ϱa(0))| ≤ ∆FF ,0, ‖δFF‖∞ ≤ ∆FF ,d, (25)

the closed-loop trajectory obtained by (24) with ϱ(t) = ϱa(t)
is such that |(ξ(t), u(t)) − (ξ ⋆a (ϱa(t)), u

⋆
a(ϱa(t)))| ≤ µ (and, as

consequence, q(t) = FF) for all t ∈ [0, t ′1] and there exists a ts1 ∈

(t ′1, t1] such that (ξ(ts1), u(ts1)) ∈ G({FF , VI}). Furthermore, if

|R ({FF , VI}, (ξ(ts1), u(ts1)))− ξ ⋆b (ϱb(0))| ≤ ∆VI,0, (26)

then for all bounded δVI(t) satisfying ‖δVI‖∞ ≤ ∆VI,d, the closed-loop
trajectory obtained by (24)with ϱ(t) = ϱb(t − ts1) for t ≥ ts1 is such
that |(ξ(t), u(t))− (ξ ⋆b (ϱb(t − ts1)), u⋆b(ϱb(t − ts1)))| ≤ µ (and, as
a consequence, q(t) = VI) for all t ∈ [ts1, ts1 + t ′2] and there exists
a ts2 ∈ (ts1 + t ′2, ts1 + t2] such that (ξ(ts2), u(ts2)) ∈ G({VI, FF}).
Finally, if

|R ({VI, FF}, (ξ(ts2), u(ts2)))− ξ ⋆c (ϱc(0))| ≤ ∆FF ,0, (27)

then for all bounded δFF (t) satisfying ‖δFF‖∞ ≤ ∆FF ,d, the closed-loop
trajectory obtained by (24)with ϱ(t) = ϱc(t − ts2) for t ≥ ts2 is such
that |(ξ(t), u(t))− (ξ ⋆c (ϱc(t − ts2)), u⋆c(ϱc(t − ts2)))| ≤ µ (and, as
a consequence, q(t) = FF) for all t ∈ [ts2, ts2 + t3).

Thus, the overall supervisor control strategy amounts to switch
the low-level controller according to the actual state q(t) of the
contact sensor (q = VI if a contact is detected, q = FF otherwise)
and to choose ϱ(t) in a way that its value ranges in the sets
Σ ′

a,Σ
′′
a ,Σ

′

b, Σ
′′

b and Σc according to the desired task. Note that,
according to Section 3.2, re-design of the controllers is not needed
as long as ϱ(t) ranges within Σa, Σb and Σc . This fact allows
the supervisor to act on ϱ(t) to implement ‘‘emergency’’ actions,
such as a recovery manoeuvre after a failed docking, without
re-designing the geometric path of the reference and re-tuning
the low-level controllers. The simulation results in Section 4 give
further insight about this point.

Remark. It is worth emphasising that the previous result is local
due to the restrictions∆FF ,0 on the initial state characterising (25).
Furthermore, the fulfilment of condition (26) (respectively of (27))
requires the ability to generate reference manoeuvres adaptively
according to the actual state. Specifically, as the value of the
reset state is not known precisely in advance, a bunch of possible
ξ ⋆b (ϱb(t)) (respectively ξ

⋆
c (ϱc(t))) should be designed beforehand

so that at least one reference trajectory, for which (26) ((27)) hold,
exists. Practically, the bunch of reference trajectories might be
obtained by properly parametrising a nominal reference trajectory,
with the value of the parameter that is then selected ‘‘on-the-fly’’
according to the actual reset state.

In the previous framework, a critical point in the enforcement
of a successful docking manoeuvre is the selection of ϱa(t) ∈ Σ ′′

a
satisfying the last in (14). This, in turn, guarantees that the vehicle
definitely docks with the vertical surface with an impact that, by
definition ofΣ ′′

a in (14), is inelastic, namely rebounds do not occur.
In this respect, by the definition ofG(FF , VI), the critical design step
is to identify a time law ϱa(t) such that the resulting coefficient
of restitution cR(FX (ξ ⋆a (ϱa(t)), u

⋆
a(ϱa(t))), α̇V (ξ

⋆
a (ϱa(t)))) is zero. In

the next proposition, proved in Appendix D, we present a result
that shows how this condition can be enforced if the impact
dynamics are governed by the damped compliant impact model
described in Section 2.3.

Proposition 4 (Rebounds-Free Docking Manoeuvres). There exists a
ϵ⋆ > 0 such that for all positive ϵ ≤ ϵ⋆ the following holds

0 ≤ α̇V (ξ
⋆
a (ϱa))

2
≤ ϵ FX (ξ ⋆a (ϱa), u

⋆
a(ϱa))

⇒ cR(FX (ξ ⋆a (ϱa), u
⋆
a(ϱa)), α̇V (ξ

⋆
a (ϱa))) = 0. (28)

The value of ϵ⋆ predicted by the previous proposition is clearly
dependent on dissipative and elastic properties of the impacting
material. The impact is thus inelastic if the ratio between the
square of the lateral speed of the point PV and the lateral force FX
at the impact is sufficiently small. As also suggested by intuition,
successful docking manoeuvres thus require that the vehicle gets
close to the vertical surface at low speed (so that the impact lateral
speed is eventually small) and suddenly accelerates just before
docking so that the lateral impact force is eventually large. As
shown in the simulation section, a practical way to enforce such
a manoeuvre is to design time law ϱa(t) with small ρ̇(t) and large
ρ̈(t). It must be noted that, according to the definition of Σ ′′

a , the
value of µmust be small in relation to ϵ⋆ in order to have the last
condition in (14) fulfilledwith a ξ ⋆a (ϱa), u

⋆
a(ϱa) satisfying (27). This,

in turn, imposes upper bounds in the allowed restrictions∆FF ,0 and
∆FF ,d according to Proposition 1.

Finally, it is worth investigating the effectiveness of the pro-
posed approach when, due to disturbances or impact dynamics
behaving differently from the consideredmodel, dockingmanoeu-
vres fail and rebounds take place unexpectedly. In these un-ideal
scenarios the possible supervisor strategy strongly depends on the
resulting reset state R ({FF , FF}, (ξ(ts1), u(ts1))). If the reset state
is ‘‘sufficiently close’’ to an undocking referencemanoeuvre, a pos-
sible strategy is to implement a ‘‘recoverymanoeuvre’’ steering the
vehicle far-off the surface and then to eventually start a further
docking manoeuvre. In the proposed setting this strategy is imple-
mentable if

min
ϱc∈Σc

R ({FF , FF}, (ξ(ts1), u(ts1)))− ξ ⋆c (ϱc)
 ≤ ∆FF ,0. (29)

In such a case, denoting by ϱ̄c any element of Σc at which the
previous minimum is attained, and with ϱc(t) any smooth time
law in Σc with ϱc(ts1) = ϱ̄c , the possible supervisor strategy is
to take (24) with ϱ(t) = ϱc(t). Indeed, in such a case, the same
arguments of Proposition 3 lead to conclude that q(t) ≡ FF and the
undocking reference manoeuvre is tracked with an error bounded
byµ. In all the cases inwhich the reset state is not sufficiently close
to an undocking reference manoeuvre, the proposed recovering
action cannot be implemented. In these situations, the proposed
strategy cannot prevent undesired behaviours such as reiterated
rebounds leading towards a Zeno behaviour of the hybrid system,
Goebel et al. (2009). Emergency control actions should be then
implemented at supervisor level whose design, though, is not
addressed in this paper.

4. Simulation results

We consider the DFMAV dynamical model described in Naldi
et al. (2010) with M = 1.5 kg, ℓV = 0.5 m, dV = 0.5 m, γM

V =

γ F
V = π/4, λx = 1 Ns/m, λx0 = 0.5 Ns/m, kF = 1, J =

0.015 kgm2, ūF = 0.5 rad, ūM = 2 Mg and uM = 1 N. In the
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VI mode, we considered λV0 = 7 Ns/m for control purposes and
we run the simulations with a more advanced friction model. In
particular, following Harnoy et al. (2008), the Coulomb friction has
been approximated by µcFX (1 − exp(−β̇2/a2)) with µc = 0.65
and a = 0.1, where the force FX represents the normal force to the
surface.

4.1. Impact modelling

By bearing in mind the notations in Section 2.3, we fixed c̄R =

0.5, ke = 1600 N/m and kd = 50 Ns/m and we approximated
the impact duration δTi with the settling time (5%) of (12) given
by 0.1 s. With the above values, cR(FX , αV ) can be computed for
any pair FX (ti) and α̇V (ti) by solving the linear ODE (12). The value
of cE entering in R({FF , FF}, (ξ , u)) and R({FF , VI}, (ξ , u)) (see
Section 2.3) has been chosen equal to 0.5.

4.2. Docking, sliding and undocking reference manoeuvres

We consider a fixed vertical reference, i.e. z⋆(i) ≡ 0, i ≥ 1, and
x⋆(t) = ϱ(t), with the time law ϱ(t) = (ϱ(t), ϱ̇(t), . . . , ϱ(4)(t))
characterised by ϱ(3)(t) = ϱ(4)(t) ≡ 0 and by setting piecewise
constant acceleration profiles ϱ̈(t) in order to govern speed and,
in turn, position of the lateral reference signal. Reference signals
for position, speed and acceleration have been settled to fulfil the
constraints |ϱ| ≤ 20 m, |ϱ̇| ≤ 5m/s and |ϱ̈| ≤ 5 m/s2, which,
along with additional relations introduced below, contribute to
define the sets Σa and Σc . Regarding the docking manoeuvre, the
lateral position ᾱ of the vertical surface (see Fig. 1) is assumed to
fulfil ᾱL < ᾱ < ᾱU , with ᾱL = 4.9 m and ᾱU = 5.1 m. Thus,
the set Σ ′

a in Section 3.1 can be completely determined by the
additional relationϱ+ℓV cos(θ ⋆(ϱ)+γM

V ) ≤ ᾱL−cx(µ), with θ ⋆(ϱ)
defined in (A.2) and cx(µ) a positive constant (with µ introduced
in Section 3.1) taken equal to 0.1. Indeed, whenever ϱ ∈ Σ ′

a, the
lateral reference position of PV1 is guaranteed to be on the left of
the surface and the UAV to be robustly in the FF mode provided
that the lateral position of PV1 follows the reference with an error
bounded by cx(µ). On the other hand, the definition of the set Σ ′′

a
requires that the time law is chosen so that ϱ + ℓV cos(θ ⋆(ϱ) +

γM
V ) ≥ ᾱU + cx(µ) and that the additional relations FX > 0 (lateral

force pointing inward the vertical surface) and cR = 0 (inelastic
impact) are fulfilled. The relations in Appendix A and the fact that
ϱ(3) = ϱ(4) = 0, show that

FX (θ ⋆(ϱ), u⋆M(ϱ), u
⋆
F (ϱ)) = M(1 + c ς(ϱ̇, ϱ̈)) ϱ̈

+ λx(1 + c ς(ϱ̇, ϱ̈)) ϱ̇ (30)

where c = 2JMgkf λ2x/kτ and

ς(ϱ̇, ϱ̈) = ϱ̈2 cos θ ⋆(ϱ)/[(Mg)2 + (Mϱ̈ + λxϱ̇)
2
]
2 > 0.

Hence, a positive FX is enforced with positive ϱ̇ or ϱ̈. On the
other hand, by the discussion in Section 4.1, the enforcement of
cR = 0 asks that the lateral reference speed of PV1, equal to
ϱ̇ − ℓV sin(θ ⋆(ϱ) + γM

V )θ̇
⋆(ϱ), is small in relation to the value of

(30) at the impact time. This, in turn, asks that the time law, at
the impact time, is characterised by a small ϱ̇ and large ϱ̈, with
numerical values that can be estimated by using the values chosen
above for ke, kd and λx. The definition of the set Σ ′′

a can be thus
completed by requiring that 0 ≤ ϱ̇ ≤ cv(µ) and ϱ̈ ≥ cF (µ), with
cv(µ) and cF (µ) chosen as cv(µ) = 0.3m/s and cF (µ) = 0.2m/s2.
Regarding the undocking manoeuvre, the definition of G({VI, FF})
and the relations above suggest to take time laws resulting in
negative lateral reference forces (i.e. forces pointing outward the
vertical surface), namely negative ϱ̈ and ϱ̇. Accordingly, the setΣc
in Section 3.1 has been fixed by requiring ϱ̇ < 0 and ϱ̈ < −cF (µ).

We describe now the sliding reference manoeuvre. In the first
part of the manoeuvre reference trajectories characterised by a
constant angle θ ⋆, i.e. θ ⋆(i) = 0 for i = 1, 2, and a vertical reference
of the form β⋆(ϱ(t)) = ϱ(t), with ϱ(t) = (ϱ(t), ϱ̇(t), ϱ̈(t))
assumed to fulfil |ϱ| ≤ 10m, |ϱ̇| ≤ 2 m/s and |ϱ̈| ≤ 1 m/s2 in
the definition of Σb, have been considered. The definition of the
set Σ ′

b (see Section 3.1) has been then completed by limiting ϱ to
those values that guarantee a sufficiently positive FX (θ ⋆, u⋆M , u

⋆
F ).

By using the relation in Appendix A, a numerical evaluation of
FX (θ ⋆, u⋆M , u

⋆
F ) in terms of ϱ shows that if θ ⋆ ∈ [0.05, 0.1] rad,

a possible definition of Σ ′

b is with ϱ̇ ∈ [0, 1] m/s and ϱ̈ ∈

[−1, 1]m/s2. This guarantees that theUAV remains in contactwith
the surface provided that the actual trajectory is sufficiently close
to the reference. The final part of themanoeuvre has been obtained
by considering a constant β⋆, i.e. β⋆(i) = 0 for i = 1, 2, and
θ ⋆(ϱ(t)) = ϱ(t) with ϱ(t) = (ϱ(t), ϱ̇(t), ϱ̈(t)) constrained to a
setΣ ′′

b fixed so that FX (θ ⋆, u⋆M , u
⋆
F ) < 0. In this respect a numerical

inspection of FX (θ ⋆, u⋆M , u
⋆
F ) revealed that a possible definition of

Σ ′′

b is with ϱ ∈ [−0.3,−0.1] rad, ϱ̇ ∈ [−3.0, 0] rad/s and
ρ̈ ∈ [−12,−8] rad/s2. This choice of high values for the angular
acceleration, still compatible with the input constraints, allows the
UAV to enter the guard set G({VI, FF}) with a negative pitch angle
θ .

The initial condition of the time law of the above manoeuvres
have been taken so that the difference between the reference signal
at the time in which a transition takes place and the actual state
resulting from a reset map is minimised. This, in turn, makes the
concatenation conditions (26) and (27) satisfied.

4.3. Tuning of the controllers

With (Σa,Σb,Σc) fixed, we present now a few practical steps
followed to tune the FF and VI controllers of Section 3.2. We start
with the FF controller (17). According to the proof of Proposition 1,
the first step regards the choice of (k1, k2) chosen equal to (10, 10)
so that system (B.1) is ISS. Simulative tests have been done on
system (B.1) with δFF taken constant (= 0.25 ūM ) in order to
estimate a bound of ṽ1 = −k1z̃1 − k2 ˙̃z2 (to be used in the sequel).

As second step,we focused on the θ̃-subsystemof (B.2) to obtain
a lower bound K ⋆D and K ⋆P on the gains and an upper bound θ ⋆out on
the amplitude of the (saturated) outer-loop controller. According
to the proof of Proposition 1, the lower and upper bounds have
been computed so that, given an estimation of the initial attitude
state θ(0) and of (θ̃1(0),

˙̃
θ2(0)), the vehicle does not overturn. At

this stage the tuning has been done by simulating the θ̃-subsystem
of (B.2) with θout constant and by considering initial conditions
fulfilling |θ(0)| ≤ 30 deg, |θ̃1(0)| ≤ 30 deg and |θ̃2(0)| ≤ 10
deg/s. Numerically, we found (K ⋆D, K

⋆
P ) = (0.2, 3.5) and θ ⋆out = 1

as satisfactory values. Then we focused on system (B.3)–(B.4) and
on (20). Following Isidori et al. (2003), let (λ⋆i , K

⋆
i ) be defined as

λ⋆2 = ℓ2λ⋆1/8, Ki = ℓi, i = 1, 2, in which λ⋆1 is an arbitrary
positive number and ℓ > 0. It turns out that Eq. (20) are fulfilled
with ℓ sufficiently large for any µL and µU . With an estimation
of (µL, µU) in hand, we fixed ℓ = 5 and λ⋆1 = 1 and started to
simulate system (B4)–(B5) considering constant exogenous inputs
(ṽ1, δFF ,x(ϱ)). The value of ṽ1 has been fixed at the upper bound
found while tuning the vertical controller above, while δFF ,x(ϱ) =

0.25 · ūM . With the values of KP and KD found above, we thus
checked, by simulation, the boundedness of the trajectories of
system (B4)–(B5) and we finally fixed ϵ = 0.5 so that ϵ < θ ⋆out/λ

⋆
2

(as required by the proof of Proposition 1).
The tuning of the VI controller detailed in Section 3.2.2 is

less involved as it amounts to tune the gain KP and KD so that
(C.1)–(C.2) has bounded trajectories. By considering a mismatch of
30% between actual and nominal value of the friction coefficient
(by thus estimating δVI(ϱ)), we found, by simulation, the values
(KP , KD) = (100, 0.2).



2580 L. Marconi et al. / Automatica 47 (2011) 2571–2583
FF

FF

VI

1

2 3
45

6

78

after robound

Fig. 4. The graph of the overall manoeuvre in the X − Z space. The rigid vertical
surface is located at x = 5 m.

4.4. Simulated manoeuvres

The simulation results have been obtained by implementing
(24) with q(t) = FF if x(t)+ ℓV cos(θ(t)+ γM

V ) < ᾱ and q(t) = VI
otherwise. The overall simulated manoeuvre in the longitudinal-
vertical plane is shown in Fig. 4, where a graphical sketch of the
aircraft altitude is also given. At time t = 0 we set (x(0), ẋ(0)) =

(0.1, 0), (z(0), ż(0)) = (2.8, 0), (θ(0), θ̇ (0)) = (0, 0). In the
first 10 s the supervisor imposes ϱa ∈ Σa given by ϱa(t) ≡ 0
and z⋆ ≡ 3 so that a hovering manoeuvre at (x, z) = (0, 3)
is performed. After 10 s of hovering, the time law is changed by
imposing a lateral constant acceleration ϱ̈ = 2 m/s2 that is then
set to zero at t = 10.5 s to reach a final speed of 1 m/s. The
resulting reference trajectory leads the vehicle to hit the vertical
surface at t = ti1 ≈ 14.9 s with an impact that, due to the values of
FX (ti1) (≈ 1 N) and α̇V (ti1) (≈ 1 m/s), is elastic. As a consequence
the aerial robot rebounds by reaching again the FF configuration
with a state given by R({FF , FF}, (ξ(ti1), u(ti1))). The supervisor
detects this anomalous situation (deliberately imposed in order to
test unwanted rebounds) and instantaneously imposes a constant
ϱ̈ = −5 m/s (i.e. an undocking reference manoeuvre compatible
with condition (29)) by setting (ϱ(t+i1 ), ϱ̇(t

+

i1 )) = (x(t+i1 ), ẋ(t
+

i1 )) in
order to move the UAV away from the surface reaching a lateral
speed of −0.5 m/s. At t = 17 s a different docking manoeuvre
is initiated. Firstly, the time law ϱa is chosen in the set Σ ′

a to
approach the vertical surface with small constant speed ϱ̇ =

0.1 m/s and zero acceleration. When the UAV is 0.45 m far from
the nominal position of the surface (so that even considering the
0.1muncertainties the point PV1 is still not in contact), the value of
ϱ̈ is set to 0.2 m/s2 in order to enforce an impact with a large ratio
FX/α̇V . Indeed, the impact takes place at t = ti2 ≈ 27.9 s with a
speed α̇v ≈ 0.22m/s and a lateral force FX ≈ 0.57N. By computing
cR(Fx, α̇V ), the impact is inelastic. The reference trajectories x⋆, z⋆
and θ ⋆ and the tracking errors of this first part of the simulation are
shown in Fig. 5. The control inputs are depicted in Fig. 7.

From t = ti2 the supervisor switches on the VI controller and
sets a ϱb(ti2) ∈ Σ ′

b so that (ϱ(t+i2 ), ϱ̇(t
+

i2 )) = (β(t+i2 ), β̇(t
+

i2 ))

and θ ⋆ = θ(t+i2 ). In the time interval [ti2, ti2 + 6] s the time law
ϱb(t) is chosen inΣ ′

b according to a trapezoidal profile ϱ̈, with the
vehicle that is first accelerated in order to reach a vertical speed
of about 0.5 m/s and then decelerated to get zero vertical speed
at t = t1 ≈ 33.9 s. The fact that ϱb(t) ∈ Σ ′

b guarantees that
the manoeuvre is accomplished with a positive lateral force by
thus preserving the contact with the surface. At t = t1 + 2 the
undocking manoeuvre starts with β⋆ kept constant at β(t1) and
θ ⋆(t) = ϱ(t) with ϱb(t) chosen in Σb in such a way to approach
the set Σ ′′

b . Specifically, a constant ϱ̈ = −10 rad/s2 is imposed
with (ϱ̇(t1), ϱ(t1)) = (0, θ(t1)). As a result, the UAV starts rotating
and the resulting lateral force FX decreases with the guard set
G({VI, FF}) that is definitely entered at t = t2 ≈ 36.1 s with
Fig. 5. The references and the tracking errors obtained during the free-flight
docking manoeuvres.

Fig. 6. The references and the tracking errors obtained during the sliding
manoeuvre.

Fig. 7. The control inputs and the force FX during the manoeuvre.

θ(t2) ≈ −11◦. At time t2 the FF controller is switched on again
and an undocking manoeuvre with ϱc ∈ Σc is enforced by the
supervisor. The manoeuvre is characterised by a constant ϱ̈ =

−2 m/s with (ϱ̇(t2), ϱ(t2)) = (ẋ(t2), x(t2)) and z⋆(t) ≡ z(t2) that
is then set to zero once the velocity reaches−0.5m/s. Fig. 6 shows
the reference trajectoriesβ⋆ and θ ⋆ in the VImode and the tracking
errors. In Fig. 8 the references x⋆(t), z⋆(t), θ ⋆(t) and the tracking
errors in the operative mode FF during the undocking manoeuvre
are shown.

5. Conclusions

This work has investigated the problem of modelling and
controlling an aerial robot interacting with the environment to
accomplish missions like inspection of infrastructures, sample
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Fig. 8. The references and the tracking errors obtained during the undocking
manoeuvre.

picking, etc. The airframe is given by a miniature ducted-fan aerial
vehicle able to safely interact with the surrounding environment.
Interaction with a vertical surface has been considered and the
systemhas beenmodelled as a hybrid automaton. A path following
strategy has been used to develop a control architecture able to
obtain the desired docking–undocking operations by considering a
compliant impactmodel forwhich the proposed design guarantees
the impacts to be completely inelastic. Possible non completely
inelastic impacts resulting in ‘‘rebounds’’ of the UAVwhile docking
the surface have been also considered, pointing out the limitations
of the proposed approach and the need of future investigations to
properly address these unideal circumstances. Simulation results
have been shown to validate the proposed framework and the
design.

Future work will be focused also on experimental validation
of the proposed framework. The accomplishment of this goal will
require an important technological effort, in order to match the
requirements in termof onboard instrumentations andmechanical
design.
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Appendix A. FF and VI system inversion

FF referencemanoeuvre. The referencemanoeuvre (ξ ⋆(ϱ), u⋆(ϱ))
is given by

ξ ⋆(ϱ) = col(x⋆(ϱ), ẋ⋆(ϱ), z⋆(ϱ), ż⋆(ϱ), θ ⋆(ϱ), θ̇ ⋆(ϱ)),
u⋆(ϱ) = (u⋆M(ϱ), u

⋆
F (ϱ))

(A.1)

where x⋆(ϱ), . . . , u⋆F (ϱ) are smooth functions obtained by inverting
the dynamics (2). More specifically, let x⋆(ϱ) and z⋆(ϱ) be arbitrary
smooth functions. Then x⋆(ϱ) = x⋆(ϱ), z⋆(ϱ) = z⋆(ϱ), ẋ⋆(ϱ) :=

dx⋆(ϱ)/dϱ ϱ̇, ż⋆(ϱ) := dz⋆(ϱ)/dϱ ϱ̇, and θ ⋆(ϱ) can be computed as

θ ⋆(ϱ) = arctan
Mẍ⋆(ϱ)− λxẋ⋆(ϱ)
Mz̈⋆(ϱ)+ Mg

. (A.2)

With the expression of θ ⋆(ϱ) (and thus of θ̇ ⋆(ϱ) and θ̈ ⋆(ϱ)) in hand,
u⋆M(ϱ) and u⋆F (ϱ) can be finally computed as

u⋆M(ϱ) =
M

cos θ ⋆(ϱ)


z̈⋆(ϱ)+ g


, u⋆F (ϱ) = −

J θ̈ ⋆(ϱ)
kτu⋆M(ϱ)

.

As θ ⋆(ϱ) = θ ⋆(ϱ, ϱ̇, ϱ̈), θ̇ ⋆(ϱ) = θ̇ ⋆(ϱ, . . . , ϱ(3)) and θ̈ ⋆(ϱ) =

θ̈ ⋆(ϱ, . . . , ϱ(4)), note that Eq. (13) is thus solved with s = 5.
VI reference manoeuvre. In this case the reference manoeuvre

(ξ ⋆(ϱ), u⋆(ϱ)) is given by

ξ ⋆(ϱ) = col(β⋆(ϱ), β̇⋆(ϱ), θ ⋆(ϱ), θ̇ ⋆(ϱ)),
u⋆(ϱ) = (u⋆M(ϱ), u

⋆
F (ϱ))

(A.3)
where β⋆(ϱ), . . . , u⋆F (ϱ) are smooth functions obtained by invert-
ing the dynamics (9) and (10). Specifically, let β⋆(ϱ) and θ ⋆(ϱ) be
arbitrary smooth functions with −γM

V + c1 ≤ θ ⋆(ϱ) ≤ γ F
V − c1 for

some positive c1 < min{γ F
V , γ

M
V }. Then β⋆(ϱ) = β⋆(ϱ), θ ⋆(ϱ) =

θ ⋆(ϱ), β̇⋆(ϱ) := dβ⋆(ϱ)/dϱ ϱ̇ and θ̇ ⋆(ϱ) := dθ ⋆(ϱ)/dϱ ϱ̇. Further-
more, by letting

F ⋆
1 (ϱ) := θ̈ ⋆(ϱ)+ ℓθ (θ

⋆(ϱ), θ̇ ⋆(ϱ), β⋆(ϱ), λV0)

F ⋆
2 (ϱ) := β̈⋆(ϱ)+ ℓβ(θ

⋆(ϱ), θ̇ ⋆(ϱ), β⋆(ϱ), λV0),
(A.4)

it turns out that

u⋆M(ϱ) =

1 0


G−1(θ ⋆(ϱ))L(θ ⋆(ϱ))


F ⋆

1 (ϱ)
F ⋆

2 (ϱ)


u⋆F (ϱ) =

1
u⋆M(ϱ)


0 1


G−1(θ ⋆(ϱ))L(θ ⋆(ϱ))


F ⋆

1 (ϱ)
F ⋆

2 (ϱ)


.

As θ̈ ⋆(ϱ) = θ̈ ⋆(ϱ, ϱ̇, ϱ̈) and β̈⋆(ϱ) = β̈⋆(ϱ, ϱ̇, ϱ̈), Eq. (13) is thus
solved with s = 3. It is worth emphasising how, in (A.4), the
nominal value λV0 of the friction coefficient has been used.

Appendix B. Proof of Proposition 1

The proof strongly relies upon the arguments and tools pro-
posed in Isidori et al. (2003) and already used inMarconi and Naldi
(2007) to control the helicopter dynamics. We consider first the
vertical dynamics in (2) controlled by uM in (17) given by

M ¨̃z = −k1z̃ − k2 ˙̃z + δFF ,z(ϱ) (B.1)

that is clearly input-to-state stable with respect to the input δFF ,z
as k1 and k2 are positive numbers.

We turn now our attention on the lateral and angular dynamics
in (2) controlled by uF in (17). The error dynamics read as

M ¨̃x = (tan(θ̃ + θ ⋆(ϱ))− tan θ ⋆(ϱ)) cos θ ⋆(ϱ)u⋆M(ϱ)

− λx ˙̃x + tan θ(t)ṽ1 + δFF ,x(ϱ)

J ¨̃θ = −kτKP(KD
˙̃
θ + tan(θ̃ + θ ⋆(ϱ))− tan θ ⋆(ϱ)+ θout)

(B.2)

in which ṽ1 = −k1z̃ − k2 ˙̃z. As a first step, it is possible to prove
that, by an appropriate tuning of the controller, the DFMAV does
not overturn (namely |θ(t)| < π/2 for all t ≥ 0) and θ̃ (t) can
be driven to arbitrarily small values in an arbitrarily small time
T ⋆. The arguments, omitted for reasons of space, follow the ones
presented in Isidori et al. (2003, Proposition 5.7.1) and Marconi
and Naldi (2007, Proposition 3), and use the crucial fact the θ̃-
subsystem in (B.2) can be regarded, in an initial time interval, as an
autonomous systemdriven by the signal θout(t) that is bounded due
to the saturation. This and classical high-gain arguments lead to the
result that given any T ⋆ > 0 and any ε > 0, there exist K ⋆D, K

⋆
P (KD)

and θ ⋆out(KD, KP), such that for any positive KD ≤ K ⋆D, KP ≥ K ⋆P (KD)
and θout(t) such that ‖θout‖∞ ≤ θ ⋆out(KD, KP), and any ϱ(t) ∈

Σ, |θ(0)| ≤ ρ ⇒ |θ(t)| < π/2 for all t ≥ 0 and |θ̃ (t)| ≤ ε
for all t ≥ T ⋆.

For t ≥ T ⋆ the interconnection (B.2) is studied. By defining the
change of variables θ̃ → η1 := tan(θ̃ + θ ⋆(ϱ)) − tan θ ⋆(ϱ) +

θout,
˙̃
θ → η2 :=

˙̃
θ + η1/KD, x̃ → ξ1 := x̃ and ˙̃x → ξ2 := η

system (B.2) transforms as the interconnection of system

ξ̇1 = −λ1σ


K1
ξ1

λ1


+ ξ2

M ξ̇2 = u⋆M(ϱ) cos θ
⋆(ϱ)


−λ2σ


K2
ξ2

λ2


+ η1


− λxξ2 + λxλ1σ


K1
ξ1

λ1


+ MK1σ

′


K1
ξ1

λ1


ξ̇1

+ tan θ(t)ṽ1 + δFF ,x(ϱ)

(B.3)
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with states (ξ1, ξ2), inputs (η1, tan θ(t)ṽ1, δFF ,x(ϱ)) and outputs
(θout(ξ2), yξ )where

yξ = θ̇out −
1
M

K2σ
′


K2
ξ2

λ2


cos θ ⋆(ϱ)u⋆M(ϱ)η1,

and a second system of the form

η̇1 =
1

cos2 θ(t)


−
η1

KD
+ η2


+ L(η1, θout, ϱ)

+
1
M

K2σ
′


K2
ξ2

λ2


cos θ ⋆(ϱ)u⋆M(ϱ)η1 + yξ

J η̇2 = −kτKPKDη2 +
1
KD
η̇1

(B.4)

where L(η1, θout, ϱ) :=

1/ cos2 θ − 1/ cos2 θ ⋆(ϱ)


θ̇ ⋆(ϱ), θ =

tan−1(η1 + tan θ ⋆(ϱ) − θout), with state (η1, η2), inputs (θout, yξ )
and output η1. Note that, in the ξ̇2 expression, u⋆M(ϱ) cos θ

⋆(ϱ) ≥

uM cos c > 0 for all ϱ ∈ Σ . This interconnection, with (Ki, λi), i =

1, 2, chosen as suggested in the proposition, has been studied
in Isidori et al. (2003, Lemma 5.7.4), (see also Marconi & Naldi,
2007, Proposition 4) where it has been proved that there exist R >
0, K ⋆D and K ⋆P (KD) such that for any positive KD ≤ K ⋆D, KP ≥ K ⋆P (KD)
and ϵ > 0 the previous interconnection is ISS with restrictions
(ϵR, ϵR) on the inputs (tan θ(t)ṽ1, δFF ,x(ϱ)), no restrictions on the
initial state and linear asymptotic gains. From this, by choosing ϵ <
θ ⋆out/λ

⋆
2, and by cascade arguments, it turns that the overall lateral-

longitudinal-vertical system is ISS with restriction on the initial
state and restriction on the input δFF (see Propositions 5 and 6 in
Marconi & Naldi, 2007). From now on all the design parameters are
fixed as indicated above. In order to complete the proof, the crucial
point is to show that the overall lateral-longitudinal-vertical
system admits an ISS Lyapunov function independent of ϱ. To this
end, we start by noting that u⋆M(ϱ) cos θ

⋆(ϱ) ≥ uM cos c > 0 for all
t implies (by the arguments in Isidori et al., 2003) that there exist
ISS Lyapunov functions Vξ (ξ1, ξ2) and Vη(η1, η2) not dependent on
ϱ ∈ Σ for the dynamics (B.3) and (B.4). The small gain condition
underlying the interconnection and the arguments in Mareels,
Jiang, and Wang (1996) can be now used to claim the existence
of a locally Lipschitz ISS Lyapunov function for the interconnection
(B.3)–(B.4) and, in turn, for the overall lateral-longitudinal-vertical
dynamics that is not dependent on ϱ. Specifically, with n and
ζ ∈ Rn denoting respectively the dimension and the state of the
overall closed-loop error system whose dynamics are compactly
written as ζ̇ = f (ζ , δFF , ϱ), there exist a locally Lipschitz Lyapunov
function V : Rn

→ R, class-K functions α(·), α(·), α(·) and
σ(·), positive M and ∆, all independent of ϱ, such that for all
|ζ | ≤ M, |δFF | ≤ ∆, α(|ζ |) ≤ V (ζ ) ≤ α(|ζ |), and for all
ϱ ∈ ΣV ◦(ζ , f (ζ , δFF , ϱ)) ≤ −α(|ζ |) + σ(|δFF |) where V ◦(ζ , v)
denotes the Clarke derivative of V at ζ along the direction v (see
Clarke, 1990). Furthermore, there exists a constant K̄ > 0 such
that |(uM(σ ), uF (σ )) − (u⋆M(σ ), u

⋆
F (σ ))| ≤ K̄ |ζ | for all ϱ ∈ Σ and

|ζ | ≤ M . From this the result of the proposition followsby standard
ISS Lyapunov arguments with

∆FF ,0 = min

α−1

◦ α


µ

1 + K̄


, α−1

◦ α(M)


∆FF ,d = min

∆, σ−1

◦ α


µ

1 + K̄


.

Appendix C. Proof of Proposition 2 (sketch)

Let θ1 := θ̃ , θ2 :=
˙̃
θ +

1
KD
θ̃ , β1 := β̃, β2 :=

˙̃
β +

1
KD
β̃ .

In these coordinates, system (9) controlled by (23) reads as the
interconnection of

θ̇1 = −
1
KD
θ1 + θ2

θ̇2 = −KPKDθ2 + ψθ


θ1, θ2 −

1
KD
θ1, β2 −

1
KD
β1, ϱ


−

1
K 2
D
θ1 +

1
KD
θ2 + δθ (ϱ)

(C.1)

and

β̇1 = −
1
KD
β1 + β2

β̇2 = −KPKDβ2 + ψβ


θ1, θ2 −

1
KD
θ1, β2 −

1
KD
β1, ϱ


−

1
K 2
D
β1 +

1
KD
β2 + δβ(ϱ)

(C.2)

in which ψθ (·) and Ψβ(·) are properly defined locally Lipschitz
functions such that ψθ (0, 0, 0, ϱ) = ψβ(0, 0, 0, ϱ) = 0 for all
ϱ ∈ Σ , and δVI(ϱ) = col(δθ (ϱ), δβ(ϱ)). Let ρ := maxϱ∈Σ

{min{γM
V , γ

F
V } − |θ ⋆(ϱ)|} and note that ρ > c1 > 0. Lyapunov

arguments (using Vθ (θ1, θ2) := θ21 /(ρ − |θ1|)+ θ22 , Vβ(β1, β2) :=

β2
1 + β2

2 ), show that for any∆ > 0 there exists a K ⋆P > 0 such that
for any KP ≥ K ⋆P , θ(t) ∈ (−γM

V , γ
F
V ) for all t ≥ 0 provided that

|θ̃ (0)| ≤ c1, |
˙̃
θ(0)| ≤ c2, |(β̃(0),

˙̃
β(0))| ≤ c2 and |δVI(ϱ)| ≤ ∆,

where c2 is a positive number. The proof can be then completed by
means of ISS and small gain arguments and by arguments that are
similar to the ones used at the end of the proof of Proposition 1.

Appendix D. Proofs of Section 3.3

Proof of Proposition 3. The proof follows by joining the results of
Propositions 1 and 2 and the definition of robust manoeuvres in
Section 3.1.More specifically, note that if (25) holds then, by Propo-
sition 1, it follows that |(ξ(t), u(t)) − (ξ ⋆a (ϱa(t)), u

⋆
a(ϱa(t)))| ≤ µ

for all t such that the vehicle is in free-flight. By the choice of ϱa(t)
in item (a) and by definition ofΣ ′

a in the second relation of (14), it
follows that G(FF , VI) is not intersected in the interval [0, t ′1] pro-
vided that u(t) = uFF (ϱa(t)), namely the vehicle evolves in free-
flight in the time interval [0, t ′1]. Furthermore, by definition ofΣ ′′

a
in the third relation of (14), there exists a time ts1 ≤ t1 such that
(ξ(ts1), u(ts1)) ∈ G(FF , VI). This proves the first part of the propo-
sition. Similar arguments can be adopted to prove the second part.
In particular, note that if (26) holds, then, by Proposition 2, it fol-
lows that |(ξ(t), u(t)) − (ξ ⋆b (ϱb(t)), u

⋆
b(ϱb(t)))| ≤ µ for all t such

that the vehicle evolves in the VI mode. By this, the choice of ϱb(t)
in item (b) and by definition ofΣ ′

b in the second relation of (15), it
follows that the guard setG(VI, FF) is not intersected in the interval
[ts1, ts1 + t ′2] provided that u(t) = uVI(ϱb(t)), namely the vehicle
evolves robustly in the VI mode µ-close to the reference trajec-
tory. Furthermore, by the definition of Σ ′′

b in the third relation in
(15), there exists a time ts2 ≤ ts1 + t2 such that (ξ(ts2), u(ts2)) ∈

G(VI, FF). Finally, again by using Proposition 1 and the definition
ofΣc in (16), it turns out that that if u = uFF (ϱc(t)) then necessar-
ily G(FF , VI) is not intersected and the vehicle evolves in free flight
µ-close to the reference trajectory. �

Proof of Proposition 4. By integrating the dynamics (12) with
initial condition (ν(ts1), ν̇(ts1)) = (0, α̇V (ts1)), α̇V (ts1) ≥ 0,
and by considering FX (t) ≡ FX (ts1) for all t ∈ [ts1, ts1 + δTi]
(with δTi denoting the impact interval), trivial bounds yield that
if (FX (ts1)/M) > k2e α̇V (ts1)2/(4ke − kd) then necessarily ν(t) ≥ 0
for all t ∈ [ts1, ts1 + δTi]. From this the result follows by using the
definition of coefficient of restitution in Section 2.3. �
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