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We propose a functional framework for studying agent-based dynamical models of
exchange. The framework consists of a notation and of a number of elementary definitions.
We argue that – in comparison to narrative descriptions – the framework has a number of
advantages: (1) it allows one to express precisely the relationships between the classical
notion of general equilibrium and agent-based models of exchange; (2) it supports compu-
tational descriptions of models of exchange which can be unambiguously implemented;
(3) it assists the numerical investigation of such models by providing a specific set of ele-
mentary notions and computational primitives. These can be used to deduce model prop-
erties and to setup ‘‘crucial’’ numerical experiments for validating model implementations.
In a companion paper, we apply the framework to specify and study a model of exchange in
which multiple equilibrium prices coexist and prices evolve according to a simple trading
scheme and to a generic genetic rule.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

1.1. Preliminaries

The idea of exchange has been at the core of economic modeling at least since Walras [43]. In Walrasian economies, a
number of economic actors own certain quantities of goods. Goods have different types and can be freely exchanged be-
tween actors. Good prices emerge as ratios at which goods of a given type are exchanged for goods of another type.

The most influential mathematical formulation of this idea was probably the notion of general equilibrium proposed by
Debreu [12]. While influential, the notion of general equilibrium as a mathematical model of models of exchange has been
confronted with a number of criticisms.

These range from a critique of the ‘‘individual rationality’’ assumption implicit in the notion of general equilibrium
[22,24,26,18] to the skepticism, raised by many authors after the Sonnenschein–Mantel–Debreu ‘‘anything goes’’ result
[39], about the usefulness of the notion of general equilibrium for decision making and, more recently, for policy advice
[25,15,13,31,32,10].

In the last two decades, a number of alternative formulations of the idea of exchange have been proposed as computer-
based models [3]. More recently, so-called agent-based models of exchange have been proposed, see [41]. While a precise,
established notion of agent-based models is lacking, there seems to be some shared understanding that agent-based models
are particular computer-based models. Gintis, for instance, maintains that agent-based models are computer simulations of
. All rights reserved.
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certain games, see [19, p. 2]. For the rest of this paper and where there is no risk of misunderstanding, we will often use
‘‘model of exchange’’ as an abbreviation for ‘‘agent-based model of exchange’’.

While computer-based models and, in particular, computer-based models of exchange have been applied to the simula-
tion of ‘‘real’’ economies with some success, see [41], their usage in critical applications such as decision making and policy
advise is still uncommon.

1.2. Computer-based models, exploratory programming

When considering computer-based models it is important to distinguish between models which are developed to solve
well defined problems and models which are obtained through exploratory programming [38].

Examples of the first class of computer-based models are often found in scientific computing and engineering. Here, the
problems to be solved are often well understood and can be stated precisely. Computer-based algorithms deliver (usually
approximate) solutions to such problems. The accuracy of such solutions can be measured without resorting to empirical
data. The availability of well defined problems allows model developers and implementers to design crucial experiments.
These are experiments for which a negative outcome unambiguously indicates errors in the algorithm or in its
implementation.

As an example, let r2 2 Real � Real � Real ? Complex be a program which implements an algorithm for finding roots of
quadratic equations of the form ax2 + bx + c = 0. A suitable requirement for r2 could be
1 Ref
with th
referen
8 a; b; c 2 Real a – 0 ^ y ¼ r2 ða; b; cÞ ) jay2 þ byþ cj 6 �; ð1Þ
where� 2 Real is a suitable residuum upper bound. Conversely, a tuple a⁄, b⁄, c⁄ 2 Real, a⁄– 0 for which ja⁄y2 + b⁄y + c⁄j > �where
y = r2 (a⁄,b⁄,c⁄) would unambiguously indicate that r2 does not fulfill the requirement (1). This leaves two possibilities open:

� r2 is a wrong implementation of a correct algorithm for finding roots of quadratic equations of the form ax2 + bx + c = 0.
� The algorithm for finding roots of quadratic equations of the form ax2 + bx + c = 0 is not correct.

Of course, we can rule out the second possibility by choosing an algorithm for finding roots of quadratic equations which
has been proved to be correct. In programming, requirements like (1) are often called specifications. In the example above (1)
is a specification for computer-based models for finding roots of quadratic equations of the form ax2 + bx + c = 0. The example
makes clear that

(1) When considering computer-based models which are designed to solve well defined problems, it is useful to distin-
guish between three notions: the specification, the algorithm and its implementation.

(2) Specifications can be expressed in a clear mathematical notation. They are often written in terms of equations. Often
such equations are given special names like problem equations, governing equations, governing laws.

(3) Though expressed in mathematical terms, specifications necessarily rely on notions and values which can depend on
the computing architecture: in (1), for instance Real represents a (computing architecture dependent) set of floating
point numbers. The upper bound � is a value which also meaningfully depends on the sets Real and Complex. In many
cases it is convenient to trade accuracy of specifications for intuitiveness and replace (1) with
8 a; b; c 2 R a – 0 ^ y ¼ r2 ða; b; cÞ ) ay2 þ byþ c ¼ 0: ð2Þ

This is the approach taken throughout this paper. Notice, however, that (2) is just a suggestive, convenient replace-
ment for the original specification (1). Crucial experiments and proofs of incorrectness have to be based on this
specification.
(4) Algorithms are often expressed in pseudo programming languages [2]. These are more difficult to read and analyze
than specifications but still more readable than implementations. Implementations are written in programming lan-
guages. Imperative programming languages, e.g. C, C++, FORTRAN, Java, trade understandability for efficiency: the lack
of referential transparency1 makes reasoning on implementations difficult and error-prone. Functional programming
languages, e.g. Haskell [16], close the gap between specifications and implementations and support model analysis,
e.g., via equational reasoning. For most realistic applications, however, the run-time efficiency of functional languages
is unacceptable.

(5) Ideally, developers of computer-based models would like to derive, possibly automatically, implementations from
specifications. Alternatively, they would like, at least for critical applications such as air traffic control, financial mar-
kets or policy advise, to prove that actual implementations are correct, i.e., they fulfill their specification. These goals
are often too ambitious for complex computer-based models. A realistic alternative is to implement computer-based
models by combining software components which are themselves correct or, at least, by combining software compo-
nents for which crucial experiments in the sense made clear above can be set-up straightforwardly.
erential transparency is a property of implementations. Implementations are said to be referentially transparent whenever expressions can be replaced
eir values. Referential transparency is therefore a precondition for applying substitution rules in the study of programs. Implementations which are not
tially transparent are often said to be referentially opaque.
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The development of computer-based models through exploratory programming,2 is quite common in academic research
and, in particular, in agent-based economic modeling. Here the problems are, especially in the beginning, often not well under-
stood: precise specifications are not available and it is not clear which software components would be needed for (non-explor-
atory) implementations.

Notice that prototype implementations can themselves be seen as unambiguous, precise model descriptions which, how-
ever, expose too many details of the underlying computational model,3 lack conciseness, expressivity, readability and are al-
most inaccessible to non-programmers.

Thus, prototype implementations are not very useful for explaining, communicating and studying computer-based mod-
els. They are usually complemented by other model descriptions. These often consist of a blend of narrative, mathematical
equations and, perhaps, pseudo code. In principle, such descriptions could be precise enough to allow independent model re-
implementations [21]. In practice, however, model re-implementation on the basis of narrative descriptions is nearly impos-
sible. For consistent, independent model re-implementation, one needs unambiguous mathematical specifications.

Deriving mathematical specifications from prototype implementations and narrative descriptions is then the next step in
model development. Once available, mathematical specifications build the basis for re-factoring early model prototypes and
for model analysis and dissemination.

1.3. Goal, motivation

In this paper we propose a functional framework for specifying dynamical models of exchange. Concretely, we address
the question of how to describe and specify computer-based dynamical models of exchange in a language which is more
accessible to non-programmers than program listings and yet less ambiguous than narrative descriptions.

Our work has been very much inspired by the studies of Herbert Gintis on price formation and price selection mecha-
nisms, in particular by the model presented in [19]. The model is remarkable in two ways. On one hand, the results reported
in [19] have raised a number of intriguing questions about price formation/selection mechanisms and about the relation be-
tween prices in agent-based dynamical models of exchange built around the notion of bilateral trades and general equilib-
rium prices [12].

On the other hand, the model seems to be simple enough to be easily understandable and re-implementable. Moreover,
the author had provided, together with the model description presented in [19], a model implementation written in Delphi
Pascal. Alas, our first attempts at reproducing the results presented in [19] with an independent model implementation writ-
ten in C++ failed.4

As it turned out, the failure was not due to implementational errors but to a poor interpretation of the original model
description. With the functional framework introduced in Section 3 we can now specify models of exchange of the kind de-
scribed in [19] in a concise, unambiguous form and derive consistent model re-implementations.

1.4. Outline of the paper

The paper is organized as follows: in Section 2 we introduce the notation that will be used throughout the paper. The
functional framework for dynamical models of exchange is presented in Section 3. We first rehearse the notions of general
equilibrium, demand, excess demand in the context of exchange economies. These notions are at the core of ‘‘demand-dri-
ven’’ models of exchange. In Sections 3.3, 3.4, 3.5 we introduce the notions of bilateral exchange, model of exchange, bilateral
trade, sector and trading schedule and round. These are the notions used to introduce trading games and dynamical models
of exchange in Section 3.6.

In Section 4 we demonstrate how the functional framework can be applied to formulate unambiguously a number of
questions about the relations between dynamical models of exchange and general equilibrium prices and allocations. We
briefly discuss how the framework can be used to derive simple crucial experiments for validating model implementations.
2. Notation

In the context of agent-based models of exchange, two notions are particularly important: that of a set of agents and that
of a set of goods. We denote these sets by A and G, respectively. Throughout this paper, we assume A and G to be finite and we
formulate economic notions mainly in terms of functions. Often, these functions take values in A or G.

Stocks, for instance, are formulated as functions of type G! RP0: they associate to the goods in G non-negative real num-
bers. Thus, we write
2 Exp
3 In i
4 In [
q 2 G! RP0
loratory programming is also called software prototyping.
mplementations in imperative languages without garbage collection, for instance, memory management details.
6], we give a detailed account of such failure.
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to posit that q is a stock. Similarly, allocations are functions which associate stocks to the agents in A and we write
5 For
replacin
but XjGj

howeve
6 Cur

function

The ?
x 2 A! ðG! RP0Þ
to posit that x is an allocation. We denote function application by juxtaposition, following a common usage in category the-
ory where ‘‘evaluation is a kind of composition’’ [27]: x a 2 G! RP0 is the stock of a according to x and x a g 2 RP0 the quan-
tity of g according to x a.

This notation is standard in mathematics and computing science but not quite common in engineering and economics. In
economics, stocks, for instance, are often formulated in terms of vectors in Rn

P0 where n = jGj and one writes q 2 Rn
P0 and qj

instead of q 2 G! RP0 and q g. While popular, this approach has a number of disadvantages.5 We argue that a functional
notation is clearer and better suited for writing specifications.

In much the same way as stocks and allocations, prices, utilities and utility profiles are formulated through functions of
type G! R>0; ðG! RP0Þ ! R and A! ððG! RP0Þ ! RÞ, respectively. To keep the notation terse, we introduce the follow-
ing type synonyms for stocks, prices and utilities:
Q ¼ G! RP0;

P ¼ G! R>0;

U ¼ Q ! R:
With these abbreviations, prices, utilities, allocations and utility profiles are functions in Q, P, U, A ? Q and A ? U,
respectively.

3. A functional framework for dynamical models of exchange

In this section we introduce a framework for specifying and studying dynamical models of exchange. As anticipated in the
introduction, we aim at developing mathematical specifications. This is in contrast to prominent non-mathematical specifi-
cation methods such as UML [17], user-stories [9] and check-list driven methods recently introduced to improve the under-
standability of agent-based models [21,35].

At the same time, the approach presented here is more coarse grained than those based on refinement calculus [14,33,4]
and certainly less demanding than approaches based on formal specification languages like Z [7], VDM, B [23,1], Maude [8] or
constructive type theory [28,34].

The framework can be understood without mathematical or computing science notions more advanced than those intro-
duced in the previous section. However, the framework takes a computing science viewpoint on computational economics
and some acquaintance with functional programming languages might be of advantage.

While we have carefully avoided constructs from specific languages, the notation is obviously influenced by Haskell. This
is particularly evident in the usage of juxtaposition for function application and of currying.6 Because of the Haskell-like nota-
tion and of the systematic usage of functions (in contrast to, e.g., vectors) for the representation of properties of finite sets –
prices of goods, for instance – we call the proposed framework functional.
3.1. Walrasian equilibrium E

An allocation x 2 A ? Q and a price p 2 P are in equilibrium with respect to an allocation x0 2 A ? Q and a utility profile
u 2 A ? U iff [42]:
8 g 2 G;
X
a2A

x a g ¼
X
a2A

x0 a g; ð3Þ

8 a 2 A; x a 2 argmax
y�p6ðx0 aÞ�p

u a y: ð4Þ
We write ðx; pÞEðx0; uÞ. The jGj equations of (3) formulate conservation of goods: for every good in G, the total amount of that
good in x has to be equal to the total amount in x0. In other words, x is a re-allocation of x0 (and vice versa).
instance, when dealing with functions of more than one variable – multi-dimensional arrays – or when developing specifications. In the latter case,
g finite functions with vector-based representations leads to an obvious loss of information: for G – G0 but jGj = jG0 j, G ? X and G0 ? X are different sets
and XjG

0 j are not. This is not a problem whenever the information which is missing in the representation is clear from the context. Specifications,
r, are particularly useful exactly when this is not the case: they aim at making the context visible, not at hiding information.
rying (after Haskell Brooks Curry) refers to the representation of functions of more than one variable as functions of one variable which, in turn, return

values. For instance, a function f from A � B into C is represented, in curried form, by a function f0 which takes values in A and returns functions from B to C:

f 2 A� B! C;

f 0 2 A! ðB! CÞ;
f 0 a b ¼ f ða; bÞ:

is taken to be right-associative and A ? (B ? C) is written as A ? B ? C.
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The jAj equations of (4) are optimality conditions. For any agent in A, they require x to maximize the utility of that agent
under a budget constraint. In such constraint, y � p represents the scalar product between y and p
7 In e
8 The
y � p ¼
X
g2G

ðy gÞ � ðp gÞ: ð5Þ
We say that y � p is the value of the stock y according to the prices p. When considering the equilibrium relation, it is impor-
tant to notice that the prices p enter Eq. (4) only in the budget constraint and as linear factors of both sides of the inequality.
Thus,
ðx; pÞEðx0;uÞ ^ k 2 R>0 ) ðx; k � pÞEðx0; uÞ:
This implies that equilibrium prices, if they exist, can only be unique up to a multiplicative factor. In other words: what mat-
ters in the notion of equilibrium are not the prices of the single goods but the ratios between such prices. Therefore, methods
for computing (x,p) given (x0,u) always deliver normalized prices. These are obtained by dividing all prices by the price of a
reference good, say gr 2 G.7 This is always possible because prices are strictly positive.

Another notion which is worth keeping in mind when considering re-allocations, is that of value-preserving transforma-
tions. Let x00 be a re-allocation of x0:
8 g 2 G;
X
a2A

x00 a g ¼
X
a2A

x0 a g:
Moreover, let the value of x00 a according to p be equal to the value of x0 a according to p for all a 2 A. Then, obviously
ðx; pÞEðx0;uÞ ) ðx; pÞE x00;u
� �

:

This suggests that value-preserving exchanges of goods between agents – exchanges are special re-allocations – might be
suitable primitives for designing iterative methods for computing equilibrium allocations given x0 and equilibrium prices
p. We come back to this idea in Section 4.

The theory of general equilibrium uses fixed-point theorems to provide sufficient conditions for an equilibrium to exist, see
[12]. While existence is granted under fairly general conditions, uniqueness requires very restricting conditions, see [29]. A
prominent example of a utility profile which supports multiple equilibria is the one originally proposed by Scarf [37]:
u a y ¼ min
g2G
ðy gÞ = ðw gÞ; ð6Þ
where w is a function of type G! R>0 like the prices. When the total quantity of every good in x0 is positive and w is a multi-
ple of these total quantities
w ¼ k �
X
a2A

x0 a ^ k 2 R>0; ð7Þ
any p 2 P and x 2 A ? Q s.t.
x a ¼ ðx0 aÞ � p
w � p �w; ð8Þ
are in equilibrium with (x0,u), see Appendix A.

3.2. Demand, excess demand

The notion of equilibrium can be used to formulate a variety of problems. A natural one is that of computing a pair (all
pairs) (x,p) which is (are) in equilibrium with some given allocation x0 and utility profile u. This is not, in general, the prob-
lem addressed by dynamical models of exchange.

In a simplified setup, however, methods for solving this problem rely on the notions of demand and excess demand. These,
in turn, are often used for defining models of exchange. We therefore formulate the simplified setup and rehearse the notions
of demand and excess demand.

Consider pairs (x0,u) in (A ? Q) � (A ? U) such that the optimality equation (4) have unique solutions for arbitrary
prices.8 For such pairs, the function
d x0 u 2 A! ðP ! QÞ
8 a 2 A; 8 p 2 P; q ¼ d x0 u a p )

q � p 6 ðx0 aÞ � p
^
8 q0 2 Q ; q0 � p 6 ðx0 aÞ � p ^ u a q0 P u a q ) q0 ¼ q
conomics, such reference good is called numéraire.
Scarf utility profile (6) and allocations x0 which fulfill (7) are examples of such pairs.
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is called the demand profile and d x0 u a p 2 Q is called the demand of a under prices p. Obviously,
9 The
policy d

10 Of c
on the
policies
ðx; pÞEðx0;uÞ ) x a ¼ d x0 u a p; 8 a 2 A:
Similarly, d x0 u a p � x0 a 2 Q is called the excess demand of a under prices p.
When the demand profile for given (x0,u) is known analytically, the problem of computing equilibrium stocks and prices

boils down to the problem of solving jGj (generally non-linear) equations for the unknown equilibrium prices p g for g 2 G:
8 g 2 G;
X
a2A

ðd x0 u a p g � x0 a gÞ ¼ 0:
This formulation of goods conservation (3) in terms of the agents demand functions shows that equilibrium prices, if they
exist, are those prices for which the total excess demand is zero for every good. This explains why equilibrium prices are
often said to ‘‘clear the market’’ or to ‘‘coordinate the agents demands’’.

3.3. Bilateral exchanges

As mentioned in the introduction, the notion of exchange has a prominent role in economic modeling. Many models, in
particular of barter economies, rest on the notion of bilateral exchange. We formulate the notion of bilateral exchange
through a relation between allocations. We say that two allocations x, x0 2 A ? Q are related through a bilateral exchange
between two agents a1, a2 2 A iff:
x0 a – x a ) a ¼ a1 _ a ¼ a2; ð9Þ
x0 a1 � x a1 ¼ x a2 � x0 a2: ð10Þ
We write xðX a1 a2Þx0. In the above specification, x0 a1 g � x a1 g is the amount of good g exchanged between a1 and a2. Obvi-
ously, allocations which are related by a bilateral exchange are re-allocations of each other:
xðX a1 a2Þx0 ) 8 g 2 G;
X
a2A

x0 a g ¼
X
a2A

x a g:
In decentralized models of exchange [19], pairs of agents engage in interactions which result in elementary bilateral ex-
changes. These are exchanges of exactly two goods: we say that two allocations x, x0 2 A ? Q are related through an elemen-
tary bilateral exchange of g1, g2 2 G between two agents a1, a2 2 A iff:
xðX a1 a2Þx0; ð11Þ
ðx0 � xÞ a1 g – 0 ) g ¼ g1 _ g ¼ g2: ð12Þ
We write xðX e a1 a2 g1 g2Þx0.

3.4. Models of exchange, elementary bilateral trades

As far as we are aware, there is not a well-established notion of model of exchange in economics. In this paper, we use the
notion of (agent-based) model of exchange to denote models in which the outcome of interactions between agents are (pos-
sibly trivial) exchanges of goods. Other economic processes, e.g., production and consumption, are not present.

In particular, we are interested in models of exchange in which agents engage in elementary bilateral trades. These are
interactions which result in elementary bilateral exchanges as specified in (11), (12).

Elementary bilateral trades are defined in terms of two policies: an agent-specific ‘‘offer and demand’’ policy and an agent-
independent trade-resolving policy. We use the term policy in the sense of control theory: policies are functions that maps
‘‘states’’ into ‘‘actions’’ or controls.

In case of the offer and demand policy, the actions are two pairs in RP0 � G. They represent the agent’s offer and demand
for two specific goods.9 The state is agent-specific: in a dynamical model of equilibrium, for instance, the offer and demand
policy of an agent could depend on the agent’s utility function, on its stocks, on global prices and, possibly, on other model-spe-
cific parameters. However, it would not depend on, e.g., the stocks of other agents.

In the case of the trade-resolving policy, the action is an elementary bilateral exchange, the outcome of the trade. The
state consist of the offers and demands of the interacting agents, say a1 and a2, and on model-specific parameters. We
say that a trade-resolving policy is agent-independent if it does not depend explicitly on a1, a2.10

Informally, one can describe an elementary bilateral trade between two agents a1, a2 as a three-step process. In the first
step, the two agents apply their offer and demand policies. This yields (o1,g1), d1; g01

� �
, (o2,g2) and d2; g02

� �
in RP0 � G with the

following interpretation: o1 is the amount of g1 that a1 offers in exchange for d1 units of g01. Similarly, o2, d2 are the amounts
offer and demand policy has not to be confused with the demand function discussed in Section 3.2. The case in which an agent’s offer and demand
epends on its demand function is, however, an important one, see Section 4.2.
ourse, trade-resolving policies do usually depend on the interacting agents implicitly through their offers and demands. However, they do not depend

agents ‘‘identities’’: every pair of agents is treated as every other pair. One could imagine models of exchange with agent-dependent trade-resolving
, e.g., to model ‘‘privileges’’.
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g2, g02 offered and asked by a2. A minimal specification for the outcome (o,g), (d,g0) of the offer and demand policy of an agent
a is:
11 And
x a g � o P 0; ð13Þ
where x a 2 Q are the stocks of a. Eq. (13) requires the amount of g offered by a to be ‘‘in budget’’. The idea is that if the
agent’s offer and demand are matched (by another agent’s demand and offer) at most o units of g will be withdrawn from
its stock11: the specification ensures that the result will be non-negative (remember that Q ¼ G! RP0).

In the second step, the trade-resolving policy is applied to the offer and demands (o1, g1), d1; g01
� �

, (o2,g2) and d2; g02
� �

of a1

and a2. The result are two pairs (d1,g1) and (d2,g2) in RP0 � G, the amounts of goods to be exchanged. Minimal requirements
for the trade-resolving rule are:
g1 – g02 _ g01 – g2 ) d1 ¼ d2 ¼ 0;

g1 ¼ g02 ^ g01 ¼ g2 ^ d1 6 o2 ^ d2 6 o1 ) d1 ¼ d1 ^ d2 ¼ d2: ð14Þ
The interpretation of the above specification is: for a non-zero exchange to take place, the goods demanded (offered) by a1

have to coincide with the goods offered (demanded) by a2. If this condition is fulfilled and the demands of a1, a2 are both
matched by the corresponding offers, then the outcome of the trade – the amounts of g1, g2 to be exchanged, shall coincide
with the demands of the agents. One can imagine a number of resolving rules which match the above specification. A simple
‘‘fill or kill’’ one, for instance, could return zero exchanges whenever the left-hand side of Eq. (14) evaluates to false. We dis-
cuss a more complicated rule in [6] where we give a full specification of the bilateral trading mechanism implemented in
[19].

In the last step of an elementary bilateral trade between a1 and a2, the two agents actually exchange d1 units of g2 and d2

units of g1. The result is an allocation x0 such that
xðX e a1 a2 g2 g1Þx0

ðx0 a1 � x a1Þ g2 ¼ d1; ð15Þ

ðx0 a2 � x a2Þ g1 ¼ d2: ð16Þ
If the goods g1, g2 offered by a1, a2 are given by a function s 2 A ? G, see Section 3.5, one can formulate the effect of an ele-
mentary bilateral trade on allocations through a function
ebt 2 ðA! QÞ ! A� A! ðA! QÞ;

x0 ¼ ebt x ða1; a2Þ ) xðX e a1 a2 ðs a2Þ ðs a1ÞÞx0:
ð17Þ
The requirements (15), (16) on x0 imply that ebt is non-decreasing in the demand good and non-increasing in the offer good:
x0 ¼ ebt x ða1; a2Þ ^ g1 ¼ s a1 ^ g2 ¼ s a2

)

x0 a1 g2 P x a1 g2 ^ x0 a1 g1 6 x a1 g1 ð18Þ

^

x0 a2 g1 P x a2 g1 ^ x0 a2 g2 6 x a2 g2: ð19Þ
In theoretical and computational economics, the relationship between the notion of equilibrium and models of exchange is a
subject of ongoing research [19,20,36,40]. In this context, a natural question is whether it is possible to identify economically
sound trading policies – agent-specific offer and demand policies and agent-independent trade-resolving policies – which
realize equilibrium allocations through sequences of elementary bilateral trades.

The question is interesting because attempts at explaining equilibrium allocations and prices as stationary states of se-
quences of bilateral interactions between agents have not, so far, been convincing. In particular, we do not know econom-
ically plausible bilateral trade mechanisms which provably lead (arbitrarily near) to equilibrium prices and allocations in a
finite number of interactions and for all initial allocations and utility profiles that guarantee existence of Walrasian
equilibria.

The question of whether it is possible to identify economically sound trading policies which realize equilibrium alloca-
tions through sequences of elementary bilateral trades can only be studied in a well-defined context. This has to specify
the offer and demand policies of the agents, the trade-resolving policy and the trading sequences that is, which agent pairs
are interacting and the order of interaction. In the following sections we introduce the elementary notions which are needed
to formulate such context.
, of course, added to the stock of g of the other agent.
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3.5. Sectors, trading schedules, trading rounds

In agent-based economic modeling, the notion of sector is not clearly defined. Sometimes sectors are used, informally, to
denote different kinds or types of agents: households, firms, banks. In this context, the notion of agent itself is often taken as
primitive: what agents of different sectors have in common is not specified.

Sometimes sectors are used to denote certain relationships between agents of different kinds. For instance, households
might be linked to banks through certain relations ‘‘in the financial sector’’ and to firms (through other relations) ‘‘in the
production sector’’.

In models of exchange, sectors are often used to organize the interactions between agents [19,20]. When these interac-
tions are elementary bilateral trades, sectors are defined in terms of goods. All agents of a given sector have in common a
certain sector-specific good. Different sectors are characterized by different goods. In these models, sectors are represented
by a surjective function
12 List
denoted

is used
13 Thi
s 2 A! G;

8 g 2 G; s�1 g – ;:
ð20Þ
In Eq. (20), s�1 g denotes the inverse image of g through s: s�1 g = {a 2 A j s a = g}. In models of exchange which are based on
evolutionary dynamics [11,19,20], sectors are often equally populated and x0 2 A ? Q and u 2 A ? U are sector-wise
constant:
8 g; g0 2 G; js�1 gj ¼ js�1 g0j; ð21Þ
8 a; a0 2 A; s a ¼ s a0 ) x0 a ¼ x0 a0 ^ u a ¼ u a0: ð22Þ
In models which fulfill (21), jAj is a multiple of jGj and the number of agents per sector is jAj/jGj. In models of exchange based
on elementary bilateral trades between sectors, interactions are often organized in trading rounds. In a round, all agents of
every sector interact with a certain number of agents of every other sector. This number is given by a ‘‘number of peers’’
function np. A minimal specification for np is
np 2 G! G! N;

8 g; g0 2 G; np g g0 6 js�1 g0j:
ð23Þ
The sequence of interactions which take place in a round is represented by a trading schedule ts. This is a list12 of agent
pairs: ts 2 List (A � A). A minimal specification for ts is:
8 a 2 A; 8 g 2 G; jfða; a0Þ j elem ða; a0Þ ts; s a0 ¼ ggj ¼
np ðs aÞ g if g – s a;

0 otherwise:

�
ð24Þ
The schedule ts specifies both the interactions which take place in a trading round and the order in which they take place. In
general, the outcome of a trading round depends on this order.13 Thus, a trading schedule effectively defines a network of
agents. When np g g0 is bounded independently of the number of agents in s�1 g0, the network is sometimes referred to as a
social network. Often, the np g g0 agents of sector g0 which are trading with a given agent of sector g – g0 are drawn randomly
in s�1 g0. In this case the trading schedule is called a random schedule or a random network.

In a trading round, the pairs of ts engage in elementary bilateral trades one after the other. The effect of a trading round
with schedule ts on an allocation x is expressed by folding ebt on ts from x:
fold ebt x ts: ð25Þ
Like elem, fold is a polymorphic function. Its type depends on two parameters X and Y:
fold 2 ðX ! Y ! XÞ ! X ! List Y ! X: ð26Þ
In a trading round (25), X = A ? Q and Y = A � A according to the specification of ebt (17). Like many functions that operate
with lists, see [5], fold is defined recursively by pattern matching the case in which the list argument is empty
fold f x ½� ¼ x
s are recursively defined data types [5]. We denote an empty list with the symbol []. A list consisting of a x 2 X put on the top of a list xs 2 List X is
by (x : xs). We say that xs!!k is the kth element of xs. The boolean function

elem 2 X ! List X ! Bool;

elem x xs ¼
true if 9 k 2 N such that xs!!k ¼ x;

false otherwise

�

to test list membership.
s is the main reason for representing trading schedules in terms of lists. If the order of trading would not matter, one could simply use sets of agent pairs.
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and the case in which the list argument consists of a y 2 Y on the top of a (possibly empty) list ys 2 List Y:
14 For
peers’’ a

15 Find
concurr
fold f x ðy : ysÞ ¼ f ðfold f x ysÞ y:
As an example, consider the effect on x of folding f on [(a1,a2), (a3,a1), (a2,a3)]14:
fold f x ½ða1; a2Þ; ða3; a1Þ; ða2; a3Þ�
¼

fold f x ðða1; a2Þ : ½ða3; a1Þ; ða2; a3Þ�Þ
¼

f ðfold f x ðða3; a1Þ : ½ða2; a3Þ�ÞÞ ða1; a2Þ
¼

f ðf ðfold f x ðða2; a3Þ : ½�ÞÞ ða3; a1ÞÞ ða1; a2Þ
¼

f ðf ðf ðfold f x ½�Þ ða2; a3ÞÞ ða3; a1ÞÞ ða1; a2Þ
¼

f ðf ðf x ða2; a3ÞÞ ða3; a1ÞÞ ða1; a2Þ:
Notice that the trading schedule [(a1,a2), (a3,a1), (a2,a3)] is ‘‘executed’’ from the right to the left. First, one accounts for the
bilateral trade between a2 and a3 on x. This results in a new allocation x0 2 X. Then, the elementary trade between a3 and a1

yields another allocation x00. Finally, the interaction between a1 and a2 completes the round. For this simple example it is easy
to rewrite the computation in a more explicit form:
fold f x ½ða1; a2Þ; ða3; a1Þ; ða2; a3Þ� ¼ x000

where : x0 ¼ f x ða2; a3Þ;
x00 ¼ f x0 ða3; a1Þ;
x000 ¼ f x00 ða1; a2Þ:
We conclude this section with two remarks. First, trading rounds inherit the properties of elementary bilateral trades: if
x0 = fold ebt x ts, then x0 is a re-allocation of x. Moreover, for any a 2 A, x0 a (s a) 6 x a (s a) and, for any g 2 G,
g – s a) x0 a g P x a g. If ebt is value-preserving, trading rounds obtained by folding ebt are value-preserving.

Second, a trade schedule can be seen as a relation between agents together with a ‘‘time’’ plan. The relation defines a net-
work of interactions. The time plan their sequence. Within this interpretation, however, the notion of time is ambiguous. One
can think of a trading round as a process in which exactly one trade takes place at every time step. In this case, the number of
time steps of a trading round would be given by the length of ts. However, one can also think of ts as the flattening of a list of
lists of agent pairs, every sublist consisting of interactions which can take place simultaneously without changing the result
of the round. With this interpretation, the number of time steps would be given by the number of sublists in which ts can be
decomposed.15

3.6. Trading games, dynamical models of exchange

Trading games are games built-up of trading rounds. As explained in the previous section, in a trading round agent pairs
engage in a number of elementary bilateral trades starting from a given initial allocation. The result is a new allocation.

In a trading game, each round results in a new allocation and in an outcome – the outcome of that round. The outcome is
game-specific. In a game designed to measure the effectiveness of the agents offer and demand policies, for instance, the
outcome could be a trading fitness function, perhaps a (possibly discounted) sum of the utilities of the allocations achieved
by the agents in the round. The result of the whole game depends on the allocations and on the outcomes obtained in a se-
quence of rounds.

Depending on the assumptions made on the initial data of the single rounds, one can formulate different kinds of games. A
simple one is one in which the initial data are the same in each round. In this case, one can formulate the game in terms of a
sequence of trading schedules – a list of lists of agent pairs tss 2 List (List (A � A)) – and of two functions: an extended ele-
mentary bilateral trade function
eebt 2 O� ðA! QÞ ! A� A! O� ðA! QÞ;
ðo0; x0Þ ¼ fold eebt ðo; xÞ ts ) x0 ¼ fold ebt x ts ð27Þ
A = {a1,a2,a3}, G = {g1,g2,g3} and s ak = gk, k 2 {1,2,3}, np g g0 = 1 and ts = [(a1,a2), (a3, a1), (a2,a3)] fulfill (23) and (24). Thus, they are valid ‘‘number of
nd ‘‘trading schedule function’’, respectively.
ing such sublists is an interesting problem. Solving this problem is a pre-condition for accelerating the computation of trading rounds through

ency.
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and a function h 2 List (O � (A ? Q)) ? R which computes the result of the whole game
16 Or,
h ðmap ðfold eebt ðo0; x0Þ Þ tssÞ: ð28Þ
In the above equation, (o0,x0) is the initial data. In the kth round (the number of rounds is given by the number of schedules
of tss), eebt is folded on tss!!k starting from (o0,x0). The initial data are the same in all rounds. The result of the rounds is a list
of pairs output-allocation. The result of the whole game is computed by applying h to this list. The specification (27) requires
the action of eebt on allocations to be an elementary bilateral trade. The nature of O and the action of eebt on o 2 O depends
on the particular model considered.

Dynamical models of exchange are models of exchange in which a number of functions, e.g., prices or allocations, explic-
itly depend on time. In this paper, we only consider time-discrete models. For such models, functions which explicitly de-
pend on time can be formulated as functions on natural numbers. Time-dependent allocations, for instance, can be
formulated as functions of type N! A! Q . We write (slightly abusing the notation introduced in Section 2)
x 2 N! A! Q
to posit that x is a time-dependent allocation. In dynamical models of exchange, it is important to distinguish between func-
tions that depend on time explicitly and functions that depend on time implicitly through other functions. For a given model,
we denote the set of all functions which depend on time explicitly by Z.

For instance, in a model in which only allocations depend on time explicitly, Z = A ? Q. In a model in which allocations
and prices depend on time explicitly Z = (A ? Q) � P.

Thus, in general, we can represent the model functions that depend on time explicitly by means of a function z of type
N! Z. In the case of time-dependent allocations x 2 N! A! Q and prices p 2 N! P, for instance, z is defined by
z 2 N! ðA! QÞ � P;

z t ¼ ðx t;p tÞ:
Thus, dynamical models of exchange can be viewed as dynamical systems and the value of z at time t, z t is often called the
state (of the system, model) at t. The difference z (t + 1) � z t is called the state transition at t. We are interested in dynamical
models of exchange in which

� The state at t = 0, z 0, is given.
� The states z 1, z 2, . . . are computed from z 0 by iterating a transition function tr.
� The transition function takes as arguments a state (the ‘‘current’’ state) and a random variable16:
tr 2 Z ! X! Z:
In other words, we are interested in dynamical models of exchange in which z 0,z 1,z 2, . . . are given by
z 0 ¼ z0;

z ðt þ 1Þ ¼ tr ðz tÞ ðx tÞ:
ð29Þ
In [6] we show that the model presented in [19] is a dynamical model of exchange in the sense of (29). In this model
z 2 N! A! P represents time-dependent, agent-specific ‘‘private’’ prices and tr is an evolutionary algorithm obtained by
folding a copy-mutate rule on x t:
tr ðz tÞ ðx tÞ ¼ fold cm ðz tÞ ðx tÞ:
The random variables x 0, x 1, . . . are schedules similar to those of Section 3.5. The copy-mutate rule cm is specified in
terms of a ‘‘trading fitness’’ function f 2 A! R.

This is obtained, at each iteration step of (29), by playing a simple trading game of the kind described by equations (27)
and (28). In such game the initial data are the same in all rounds and the output of a single round o0 is the trading fitness
achieved by the agents in that round. The tth trading game is played at fixed (private) prices zt. These control both the offer
and demand policies of the agents and the trade resolving policy embedded in eebt.

4. Dynamical models of exchange and equilibrium

In the last section we have presented a framework for agent based models of exchange. The framework can be applied in a
number of ways. In this section we discuss three ones.
from the dynamical systems viewpoint, the system is non-deterministic, explicit and autonomous.
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4.1. Model implementation

In implementing models of exchange, e.g., in an imperative programming language with limited support for constrained
polymorphism like C++, one can use the specifications derived in Section 3 directly to formulate pre- and post-conditions for
specific function interfaces.

As an example, let ebt be an interface for implementing elementary bilateral trades between pairs of agents in the con-
text of a model of exchange in which trading takes place between sectors, see Section 3.5. Let agents, goods and sectors be
represented by values of type Agent, Good and Sector, respectively and let allocations be represented by values of type
Allocation.17 Further, assume that Sector is a type synonym of Good and that ebt can rely on a sector function and
on a is_elementary_bilateral_exchange function

Sector sector (const Agent& a);

Bool is_elementary_bilateral_exchange (const Allocation& x,

const Allocation& xp,

const Agent& a1,

const Agent& a2,

const Good& g1,

const Good& g2);

implementing specifications (20) and (11), (12). Then, in a design-by-contract approach [30], an interface for ebt consistent
with specification (17) could look like

void ebt(Allocation& x, const Agent& a1, const Agent& a2) {
require(sector(a1)!= sector(a2));

let(Allocation y = x);

let(Good g1 = sector(a1));

let(Good g2 = sector(a2));

. . .

ensure(is_elementary_bilateral_exchange (x,y,a1,a2,g1,g2));

ensure(x(a1)(g2) >= y(a1)(g2));

ensure(x(a2)(g1) >= y(a2)(g1));

}

Of course, pre- and post-conditions cannot guarantee, in general, implementations to be correct, that is, to fulfill their
specifications. In practice, however, systematic usage of design-by-contract constructs has turned out to be extremely useful,
especially in software prototyping and re-factoring.

As a bonus, pre- and post-conditions expressed through domain-specific interfaces provide a straightforward form of
model documentation.

4.2. Model analysis and problem formulation

In Section 3.4 we raised the question whether it is possible to find economically sound trading policies which realize equi-
librium allocations through sequences of elementary bilateral trades.

With the framework of Section 3 in place, we are now ready to formulate such question precisely. To this end, consider a
dynamical model of exchange (29) in which only allocations depend on time explicitly
17 In a
232. All
www.sg
x 0 ¼ x0;

x ðt þ 1Þ ¼ tr ðx tÞ ðx tÞ
ð30Þ
and x0, tr and x t, t = 0,1, . . . are defined in terms of a sector function s 2 A ? G (specification (20)), of a sector-to-sector num-
ber of peers function np 2 G! G! N (specification (23)) and of a utility profile u 2 A ? U.

We assume, for simplicity, that sectors are equally populated (21) and that the number of peers is constant
8 g; g0 2 G; np g g0 ¼ np:
We also assume the iteration (30) to start from a sector-wise constant initial allocation which is different from zero only in
the sector-specific good
simple setup, Agent, Good and Sector could just be type synonyms of Nat, a type representing a fixed zero-based range of natural numbers, e.g., up to
ocation could be a type synonym of Array < Array < Real> > and Array could be a type suitably derived from the STL (Standard Template Library,
i.com/tech/stl) class vector.

http://www.sgi.com/tech/stl
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8 a; a0 2 A; s a ¼ s a0 ) x0 a ¼ x0 a0;

x0 a g – 0 ) g ¼ s a
and x0, u to be such that the optimality equation (4) admit unique solutions for arbitrarily prices. In other words, we assume
the simple setup discussed in Section 3.2 in which (x0,u) admit a demand profile d.

Consider a simple transition function in which x t, t = 0,1, . . . are random trading schedules (specification (24)) and
x (t + 1) is computed from x t in a single round of elementary bilateral trades
tr ðx tÞ ðx tÞ ¼ fold ebt ðx tÞ ðx tÞ:
In economic terms, this setup can be viewed as modeling a situation in which, at time t = 0, all agents have terminated a
production step in a given sector and are equipped with a certain amount of their production good (in fact, the same amount
of their sector-specific good for all agents of a given sector). At each step of the iteration, all agents of all sectors engage with
np agents of every other sector in elementary bilateral trades. The sequence of interactions is controlled by the random sche-
dule of that step and the idea is that agents attempt, via trading under given equilibrium prices, to satisfy their excess de-
mand and achieve their optimal allocations.18

As explained in Section 3.4, ebt (and, therefore, tr) is defined, in general, in terms of agent-specific offer and demand pol-
icies and of an agent-independent trade-resolving policy. Let us call these policies odp and trp, respectively. We are partic-
ularly interested in the case in which the offer and demand policies are parameterized on prices, ebt is non-decreasing in the
demand good and non-increasing in the offer good and all agents act according to the same (offer and demand) policy.19 In
the notation introduced in Section 3.4, we can express these assumptions on ebt through the following specification:
trp 2 P ! RP0 � G! RP0 � G! RP0 � G! RP0 � G! RP0 � RP0

odp 2 P ! Q ! G! G! RP0 � RP0

ebt xt ða1; a2Þ ¼ x0t
)

xtðX e a1 a2 g2 g1Þx0t ^ ðx0t a1 � xt a1Þ g2 ¼ d1 ^ ðx0t a2 � xt a2Þ g1 ¼ d2

where : ðd1; d2Þ ¼ trp p ðo1; g1Þ ðd1; g2Þ ðo2; g2Þ ðd2; g1Þ;
ðo1;d1Þ ¼ odp p ðxt a1Þ g1 g2;

ðo2;d2Þ ¼ odp p ðxt a2Þ g2 g1;

g1 ¼ s a1;

g2 ¼ s a2:
To formulate the problem of finding economically sound trading policies which realize equilibrium allocations through se-
quences of elementary bilateral trades we still have to express what it means for trading policies to be ‘‘economically sound’’.

The problem has two sides. The first one – what it means for a trading policy to be economically sound – is a modeling
issue we are not concerned with here (but see our remarks on the criticisms of the notions of individual rationality in the
introduction).

The second side of the problem is how to formulate whatever it means for a trading policy to be economically sound into
specifications for odp and trp. Here is an example of one such formulations. Suppose, as in [19], that economically sound
trading policies are to

(a) be demand-driven.
(b) yield elementary bilateral exchanges which, for given prices, do not decrease the values (according to those prices) of

the stocks of the interacting agents.

We can formulate (a) by requiring odp to fulfill
d x0 u a p g0 � xt a g0 ¼ 0 ^ ðo;dÞ ¼ odp p ðxt aÞ g g0 ) d ¼ 0:
Then (b) implies that o must be zero as well20:
d x0 u a p g0 � xt a g0 ¼ 0 ) odp p ðxt aÞ g g0 ¼ ð0;0Þ: ð31Þ
With the above definitions and specifications for x0, x, tr, x, np, s, ebt, odp and trp in place, the problem of finding sound trad-
ing policies which realize equilibrium allocations through sequences of elementary bilateral trades can be finally formulated
he economic interpretation, the underlying goal of trading – achievement of optimal allocations – is often ‘‘explained’’ by a subsequent step in which the
are thought to consume their goods thereby receiving benefits proportional to the achieved utility.
6] we show that the elementary bilateral trades at the core of the model presented in [19] enjoy these properties.
ember that odp yields upper bounds for the quantities of the ‘‘own’’ goods to be exchanged in an interaction. If a’s offer and demand (o,d) of (g, g0) are

d by another agent offer and demand (o0 ,d0) (of (g0 , g)), at most o units of g will be withdrawn from its stock. A zero demand is obviously matched by any
, if o was greater than zero, any pair (o0 ,d0) with d0 6 o would match (o,0), trp p (o,g) (0,g0) (o0 ,g0) (d0 ,g) would yield (0,d0) (Eq. (14)) and d0 units of g
e withdrawn from the stock of a without compensation. This contradicts (b) and therefore o has to be zero.
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as the problem of finding odp and trp that guarantee (30) to converge, in a finite number of steps, towards xe for all xe, p, x0, u
that fulfill ðxe; pÞEðx0;uÞ. Specification (31) is obviously sufficient to guarantee that equilibrium allocations are fixed-points of
(30) that is
21 Rem
22 A m

classes,
23 Cor

correct
models
ðxe;pÞEðx0;uÞ ) xe ¼ fold ebt xe ðx tÞ: ð32Þ
Unfortunately, it is not strong enough to guarantee that all fixed-points of (30) are equilibrium allocations, not even for the
simple case in which u is constant.

We conclude this section by remarking that the trading policies proposed in [19] do not fulfill specification (14). However,
they satisfy (31) and fulfill two additional requirements. They are value-preserving and demand-limited:
ðd1; d2Þ ¼ trp p ðo1; g1Þ ðd1; g2Þ ðo2; g2Þ ðd2; g1Þ
)

d1 � ðp g2Þ ¼ d2 � ðp g1Þ ^ ðd1 6 d1 ^ d2 6 d2Þ
Value preserving trade-resolving policies guarantee that if (xe,p) is in equilibrium with (x0,u) then it is in equilibrium with
((x t),u) for all times t.21 Value-preserving, demand-limited trade-resolving policies guarantee convergence of (30) (towards
equilibrium allocations) for some special, constant utility profile. The results discussed in [6], however, suggest that the require-
ment are not strong enough to grant convergence when, e.g., the utility profile is sector-wise constant but different from sector
to sector.

4.3. Model analysis and validation

Once a model has been specified, one can start reasoning about the model22 rigorously. In particular, one can deduce prop-
erties that model implementations which are consistent with the specification have to exhibit.

This immediately allows one to design crucial experiments for validating model implementations. Crucial experiments
are experiments for which a negative outcome unambiguously indicates errors in the implementation.

For example, for the (class of) dynamical models of exchange outlined in the previous section, one can deduce that the
total excess demand
td u p x 2 N! RP0;

td u p x t ¼
X
a2A

X
g2G

ðd ðx tÞ u a p g � ðx tÞ a gÞ
of the time-dependent allocations x is, for value-preserving trade-resolving policies, non-increasing in time. Therefore, a
model implementation yielding allocations whose total excess demand at some time t⁄ happens to be smaller than at some
later time cannot be correct.

When model implementations cannot be automatically derived from specifications and one cannot prove model imple-
mentations to be correct (to comply with the specifications), crucial experiments and corner-case model setups23 play an
essential role in validating model implementations.

In this case, validating a model implementation simply means assessing that the implementation does not fail in a num-
ber of crucial experiments and corner-case studies. Of course, such assessment can only be done for a finite number of cases
and cannot not show that the implementation is correct.

However, systematically exercising a model implementation on carefully chosen sets of crucial experiments is, in absence
of rigorous proofs of correctness, the best one can do when unambiguous model specifications are available.

When not, very little can be said about a model. In this case prototype implementations can still be used to compute
numerical results. However, very little can be said about the correctness of such implementations and interpretations of
the numerical results become problematic.

5. Conclusions

We have presented a functional framework for describing dynamical models of exchange economies. The framework con-
sists of a notation and of a number of elementary notions. The notation is a blend between standard mathematical notation
and simple constructs of typed functional programming languages.
ember that tr inherits the properties of ebt and that value-preserving reallocations preserve equilibrium, see Section 3.1.
odel specification is almost never a model definition. Thus, properly speaking, model specifications allow one to reason about properties of models
not just single models.

ner-case model setups – corner cases in short – are model setups for which it is particular easy to reason about the model and deduce properties that
model implementations have to satisfy. Corner cases are often obtained by selecting limit values for specific model parameters. For the dynamical
of exchange outlined in the previous section, for instance, typical corner-cases can be obtained by considering two goods or one single agent per sector.
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Some of the specifications introduced in Section 3 can be directly translated into Haskell data types or type classes. A
translation of the whole framework into an executable programming language, however, would require a dependently typed
language and go well beyond the scope of this article.

As explained in the introduction, the framework has been motivated by the attempt at re-implementing the model de-
scribed in [19] and has been conceived to support the specification of an interesting but narrow class of models of exchange.
For models of exchange based on, e.g., multilateral interactions between agents, non-deterministic or stochastic transition
functions, reinforcement learning, the framework needs to be generalized and extended.

In spite of these shortcomings, the proposed framework is, at the best of our knowledge, the first attempt at introducing
(in our view much needed) mathematical specifications in computational economics, in particular for agent-based models of
exchange.

In the last section, we have shown that such specifications (1) effectively support disciplined model implementation, e.g.,
by providing pre- and post-conditions and crucial experiments for model validation; (2) assist the analysis of computational
models and allow one to precisely formulate model-specific questions, e.g., for the dynamical models of exchange outlined in
Section 4.2, about the asymptotic behavior of time-dependent allocations and equilibrium allocations.

We have applied the functional framework for the complete specification and for the implementation of the model pre-
sented in [19]. This application goes beyond the scope of this work and is presented in a companion paper [6].
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Appendix A

We have to show that, with the utility profile (6), (7) and positive prices p 2 P, x 2 A ? Q as defined by Eq. (8) satisfies (3)
and (4). As far as (3) is concerned, one has:
24 App
8 g 2 GX
a2A

x a g

¼ fequation ð8Þg

X
a2A

ðx0 aÞ � p
w � p � ðw gÞ

¼ futility weights collinearity ð7Þg

1
k
�w � p

w � p � ðw gÞ

¼ futility weights collinearity; again ð7Þg

1
k
� k �

X
a2A

x0 a

 !
g

 !

¼ ffinite sum of functionsgX
a2A

x0 a g:
Hence, x satisfies (3). Let us now show that x satisfies (4). First of all, one has
8 a 2 A; ðx aÞ � p ¼ ðx0 aÞ � p;
because of Eq. (8). Thus, for every a in A, x satisfies the constraint of Eq. (4). Assume there exists an x0 a 2 Q yielding a higher
utility than xa. Then
lied mathematics, Geophysical Fluid Dynamics. Free University, Berlin.



N. Botta et al. / Applied Mathematics and Computation 218 (2011) 4025–4040 4039
ðu aÞ ðx0 aÞ > ðu aÞ ðx aÞ
¼ fequation ð6Þg
min
g2G
ððx0 aÞ gÞ = ðw gÞ > min

g2G
ððx aÞ gÞ = ðw gÞ

¼ fequation ð8Þg

min
g2G
ððx0 aÞ gÞ = ðw gÞ > ðx0 aÞ � p

w � p
¼

8 g 2 G; ððx0 aÞ gÞ = ðw gÞ > ðx0 aÞ � p
w � p

¼

8 g 2 G; ðx0 aÞ g >
ðx0 aÞ � p

w � p ðw gÞ

)
ðx0 aÞ � p > ðx0 aÞ � p;
that is, x0 violates the budget constraint of Eq. (4). Thus, there is no x0 better than x which satisfies the budget constraint.
Thus, x satisfies (4).
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