J Grid Computing
DOI 10.1007/s10723-012-9223-6

HPC on the Grid: The Theophys Experience

Roberto Alfieri - Silvia Arezzini - Alberto Ciampa -

Roberto De Pietri - Enrico Mazzoni

Received: 27 January 2012 / Accepted: 6 July 2012
© Springer Science+Business Media B.V. 2012

Abstract The Grid Virtual Organization (VO)
“Theophys”, associated to the INFN (Istituto
Nazionale di Fisica Nucleare), is a theoretical
physics community with various computational
demands, spreading from serial, SMP, MPI and
hybrid jobs. That has led, in the past 20 years, to-
wards the use of the Grid infrastructure for serial
jobs, while the execution of multi-threaded, MPI
and hybrid jobs has been performed in several
small-medium size clusters installed in different
sites, with access through standard local submis-
sion methods. This work analyzes the support for
parallel jobs in the scientific Grid middlewares,
then describes how the community unified the
management of most of its computational need
(serial and parallel ones) using the Grid through
the development of a specific project which in-
tegrates serial e parallel resources in a common
Grid based framework. A centralized national
cluster is deployed inside this framework, pro-
viding “Wholenodes” reservations, CPU affinity,
and other new features supporting our High Per-

R. Alfieri (X)) - R. De Pietri

INFN Parma and Parma University,
Viale G.P. Usberti 7/A, Parma, Italy
e-mail: roberto.alfieri@fis.unipr.it

S. Arezzini - A. Ciampa - E. Mazzoni

INFN Pisa, Polo Fibonacci Largo B. Pontecorvo 3,
Pisa, Italy

Published online: 05 August 2012

formance Computing (HPC) applications in the
Grid environment. Examples of the cluster per-
formance for relevant parallel applications in the-
oretical physics are reported, focusing on the
different kinds of parallel jobs that can be served
by the new features introduced in the Grid.

Keywords HPC . Grid - Theoretical physics

1 Introduction

Since early 2000s, Grid [1] has been the emerging
paradigm for the setting up of distributed com-
putational infrastructures and services. This par-
adigm has been mainly used for serving the needs
of High Throughput Computing (HTC), but it was
scarcely used for parallel applications. The INFN
has been always at the forefront on the develop-
ment and deployment of Grid enabled computing
farms and storage systems, but it was relaying on
small local clusters or dedicated HPC facilities for
all of its needs for parallel resources. Recently,
the general availability of multi-core architectures
have pushed the demand for parallel and multi-
threaded resources, not only in communities like
the Theophys one, involved in compute-intensive
simulations.

This trend has brought the Theophys commu-
nity to consider the opportunity to undertake a
project towards a common framework, able to

@ Springer

R. Alfieri et al.

integrate all its resources in the EGEE distributed
infrastructure [2], which was widely used by the
community for the management of serial jobs. The
project would have carried out important (and ob-
vious) benefits in terms of resources management,
exploitation and usability. The need to install
new resources for the whole Theophys community
brought to the deployment of a national cluster
designed to support heterogeneous applications
(serial, parallel and multi-thread) and to be ac-
cessed as a Grid service.

Various scientific communities have developed
proposals or projects addressed to provide a uni-
form interface for users, or to enable the sub-
mission of applications requiring multi-scale re-
sources. These objectives have been investigated
using very different approaches.

A significant example of this trend is given by
the effort made by the Computational Chemistry
initiative [3], led by the University of Kentucky
and involving other Universities and supercom-
puter centers in USA, with the aim to provide
a common infrastructure for the chemistry com-
munity. The approach has been the development
of a dedicated Grid infrastructure, CCG (Com-
putational Chemistry Grid), consisting of basic
Grid middleware components, such as the Globus
Toolkit (see Section 3) and CGI scripts, providing
core functionalities to the client applications.

Other communities, like ours, are pursuing the
idea of performing multi-threaded or HPC com-
putation into standard Grid infrastructure, like
the example in the field of Cosmological simula-
tions [4]. Although the work demonstrated that
the EGEE infrastructure can be successfully used
to run numerical simulations, the authors claim
that the possibility to select WNs on the basis of
the memory, number of cores and local disk space
would simplify the porting and the management
of their parallel jobs.

A similar approach has been pursued in the
field of the Earth Science [5], where has been done
an analysis of the requirements for the porting
of MPI applications in the EGEE environment.
Despite the improvements in the MPI support,
thanks to the work of specific MPI Working
Groups [6] promoted by EGEE, the infrastructure
was not considered a production tool suitable for
their applications.

@ Springer

Last related work analyzed here is the Share-
Grid Peer-to-Peer Desktop Grid [7] that is a
Grid infrastructure aiming at the federation of
resources provided by a set of small research lab-
oratories. The infrastructure is designed to have
good scalability and performance for different
kind of jobs, including serial, parallel and SMP
ones. What is worth of mention in this work is a
complementary technique adopted for the multi-
core support, based on the use of multiple virtual
machines per physical machine. With this solution,
the users can agree with the site administrators
on a specific hardware and software environment,
which can be deployed on clusters composed by
heterogeneous hosts. Disadvantages are the over-
head introduced in the resources usage and the
requirement of relevant configuration efforts.

This paper is organized as follow. In Section 2
we give a short description of the users com-
munity, its computational needs and the project
objectives. In Section 3 we analyze the actual HPC
support in the most common Grids. In Section 4,
that is the main part of the present work, we dis-
cuss problems encountered and solutions adopted
in the design and deployment of the project. In
Section 5 there is a description of two applications
in theoretical physics executed in the Grid envi-
ronment, that we used to test the new features
introduced by the project. The conclusions of our
work are drawn in Section 6.

2 The INFN Theoretical Physics Community,
Computational Needs and Project Motivations

The INFN theoretical physics community consists
of more than one thousand researchers distrib-
uted over 28 sites and involved in more than
60 research projects. In this community, beside
several activity that require computation based
on serial jobs, there are research fields, such
as Lattice Quantum Chromo-Dynamics (QCD),
Fluid Dynamics and Numerical Relativity, which
relies on the execution of massive parallel applica-
tions. These applications require HPC resources
ranging from large PC clusters up to specialized
supercomputers.

HPC on the Grid: The Theophys Experience

In the past these computational needs have
been fulfilled through very different solutions.

The EGEE Grid infrastructure has been widely
used for serial calculation. During the year 2010
Theophys VO has been the sixth major CPU con-
sumer, with about 1 Million of executed jobs (see
Fig. 1).

In theoretical physics there is the request of
numerical simulations, such as Lattice QCD, re-
quiring the computational power provided only by
massively parallel supercomputers. Since early 80s
INFN has developed a own supercomputers fam-
ily, named APE [9], dedicated to such problems.
QCD simulation jobs have been executed also at
Cineca and in general on PRACE facilities (see
Section 3).

For smaller parallel jobs (“medium-sized”) sev-
eral independent small clusters have been in-
stalled and accessed using standard methods
and local policies. These resources are used for
different levels of parallelism, ranging from ap-
plications which require the exclusive access to
a single whole-node for multi-threaded applica-
tions, or single process applications requiring the
exclusive usage of the whole memory of the node,
up to complex hybrid MPI-openMP applications
(see Section 5) requiring hundreds of cores.

Often research groups have multi-scale appli-
cations requiring access to different kind of re-
sources (see Fig. 2). Consequently, users have
to interact with different resource providers and
to manage different access credentials and meth-

1
11l

-

matlas
Ecms

m alice

® lhcb

mdzero

m theophys

= compchem

= Isgrid

Fig. 1 Theophys Grid usage. This chart, derived from the
EGI Accounting Portal [8] shows the usage in 2010 of the
Grid infrastructure by the Theophys VO in comparison

with the other EGI/EGEE VOs, in terms of Normalized
CPU time

Theophys resources for serial jobs
[site || site || site || site || site |
| | | |

Grid infrastructure

Medium sized parallel clusters

| cluster | | cluster | | cluster |

Supercomputers

APE PRACE
family resources

Fig. 2 Theophys resources. In 2010 there were 3 types
of resources: EGEE infrastructure for serial jobs, small
parallel clusters dedicated to medium-sized jobs and super-
computers for LQCD simulations

ods. The use of independent resources leads to
a waste of computational power and administra-
tion efforts. The need of a single shared platform
was considered increasingly important and Grid
appeared to be the natural solution since it has
been successfully used by the community for serial
applications.

For these reasons, in early 2010, we decided to
evaluate the reliability of the sites, the flexibility
of the support and in general whether the middle-
ware was suitable for our “medium-sized” applica-
tions. The evaluation has been realized through a
series of probe jobs submitted to all sites support-
ing MPI and the Theophys VO. These probe jobs
execute a shell script that collects environmental
information from WNs (LRMS type, flavor and
version of the MPI implementations) and esti-
mates network and CPU performance through the
execution of basic bench-marking programs. The
results, presented in Table 1, show that there was
a general lack of opportunity to use the Grid to
perform even small scale parallel computation on
the already active resources.

An important step towards a better support
for HPC has been the release in June 2010 of
a document proposed by the EGEE MPI Work-
ing Group [6]. The document recommended a
method for deploying MPI support that should
work for both users and site administrators and it
proposed new middleware features to support the
upcoming multi-core architectures.

@ Springer

R. Alfieri et al.

Table 1 The table presents the situation of the MPI sup-
port among sites supporting Theophys VO in early 2010,
prior to the start of the project

MPI/LRMS Status Network CPU
(pns-MBytes/s) (GFlops)

MPICH/PBS OK 114-54 0.7
MPICH/PBS OK 109-56 0.7
MPICH/PBS OK 114-54 0.7
MPICH/LSF OK 98-108 1.2
MPICH/LSF OK 94-101 1.3
MPICH/PBS OK 1287-10 0.4
MPICH/LSF mpich misconf. - 1.3
MPICH/LSF mpich misconf. - 1.5
MPICH/LSF mpich misconf. - 1.5
MPICH/LSF mpich misconf. — 1.5
MPICH/LSF ssh misconf. - 0.8
MPICH/LSF ssh misconf. - 0.7
MPICH/LSF ssh misconf. - 0.8
MPICH/PBS aborted - -
MPICH/PBS aborted - -

The numbers presented in the Network column specify
Latency and Bandwidth measured among 2 nodes of the
cluster. Almost half of the resources were working for
serial jobs, but not for parallel ones, due to software (ssh
or MPICH) misconfigurations

This recent evolution has convinced the INFN
Theoretical Physics community to start a project
with different objectives and different time-scales:

— to provide to the community a single large
resource able to satisfy all the small and
medium-sized computational needs described
in Section 2. This objective has clear advan-
tages in terms of simplification of the user in-
terface, administrator tasks, resource exploita-
tion, and transparency on the user’s activity
through a detailed web accounting service.
Of course, this result can be achieved with a
traditional cluster too.

— to integrate the medium sized activity in the
existing Grid infrastructure implemented for
serial jobs, as mentioned earlier. Here the
need for a Grid-enabled HPC cluster has ev-
ident benefits for both users and administra-
tors point of view: architectural components
and functionalities (such as AAA services),
job life-cycle management, resources integra-

@ Springer

Theophys resources for serial jobs

[site || site || site || site || site |

Grid infrastructure

National
cluster

Supercomputers

Medium sized
parallel clusters

Fig. 3 The desired Theophys infrastructure

tion and management can be reused for the
new resources.

— to realize the first step toward a single, global
infrastructure for the whole community, based
on Grid services (see Fig. 3 for a view of
the envisioned resources architecture). The
infrastructure should be able to integrate old
and new parallel clusters, so the design of the
first parallel cluster, we are describing here,
must be scalable and reliable. Moreover, as
we will see later on (see Section 3), PRACE,
that is actually an important supercomputing
provider for the Theoretical physics commu-
nity, could be able in a near future to extend its
services to Grid users. This integration can be
endorsed by the scientific communities, espe-
cially if every other computational activity of
the communities is already performed inside
the infrastructure.

3 HPC Support in the Grids

A widely used middleware is the Globus Toolkit
(GT) [10]. It includes software modules for secu-
rity (GSI), data services (GridFTP), Information
services (MDS), Execution Management Services
(GRAM) and communication, which are often
taken by other projects to build new middlewares.

For non-trivial jobs, the user has to write a
Globus job script, which is written using the Re-
source Specification Language (RSL). In case of
parallel jobs the RSL parameter needed to specify
the CPUs number is “count”. The following is an

HPC on the Grid: The Theophys Experience

Fig. 4 Comparison
between gLite and

UNICORE Architecture

glite Architecture

UNICORE architectures [uccclient | | Rich client | [client (un) | | client (u) |
from the job generation DL scriot
process point of view JSDL script P
Y Resource |.. Information
Unicore/X Unicore/X Broker System BDII
IDB IDB ~ i
l ¢ TSI script
TSI TSI Cream CE Cream CE
LRMS LRMS LRMS LRMS

example of a RSL file (GT4 syntax) requiring 8
CPUs:

<job>
<executable>mpi_test</executable>
<stdout>mpitest.stdout</stdout>
<stderr>mpitest.stderr</stderr>
<count>8</count>
<jobType>mpi</jobType>

</job>

Some middlewares, such as glite [11] and
ARC [12] (Advanced Resource Connector), pro-
vide users with high level services for scheduling
and running computational jobs, accessing and
moving data, and obtaining information on the
Grid infrastructure. They still use selected Globus
Toolkit libraries, chiefly in the security context
(GSI). Other middlewares have been developed
to support specialized services such as dCache
[13] which is designed for data management, and
UNICORE (Uniform Interface to Computing Re-
sources) [14] which is specialized in supercomput-
ing applications.

In 2010 gLite, ARC, UNICORE and dCache
joined forces to develop and unify their middle-
wares in a common project called EMI (European
Middleware Initiative) [15].

Considering the purpose of this work, we ana-
lyze here a comparison between the parallel sup-
port in gLite, which was the middleware in use
by Theophys for serial jobs at the moment of the
project start up (see Section 2), and in UNICORE,
which was specifically created for HPC applica-
tions [16] (Fig. 4).

UNICORE supports resource specifications
through a Job description file, written in JSDL

(OGF standard) [17] with the addition of exten-
sions for parallel applications and the support
for the Execution Environments. The Execution
Environments, specified by the administrator by
means of the IDB file, provides to the users a high
level of abstraction, hiding resource details and
providing simple execution environments to the
user [18].

The user can specify resources and environ-
ment requirements through a command line script
or a Java web portal (Rich client). The main
resource requirements supported by UNICORE
are the total number of CPUs, number of nodes,
CPUs per node and RAM per node. Through the
Execution Environment it is possible to specify
the software environment and other options, such
as the MPI flavor and the number of requested
processes (see Fig. 5 for an example).

The parallel support in gLite is derived from
the recommendations of specific MPI Work-
ing Groups promoted by EGEE. It is achieved
through the Job Description Language (JDL) at-
tribute CPUNumber, which specifies the number
of Job Slots that will be requested to the Resource
Manager (see Fig. 6 for an example).

Executable: "./hello.mpi",
Imports: [{From: "/myfiles/hello.mpi",
To: "hello.mpi" }, 1,
Resources:{ CPUsPerNode: 2, Nodes: 2, 1},
Execution environment: { Name: OpenMPI,
Arguments: { Processes: 12, }, },

Fig. 5 UNICORE Command-line client example

@ Springer

R. Alfieri et al.

CPUnumber = 8;

Executable = "mpi-start-wrapper.sh";

Arguments = "my-mpi-prog OPENMPI";

InputSandbox = "mpi-start-wrapper.sh my-mpi-prog";
OutputSandbox = {"std.out", "std.err"};

StdOutput = "std.out";

StdError = "std.err";

Requirements =

member ("MPI-START",
other.GlueHostApplicationSoftwareRunTimeEnvironment)
&& member ("OPENMPI",
other.GlueHostApplicationSoftwareRunTimeEnvironment)

Fig. 6 MPI job in gLite: JDL script example

MPI-Start [19] is an abstraction layer, located
between the middleware and the underlying LRMS
and MPI flavors, that offers a unique interface to
start parallel jobs with different implementations
of the execution environment. The architecture is
organized in three main frameworks: The sched-
uler framework provides support for different Lo-
cal Resource Management Systems (LRMS). It
detects the availability of a given scheduler and
generates a list of machines that will be used to
execute the application. The Execution frame-
work prepares the environment needed to start
the particular MPI implementation. The user has
only to specify which MPI flavor will be used to
execute the application. The Hooks framework is
responsible for the files distribution in case of file
system not shared between WNs and it manages
customizable pre-run and post-run hooks.

The example reported in Fig. 6 shows the
JDL file of a job demanding 8 processors and
the OpenMPI flavor. The Requirements attribute
makes the brokering service to select sites publish-
ing that they support MPI-Start and OpenMPI.

A step towards a better support for HPC in
glite has been the release in June 2010 of a docu-
ment proposed by the second EGEE MPI Work-
ing Group [6] which proposed the introduction of
specific JDL Tags. The new features are designed
to allow users to specify how cores should be
distributed over the cluster, whether full nodes
should be used or not and how many nodes should
be involved in the allocation itself.

In the comparison between the MPI supported
methods in UNICORE and glite we can distin-
guish two separate stages: the resource selection
and the job environment setup.

@ Springer

The resource selection in gLite has a higher
abstraction level thanks to the Resource Broker,
which permits the integration of large sets of se-
rial and parallel resources. In UNICORE users
have a higher level of flexibility, since they can
specify a more detailed hardware environment,
such as CPUs per node and RAM per node, that
are needed to support multi-thread and hybrid
applications. This feature was specified in gLite
as a recommendation document, but it was not
implemented.

The job environment setting is an advanced
feature that allows users to configure the way jobs
are executed in a more detailed and user-friendly
fashion. A common scenario is the configuration
of an environment for parallel jobs, such as MPI.
UNICORE explicitly supports this feature in the
UNICORE/X Execution Environment. The same
feature is provided in gLite by MPI-Start.

Since the major mandate of EMI is the unifi-
cation of the different middlewares, works are on-
going towards a common solution for the execu-
tion task. EMI-ES (EMI Execution Service) [20]
is a specification for the common Execution Ser-
vice, developed by the EMI project, that intends
to define a joint web service interface to ARC
(ARC-CE), gLite (CREAM) and UNICORE
compute services, by incorporating good ideas
from all three. The HPC capabilities supported
by EMI-ES are NumberOfSlots, SlotsPerHosts,
ExclusiveExecution (whether a host should be
allocated for exclusive use by the job), ProcessPer-
Host and ThreadsPerProcesses. The deployment
of EMI-ES (foreseen in EMI-2) will make possi-
ble the introduction of common clients and the
interoperability among different Computing Ele-
ments.

3.1 Grid Infrastructures

Grid technologies have been introduced in Europe
since early 2000s pushed by big scientific experi-
ments and projects, starting from LHC at CERN
[21]. In these years the European Union (EU)
has funded several projects aiming at the setting-
up of a continental infrastructure able to provide
computational resources to the whole scientific
community.

HPC on the Grid: The Theophys Experience

The European infrastructure in use by the The-
oretical Physics community at the time of the
project start was EGEE, based on the gLite mid-
dleware.

EGEE ended in 2010 and was substituted by
the EGI project (European Grid Infrastructure)
[22]; EGI is now based on the EMI middleware
and is composed of a central coordinating body
(called the EGl.eu) and more than 40 National
Grid Initiatives (NGIs), representing the resource
infrastructure providers. The users are organized
in Virtual Organizations and Theophys is the Vir-
tual Organization representing the Italian The-
oretical Physics community, supported by IGI,
which is the Italian NGI.

Grid technologies are now in use also in the
most important supercomputing consortia in US
and Europe:

XSEDE [23] is a US project supporting 16 su-
percomputers and data analysis resources across
the country, replacing and expanding the former
TeraGrid initiative [23]. The Grid interconnection
is provided by OSG (Open Science Grid) [24]
which is a Grid infrastructure based on Globus
Toolkit with additional modules for security, stor-
age and data management, work-flow and other
higher level services.

The analogue European initiative is PRACE
(Partnership for Advanced Computing in Eu-
rope) [25] which is a EU funded project estab-
lished to create a permanent pan-European High
Performance Computing service for research.
The project incorporate the previous initiative,
DEISA (Distributed European Infrastructure for
Supercomputing Applications) [26], which was
completed in April 2011. PRACE is composed
by more than 20 partners, whose HPC facilities
are organized in a hierarchical model. The higher
level, Tier-0, includes 6 supercomputers located
in Germany, France, Spain and Italy. The Tier-
1 machines are national supercomputers made
available from Finland, France, Germany, Ire-
land, Italy, Poland, Sweden, The Netherlands,
Serbia, Switzerland, Turkey, and United King-
dom. PRACE has deployed a common services
infrastructure, Grid based, to integrate and op-
erate the Tier-0 and Tier-1 systems as a single
distributed Research Infrastructure and to pro-
vide a transparent access to users. From the Grid

perspective, an important feature is the support of
UNICORE as a core service for both Tier-0 and
Tier-1 facilities [25].

Recent scientific projects are growing in Eu-
rope relying on resources provided by both super-
computer centers, like PRACE, and HTC Grid
infrastructures, like EGI. These projects share the
common interest in multi-disciplinary multi-scale
models and they require large scale or even ex-
treme scale computing capabilities.

Among others, we mention GEMS [27] and
MAPPER [28]. GEMS is an application software
developed inside CompChem VO, that distributes
a large quantity of independent tasks on a HTC
platform (EGI). Their results are passed as a set
of multiple inputs for a a final elaboration im-
plemented on a HPC platform hosted at Cineca
(the Italian PRACE member). The computational
solution pursued in this project is the definition of
a work-flow engine that combines together HTC
and HPC elements. It will be based on EMI-ES,
as soon as it will be available.

MAPPER is an EU-funded project aiming
at the integration of heterogeneous infrastruc-
tures for programming and execution of multi-
scale simulations from different user communi-
ties: physiology, computational biology, fusion,
hydrology and nano-material science. The new
services and interoperability tools will be intro-
duced by joint task-force between EGI, MAPPER
and PRACE.

The scientific interest towards a convergence
between HTC and HPC has been one of the main
reason behind the development of our project and
it follows the line of integrating, into the EMI
middleware, the Grid components in use in Super-
computing Centers.

4 The Project

Although, even if the middlewares comparison (see
Section 3) has highlighted that UNICORE was more
suitable for HPC support, we decided to adopt the
gLite middleware for the following reasons:

— GLite is a stable and robust middleware for
HTC and is actually the middleware in use
in the Italian NGI (IGI). This means that

@ Springer

R. Alfieri et al.

the Theophys community of users and admin-
istrators has a deep experience with it and,
moreover, a consolidated infrastructure based
on gLite is in place, providing services that can
be used for HPC resources too.

— Although the support and the usage of paral-
lel computing in glite was quite inadequate,
the Recommendation document elaborated
by the EGEE MPI-WG has accelerated the
process towards an improvement of the sup-
port. As a consequence, an additional objec-
tive of our work has been the contribution
towards a real start up of the usage of parallel
computing in glLite, through a close collabora-
tion with the middleware developers.

The key points we faced in the design of a re-
source able to support not only serial and MPI but
also SMP and hybrid applications, as described
earlier, have been the following:

— how to implement “WholeNodes support”,
which was one of the main targets of the
project, since, when we decided to start, the
support wasn’t implemented yet. This point
cover two distinct aspects: how to get the
whole nodes allocated and how to distribute
MPI ranks and/or threads on the reserved Job
Slots.

— how to deal with serial and parallel jobs or,
in other words, how to keep serial jobs out of
parallel resources. Indeed serial jobs without
any requirement may land on any resources,
including parallel ones.

— An issue faced in this project, concerning any
HPC resources (Grid and traditional ones), is
the optimization in the cores utilization, by
maximizing cores exploitation and minimizing
parallel jobs starvation.

— often jobs in theoretical physics are HTC (run-
ning for several days) and data-intensive (see
for example the Einstein Toolkit in Section
5.2), so a special point in this work is the
design of a storage architecture optimized for
such job types.

4.1 Cluster Characteristics

The Cluster had to be integrated into the exist-
ing Grid infrastructure and the deployment pro-

@ Springer

cedure active within our organization (INFN).
They are standardized on the basis of the Sci-
entific Linux (SL) distribution and the Yaim
configuration tool. These requirements ruled out
the possibility of consider any other cluster man-
agement solutions. Moreover, the choice of the
Local Resource Management System (LRMS), in
our case LSF, was a consequence of the exist-
ing infrastructure present at the PISA computing
center and we did not examined other possible
systems, in terms of performances or capabilities.

The main problem is that there are different
software requisites that need to be harmonized.
The requisites given by the local infrastructure
management, the middleware and the User Com-
munities are in general different and, in some
aspect, conflicting with each other. We made the
strategic choice of decoupling the handling of the
requisites in the following way. On the WNs,
we installed an Enterprise class operating system,
that guarantees the hardware and software sup-
port. Inside that system, the middleware and user
applications are run using the “chroot” mecha-
nism.

In our case the version of the running operat-
ing system is the “Suse Linux Enterprise Server
(SLES)”, version 10sp2: this system guaranteed
the support of the hardware characteristics, for in-
stance the used HCA IB and the GPFS software.
The middleware, instead, is installed on a specific
“chroot” inside which runs a specific version of
Scientific Linux along with all the libraries nec-
essary for the correct middleware and user appli-
cations work. Hence, from the user point of view,
the environment is Scientific Linux 5.5, while from
the operative core system point of view it is SLES
10sp2. As an example of the benefits allowed by
this kind of installation we can report a couple of
cases:

— A bug in the AMD processors of the Cluster
(AMD erratum 298) caused the effect to half
the performances of the WN. The solution has
been identified in the creation of an ad-hoc
kernel, operation that has been possible and
relatively simple thanks to the decoupling.

— Another case is the updating of the middle-
ware and user libraries. With the use of this
decoupling mechanism we can rollback and

HPC on the Grid: The Theophys Experience

extend to all the WN of the Cluster simply un-
packing a tar.gz. As far as the performances is
concerned, the “chroot” mechanism does not
introduce any overhead, while this happens in
the case of real virtualization solutions. We
proved it running SPEC benchmark inside and
outside the “chroot” environment obtaining
very similar results.

The fabric of the Cluster has been realized us-
ing hardware based on Cisco components (switch
SFS 7012, HCA SFS HCA320 A1l with Mellanox
technology MT25204 chipset) managed by a soft-
ware layer based on Open Fabric version OFED-
1.5.1 that has a better and more continuous devel-
opment.

4.2 Storage

An important objective of this project is to ease
the data management [29]. The choice of the Grid
storage services made available to the Cluster
has been inherited from the existing Data Cen-
ter infrastructure, which is based on the StoRM
[30] Storage Element. The back-end of StoRM is
composed by a couple of Enterprise Class storage
system Data Direct Network S2A9900, for about
1PB of RAW disk space, with GPFS file system.

The file system is accessible from the cluster
WNs via POSIX and from the Storage Element
using the Storage Resource Manager (SRM) pro-
tocol (see Fig. 7).

The cluster leverages on the IB connection to
increase the file system performance using the IP
over IB protocol.

Fig. 7 Cluster storage
architecture

Parallel jobs have typically a long execution time
(several days), while elaborating large amount of
data-sets (>1 GB). In the standard Grid architec-
ture such jobs need to spend considerable amount
of time uploading the input data-set from the
user’s storage area to the WNs and, at the end of
the calculation, from the WNs back to the user’s
storage area. The data transfer involves typically a
single process, while other allocated cores remain
unused. Moreover, parallel jobs often require a
CPU time larger than the maximum time allowed
by the queue, so the user, in principle, has to
move checkpoint data-sets forward and backward
several times. To ease up this problem we have
exploited the possibility that, on parallel clusters,
the same physical storage can be shared between
WNs and Storage Elements. On the Cluster a stor-
age space (“chkPoint”) is shared for reading and
writing between WNs and the Storage Element.

The job work-flow on the Cluster is the follow-
ing:

— Input data-sets are uploaded from the user’s
SE to the resource SE via GridFTP or, in
case of small amount of data, they are shipped
along with the InputSandbox.

— The running job writes outputs (standard out-
put, standard error and output data) to the
“ChkPoint” Area.

— The user can monitor the status of the running
job by perusing the output files via SRM re-
quests.

— Atthe job completion the user can retrieve the
output files via SRM, or continue the calcu-
lation on the same data-set through a subse-
quent submission performed on the cluster.

Shared GPFS/IB

SandBox

Home Dirs WorkerNode

User

A A

Interface

SE Storage

v Posix

gridFTP

Area

WorkerNode

SRM ;-/ WorkerNode

ChkPoint
Area

WorkerNode

SE Storage

Area

Resource Storage Element

@ Springer

R. Alfieri et al.

4.3 Queues Organization

The Cluster is integrated in a wider Grid site that
must provide resources also for serial jobs. The
result is the fact that the biggest part of served
jobs is of the serial type, for which there is no
granularity issue: 1 job = 1 CPU (in reality 1
Core) and it is not important where the specific
core is allocated. For parallel jobs this is not the
case. For this reason in the CE, at the middleware
level, a set of parameters have been introduced
to allow users to specify their requests in terms of
distribution of the used cores. These modifications
to the middleware were included in the experi-
mental version of the middleware we used for the
Cluster. Now these modifications are a regular
part of the normal middleware distribution (see
next section).

This issue has two faces and can be viewed
from two different point of view. From the user
perspective is useful/necessary to know the gran-
ularity of the available systems and to be able
to specify requests on the allocation of the Job
Slots: we know that some types of applications can
benefit from having “near” Job Slots (to use near
core) and in other cases this is less important. So
the user is happy for the opportunity to submit
specific requests to the middleware.

From the site administrator point of view this
can lead to inefficiencies: for instance it can hap-
pen that cores remain free due to the reserva-
tion by a job waiting the availability of other
requested cores, impeding to maintain the cluster
fully loaded. The experience matured in the last
years with our cluster showed evidence of these
issues:

— The coexistence of serial and parallel jobs on
shared resources is not an easy issue for the
dimension of our cluster. The best way to fill
the holes of free cores would be the “short
queue” but generally it doesn’t work properly
because it requests the collaboration by the
users that, in our experience, not need this
kind of resources.

— The second best choice to fill the unallocated
cores is to allow the execution of serial jobs

@ Springer

submitted by communities different from the
main one. But in this case the jobs, not hav-
ing specific requests for their collocation, can
easily saturate the available resources making
difficult the start of parallel jobs.

— The best solution would be the possibility to
manage the “packing” of the serial jobs on
the same Worker Node. This option is not
possible in LSF (at least is not available in
the version we are using), so that the only
way to obtain this result is the migration of
running jobs. We are exploring this solution
but there are problems in the interaction with
the middleware.

— Mechanisms like the Job Slot reservation and
the back fill are used. They allow to mitigate
the problems and to increase the exploitation
of the available resources but they have the
side effects of leading to long wait times for
the execution of parallel jobs and/or to re-
source starvation.

4.4 Granularity and Multicore Support

The cluster model supported by the glite mid-
dleware didn’t consider the different levels of
communication types among cores in the modern
multi-core systems. Figure 8 displays the archi-
tecture of a modern cluster with multicore bi-
processor nodes. In this example the inter-process
communication performance (latency and band-
width) depends on the position of the processes
with respect to the cores. We measured the com-
munication round-trip time (see Fig. 8, bottom
left) and bandwidth (see Fig. 8, bottom right) us-
ing the NetPipe [31] utility. The bandwidth perfor-
mance makes evidence of the Level 2 cache effect
at a packet size of about 8 KBytes and the Level 3
cache effect for packet sizes up to 2 MBytes.

Grid middlewares should support multi-
threaded and hybrid OpenMP/MPI parallelism.
They should also support the CPU and memory
affinity control for the exploitation of cache
effects and the regulation of the DDR access in
order to limit the bottleneck introduced by the
inter-processor links (QPI or HT).

HPC on the Grid: The Theophys Experience

Fig. 8 Communication HOST HOST
types patterns in 1 3
multicore systems (fop). Socket Socket == Socket l
Different communication

oflallolle allollalle ollelle]]o ollellalle
patterns correspond to sl1etlel|e stlleffele slletigelle CHE AR
different performances. S LI RS NI AR RS BRI E] R AL RGN RS
The actual performances, _L3 cache _L3 cache L3 cache _L3 cache
as measured using the DDR HT DDR DDR HT DDR
Netpipe tool for the QP - QP
different communication Siksnd
patterns, are shown in the : :
bottom-left box (round NetPipe NetPipe
trip time) and 1 ms 14
bottom-right box 1 2 A
(Bandwidth). Continuous 2 & ” R
red line for intra-socket -5 100 us Qo 10 = iF B
communications (7), £ = 8 f /
black-dashed line for 2 o = =
intra-node E H Z Z Z o S /ll :
communications (2) and ~ et 8 4 /," ',"
blue-dotted line for 1 s / / _ j 2 s
extra-node infiniband E=a=" 0 A
communications (3) 64k 2M 8k64k 2M

Packet Size (Bytes) Packet Size (Bytes)

The MPI-WG recommendation document, pre-
viously mentioned, introduces three new JDL
attributes for the Granularity support (Fig. 9).
These attributes allow users to specify:

— SMPGranularity: This value determines the
minimum number of cores that should be al-
located on any host.

— WholeNodes: Whether whole nodes (all the
core present on a single node) should be ex-
clusively allocated for the job.

— HostNumber: How many nodes should be used.

WholeNodes=true

JDL request: HostNumber=2

HOST /I \\ HOST
socket socket /1| | [\ socket socket
C @ @ (S c @ @ c

OST OoST

The use of these new attributes will allow
users to better specify the execution environment
needed by the application. In Fig. 10 are shown
some specific usage examples.

These attributes were not implemented yet in
EGEE so we started a collaboration with the
glLite middleware developers aiming at the de-
velopment and testing of a provisional patch for
CREAM CE [32], including a preliminary support
for the new attributes.

Pure Multi thread job
WholeNodes = True;
SMPGranularity = 8;
Hostnumber=1;

Hybrid Job
WholeNodes = True;
HostNumber = 4;
SMPGranularity = 8;

MPI job with one process per node.
HostNumber = 16;
CPUNumber = 16;

socket

© O

socket

© ©

So
© 0

S©
© @

Fig. 9 Grid cluster model with granularity support

Fig. 10 Examples of use of the new Granularity attributes.
Top example: request for a multi-threaded job requiring a
whole node with a minimum of 8 cores. Middle example:
request of 4 exclusive nodes with at least 8 cores per node.
Bottom example: request for an MPI job spread over as
many nodes as possible

@ Springer

R. Alfieri et al.

This patch is based on the ability of the
CREAM CE to forward specific requirements
(CeRequirements) [32], written by the user in
the JDL, directly to the CE and there processed
to properly instruct the local batch system.
CeRequirements made possible the introduction
of the attributes (with a different syntax, but with
an equivalent semantics) on the production en-
vironment in a transparent way, preserving the
standard functionality of the service. In Fig. 11 are
reported the examples shown in Fig. 10 using the
provisional syntax.

Unlike the JDL Requirements, CeRequire-
ments don’t involve the match-making process,
so the attributes can be used only by means of
direct submissions to the resource. This implies
that the end-point must be explicitly specified in
the Requirements. Of course this strategy doesn’t
scale but, in this first phase of the project where
it exists only a single HPC resource, it is a reason-
able choice.

4.5 MPI-Start

In many cases parallel jobs require to allocate Job
Slots on the minor possible number of nodes to
minimize the communication overhead. The idea
is to bind each MPI process (and its threads) to
a specific subset of processing resources (cores,
sockets, etc.) in order to inhibit excessive process
movement away from its data (L3 cache, physical
memory bank, ...) and to improve inter-process
communications efficiency.

Pure Multi thread job
CeRequirements=
" hostsmpsize==8 && WholeNodes=\"true\" && && Hostnumber=1";

Hybrid Job
CeRequirements=
"hostsmpsize==8 && WholeNodes=\"true\" && Hostnumber=4";

MPI job with one process per node.
CeRequirements="Hostnumber=16";
CPUNumber = 16;

Fig. 11 Multicore support in gLite with the provisional
granularity patch. Here are reported the same examples of
Fig. 10 using the provisional syntax

@ Springer

At the start of the project, there was no stan-
dardized way of performing these optimizations
and users needed to implement process binding
on the starting shell script, in a way dependent on
the target execution cluster. This approach is not
suited to the whole idea of the Grid and needed
to be overcome. For this reason, in collaboration
with the MPI-Start developers, an experimental
version of the tool has been released and installed
on the Theophys cluster, providing the support for
openMP programming and CPU affinity. By using
this experimental release of MPI-Start, it is pos-
sible to start MPI processes at CPU socket level,
preserving an affinity lock between processes and
memory.

The importance of this tuning can be seen on
the testing results shown in Table 2: performance
decreases when increasing the number of threads
per node (‘-psocket’ and ‘-pnode’) from 4 to 8,
due to the fact that, in the latter case, memory
affinity between processes and data is not ensured.
The last two lines show that, if MPI processes
are not forced to completely fill the WNs (“whole
nodes” is not set), the computation results have
large variation (we reported the minimum and
maximum measured time) and they are always
greater than in the other case (first line marked
with ‘-pcore’).

The MPI-Start tool allows a flexible manage-
ment of the execution environment for mixed
MPI/openMP jobs, through the following com-
mand line options: (i) -pcore, one MPI process
per CPU core; (ii) -psocket, one MPI process
per CPU socket; (iii)) —-pnode, one MPI process
per node. In Fig. 12 is reported the example of a
hybrid MPI/openMP job that launches one MPI
process per CPU socket and one openMP thread
per core.

4.6 Authentication and Authorization

The gLite security architecture is based on well
established work in the Grid community. On the
authentication side a credential storage ensures
proper security of credentials while proxy X.509
certificates enable single sign-on. The authoriza-
tion functionality is obtained with the help of
the VOMS [33] service, which provides support

HPC on the Grid: The Theophys Experience

Fig. 12 This is an]]
example of how to lunch mpi-start -psocket -- my-mpi-prog
a hybrid OpenMP/MPI
program using MPI-Start : T : : Hos :
with four MPI instances Mpi 0 [Mpi1 ([mpi2 | [Mpi3
(each with 4 threads) on K ' ' [L. g
two computing nodes
glieflellel |gl|ellelle gleelel (g11g|1el1g
alla||a||= alla||a||= I GARE alle]|@||m
= 5] w £ = [N] w £ = [N] w £ = [N} w i
LS cache 3 cache LS cache LS cache
HT HT
DDR e DDR DDR apl DDR
Infiniband

for Roles and Groups membership. In a Grid
infrastructure such as EGEE/EGI, where serial
and parallel jobs coexist in the same environment,
we need a way to avoid standard serial jobs being
dispatched to parallel queues by the WMS match
making process.

For this purpose we introduced the “Role=
Parallel” which has to be assigned to HPC users.
According to this method, the command to
start a parallel session on the Theophys cluster
is obtained by adding the option “-voms theo-
phys:/theophys/Role=parallel”, to the “voms-proxy-
init” command.

To submit a serial job, the parallel role must
not be specified, i.e., one should give the option
“.voms theophys:/theophys”.

This method is not user friendly since users
have to generate different kind of VOMS prox-
ies depending on the kind of jobs they need to
execute, but the use of VOMS extensions (Role
or Group) was the simplest way to implement
this feature in the current Grid architecture. The
problem of keeping generic jobs out of a given
resource is common to other special resources,
such as nodes equipped with GP-GPU cards or
large amount of memory. This issue should and
will be investigated by middleware designers in
order to elaborate a common solution.

5 Parallel Applications

We report here the functionality test and the over-
all performance of the system, using two freely
available scientific codes used by some of the
groups that use the system.

The two production codes are the “Chroma”
[34] code, which performs Monte Carlo simulation
of lattice QCD, and the Einstein Toolkit [35—
37], which performs the time evolution of mat-
ter coupled to the Einstein’s equations (General
Relativistic Hydrodynamics). The first one, the
“Chroma” code, needs parallelization for reduc-
ing computation time on a small data-set. The
second one, the “Einstein Toolkit”, needs paral-
lelization in order to distribute, among nodes, the
memory allocation of evolved variables. While the
first one is a pure-MPI application, the second one
has a mixed MPI/OpenMP parallelization.

5.1 The Chroma Library

The first test is based on the freely available
USQCD collaboration “Chroma” library. It refers
to Hybrid Monte Carlo simulations of a Pure
SU(3) Lattice Gauge Theory, using two different
lattice Grid sizes (32 x 32 x 32 x 4 and 16 x 16 x
16 x 16) and performing 2000 sweeps. The total
allocated memory is very small: 36 MBytes, for a
Grid size of 32 x 32 x 32 x 4, or 16 MBytes, when
the Grid size is 16 x 16 x 16 x 16.

The parallelization is executed by distributing
the data Grid on N-processes that communicate
to each other using the MPI library. The timing
has been measured by executing the simulation on
1,2,4,8, 16,32 nodes,i.e.on 8, 16, 32, 64, 128, 256
MPI processes, respectively. All the runs are ex-
ecuted with MPI processes bound to their core,
by imposing memory affinity. The results are re-
ported in Table 2, and in Fig. 13 is reported a plot
of the efficiency against the number of nodes.

@ Springer

R. Alfieri et al.

Table 2 Total execution time for two data Grid size

nodes 1 2 4 8 16 32
CPUs 8 16 32 64 128 256
SU(3) on a 32 x 32 x 32 x 4 Grid

Time (min) 287 140 598 271 142 9.00
Efficiency 1.00 1.03 120 132 127 1.00

SU@3)ona 16 x 16 x 16 x 16 Grid

Time (min) 167 70.5 311 154 106 6.57
Efficiency 1.00 1.18 134 135 098 0.79

The reported efficiency is computed by multiplying the
execution time by the number of execution nodes, and
scaled with respect to the execution on a single node.
#CPUs is the number of MPI processes

5.2 The Einstein Toolkit

The test is performed by simulating the evolution
of a stable general relativistic TOV-Star model
using the Einstein Toolkit consortium code. We
evolve the system on a cubic multi-Grid mesh
with five levels of refinement (each of local size
40 x 40 x 40) and we perform 800 time evolution
steps. The total allocated memory for a scalar
evolution is of the order of 1 GBytes. Since this
application supports hybrid parallelization, it has
given us the possibility to test the behavior of
our system under different distributions of the
computation between MPI processes and openMP

CHROMA Lattice QCD

Grid = 16x16x16x16
1.4F Data = 1 MByte x Socket]

Grid = 32x32x32x4
Data = 1 MByte x Socket]

(Speed up) / Hnodes
5 o
i
1
1
1
1

0 5 10 15 20 25 30
1 nodes

Fig. 13 Plot of the efficiency of the parallel execution as a
function of the # s of nodes for the Hybrid Mote Carlo sim-
ulation of the pure gauge SU(3) Gauge theory performed
using the Chroma library. The required simulation times
are reported in Table 2. Please note that the maximum
efficiency is reached when the data size assigned to a group
of 4 MPI processes, which are executed on the same CPU
socket, is approximately equal to the size of the L3 cache

@ Springer

Table 3 Total execution time (in minutes) for a test evo-
lution of a Relativistic Star on the same Grid, as a function
of the number of computing cores used

nodes 1 2 4 8 16
CPUs 8 16 32 64 128
-pcore 127.2 79.6 57.6 49.1 47.2
-psocket 129.3 78.9 59.8 46.6 433
-pnode 172.5 123.5 81.1 66.3 529
No whole node allocation (pure MPI) and no affinity

Min 135.1 90.8 60.7 52.8 101.9
Max 154.3 102.6 73.5 79.8 127.6

Times in the same column correspond to the same number
of CPUs allocated for each job. “-pcore”, “-psocket”, “-
pnode”, correspond to the allocation of 1 MPI process
(with 1 thread) for each core, 1 MPI process (with 4
threads) for each CPU socket and 1 MPI process (with 8
threads) per node, respectively. The last two lines refer to
the minimum and maximum execution time obtained when

the whole-node allocation is relaxed

threads. The results are reported in Table 3. In
Fig. 14 is reported the total simulation time.

6 Conclusions and Future Works

Even though the project is based on provisional
components, the Cluster is fully operative and
it is producing scientific results. The project

Einstein Toolkit

120 1
_100L]
g re
g I
o 80F: E
= [
= b

60r - . 759]

[e Time=31.5+— +0.079N, |
40f Np]
00 02 04 06 08 10

1/(# nodes)

Fig. 14 Total execution time (in minutes) for the evolution
of a Relativistic star for pure MPI parallelization as a
function of the number of nodes on which the execution
take place. Each MPI process is constrained on a fixed
CPU core and all the cores on the same node are allocated
for the execution. The time values are reported in Table 3
in the line labeled by “-pcore”. The dotted blue line shows
the fitted scaling law

HPC on the Grid: The Theophys Experience

achieved two important results for the Theophys
community:

— the deployment of a centralized resource for
parallel applications that shares the same plat-
form with the other Grid resources available
for serial jobs

— the design of a global infrastructure that will
be able to fulfill all the computational needs
of the community.

Besides these two primary objectives that were
achieved for the Theophys VO, this work has pro-
duced other contributions to the whole computa-
tional community. A step towards a better support
in gLite/EMI for jobs needing to exploit multi-
socket and multi-core architectures. To show that,
even if users generally consider (see Section 1 and
[6]) the Grid not ready for parallel computations,
the adoption of the new features described here
enables a flexible and easy porting of HPC appli-
cations on the Grid.

After the experimental activity described here,
the Granularity attributes have been included in
the EMI middleware, which is now under de-
ployment inside the EGI infrastructure. In the
second phase of the project we intend to deploy a
HTC/HPC infrastructure based on the new EMI
middleware by involving a set of selected sites
and users from different scientific communities.
Beside the tests to verify resilience and scalability
of the platform, which will be performed in close
collaboration between users and sites administra-
tors, a special attention will be dedicated to the
usability, through the introduction of a Web portal
with HPC support.

Acknowledgements We would like to thank: M.
Sgaravatto, S. Monforte and A. Gianelle (INFN, Italy)
for their efforts in the development of the CE CREAM
patch supporting multicore architectures; E. Fernandez
(IFCA, Espaiia) for the development of the support of
CPU affinity and openMP in MPI-Start; and A. Feo for the
testing activity with the Lattice QCD program “Chroma”.

References

1. Foster, 1., Kesselman, C., Tuecke, S.: The anatomy of
the Grid: enabling scalable virtual organizations. Int. J.
Supercomput. Appl. 15(3), 200222 (2001)

10.

11.

12.

13.

14.

15.

16.

. Ferrari, T., Luciano Gaido, L.: Resources and services

of the EGEE production infrastructure. J. Grid Com-
puting 9(2), 119-133 (2011)

. Dooley, R., Milfeld, K., Guiang, C., Pamidighantam

S., Allen, G.: From proposal to production: lessons
learned developing the computational chemistry Grid
cyberinfrastructure. J. Grid Computing 4(2), 195-208
(2006)

. Becciani, U., Antonuccio-Delogu, V., Costa, A., Petta,

C.: Cosmological simulations and data exploration: a
testcase on the usage of Grid infrastructure. J. Grid
Computing 10(2), 265-277 (2012)

. Vilotte, J.P., Moguilny, G.: Earth science: require-

ments and experiences with use of MPI in EGEE.
In: EGEEQ9 Conference, Barcelona, 21-25 September
2009

. Engelberts, J.: Towards a robust and userfriendly MPI

functionality on the EGEE Grid. In: EGEE User
Forum 2010, Uppsala, 12-15 April 2010. See also:
http://www.Grid.ie/mpi/wiki/WorkingGroup

. Anglano, C., Canonico, M., Guazzone, M.: The Share-

Grid peer-to-peer desktop Grid: infrastructure, appli-
cations and performance evaluation. J. Grid Comput-
ing 8(4), 543-570 (2010)

. IGT accounting portal: http://accounting.egi.eu (2010)
. Bodin, F., Boucaud, P., Cabibbo, N., Cascino, G.,

Calvayrac, F., Della Morte, M., Del Re, A., De Pietri,
et al.: APE computers—past, present and future. Com-
put. Phys. Commun. 147(1-2), 402-409 (2002)

Foster, 1.: Globus toolkit version 4: software for
service-oriented systems. In: IFIP International Con-
ference on Network and Parallel Computing, LNCS
3779, pp. 2-13. Springer, Berlin (2005)

Laure, E., Fisher, S.M., Frohner, A., Grandi, C.,
Kunszt, P., Krenek, A., Mulmo, O., Pacini, F., Prelz,
F., White, J., Barroso, M., Buncic, P., Hemmer, F., Di
Meglio, A., Edlund, A.: Programming the Grid with
gLite. Comput. Methods Sci. Technol. 12(1), 33-45
(2006)

Ellert, M., et al.: Advanced resource connector mid-
dleware for lightweight computational Grids. Future
Gener. Comput. Syst. 23, 219-240 (2007)

Ernst, M., Fuhrmann, P., Mkrtchyan, T., Bakken,
J., Fisk, I., Perelmutov, T., Petravick, D.: Managed
data storage and data access services for data Grids.
In: Computing in High Energy Physics and Nu-
clear Physics 2004 (CHEP04), Interlaken, Switzerland,
p- 665, 27 Sept—1 Oct 2004

Streit, A., Bala, P., Beck-Ratzka, A., Benedyczak, K.,
Bergmann, S., Breu, R., Daivandy, J. M., Demuth, B.,
Eifer, A. Giesler, A., Hagemeier, B., Holl, S., Huber,
V., Lamla, N., Mallmann, D., Memon, A.S., Memon,
M.S., Rambadt, M., Riedel, M., Romberg, M., Schuller,
B., Schlauch, T., Schreiber, A., Soddemann, T., Ziegler,
W.: UNICORE 6—recent and future advancements.
Ann. Télécommun. 65(11-12), 757-762 (2010)
Fuhrmann, P.: EMI, the introduction. In: Proceeding of
CHEP 2010, Taipei, 18 October 2010

Ferndndez, E.: A unified user experience for MPI jobs
in EMIL In: EGI User Forum 2011, Vilnius, 11 April
2011

@ Springer

http://www.Grid.ie/mpi/wiki/WorkingGroup
http://accounting.egi.eu

R. Alfieri et al.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Anjomshoaa, A., Drescher, M., Fellows, D., Ly, A.,
McGough, S., Pulsipher, D., Savva, A.: Job Submis-
sion Description Language (JSDL) specification, ver-
sion 1.0. White Paper, 7 November 2005

Schuller, B.: MPI in UNICORE. In: EGI Technical
Forum 2010, Amsterdam, 15 September 2010

Dichev, K., Stork, S., Keller R., Fernandez, E.: MPI
support on the Grid. Comput. Inform. 27(2), 213-222
(2008)

Schuller, B., Konya, B., Konstantinov, A., Sgaravatto,
M., Zangrando, L.: EMI-ES, a common interface to
ARC, gLite and UNICORE computing elements. In:
EGI User Forum, Vilnius, 11 April 2011

Carminati, F., Templon, J., et al.: Common use cases
for a HEP common application layer. White Paper,
LHC-SC2-20-2002

European Grid Infrastructure: An integrated sustain-
able Pan-European infrastrucute for researchers in
Europe (EGI-InSPIRE). White Paper, 18 April 2011.
Document Link: https://documents.egi.eu/document/
201

XSEDE Production Baseline: Service provider soft-
ware and services. White paper, released on 22 Febru-
ary 2012

Altunay, M., Avery, P., Blackburn, K., Bockelman,
B., Ernst, M., et al.: A science driven production
cyberinfrastructure—the open science Grid. J. Grid
Computing 9(2), 201-218 (2011)

Berg, A.: PRACE distributed infrastructure services
and evolution. In: EGI Community Forum 2012,
Garching, 28 March 2012

Gentzsch, W., Denis Girou, D., Kennedy, A., Lederer,
H., Reetz, J., et al.: DEISA-distributed European in-
frastructure for supercomputing applications. J. Grid
Computing 9(2), 259-277 (2011)

Lagand, A., Costantini, A., Gervasi, O., Faginas Lago,
N., Manuali, C., et al. Compchem: progress to-
wards GEMS a Grid empowered molecular simula-
tor and beyond. J. Grid Computing 8(4), 571-586
(2010)

Borgdorff, J., Falcone, J., Lorenz, E., Chopard, B.,
Hoekstra, A.: A principled approach to distributed
multiscale computing, from formalization to execution.
In: Proceedings of The Seventh IEEE International
Conference on e-Science Workshops, Stockholm,

@ Springer

29.

30.

31.

32.

33.

34.

35.

36.

37.

Sweden, 5-8 December 2011, pp. 97-104. IEEE Com-
puter Society, Washington, DC (2011)

Frohner, A., Baud, J.P.,, Garcia Rioja, R.M.,
Grosdidier, G., Mollon, R., Smith D., Tedesco, P.:
Data management in EGEE. In: Journal of Physics,
Conference Series 219 (2010)

Zappi, R., Magnoni, L., Donno, F., Ghiselli, A.:
StoRM: Grid middleware for disk resource manage-
ment. In: Proceedings of Computing in High-Energy
Physics, 27 Sept—1 Oct 2004 Interlaken, Switzerland,
(CHEPO04), pp. 1238-1241 (2005)

Turner, D., Oline, A., Chen, X., Benjegerdes, T.: In-
tegrating new capabilities into NetPIPE. Lect. Notes
Comput. Sci. 2840, 37-44 (2003)

Aiftimiei, C., Andreetto, P., Bertocco, S., Dalla Fina,
S., Alvise Dorigo, A., Frizziero, E., Gianelle, A.,
Marzolla, M., Mazzucato, M., Sgaravatto, M., Traldi
S., Zangrando, L.: Design and implementation of the
gLite CREAM job management service. Future Gener.
Comput. Syst. 26(4), 654-667 (2010)

Alfieri, R., Cecchini, R., Ciaschini, V., dell’Agnello, L.,
Frohner, A., Lorentey, K., Spataro F.: From Gridmap-
file to VOMS: managing authorization in a Grid envi-
ronment. Future Gener. Comput. Syst. 21(4), 549-558
(2005)

Edwards, R.G., (LHPC Collaboration), Joé, B.,
(UKQCD Collaboration): The chroma software sys-
tem for lattice QCD. arXiv:hep-1at/0409003. In: Pro-
ceedings of the 22nd International Symposium for
Lattice Field Theory (Lattice2004), Nucl. Phys. B140
(Proc. Suppl), 832 (2005). See also: http://usqcd.jlab.
org/usqcd-docs/chroma/

Goodale, T., et al.: The cactus framework and toolkit:
design and applications. In: Vector and Parallel
Processing—VECPAR2002, 5th International Confer-
ence, Lecture Notes in Computer Science. Springer,
Berlin (2003).

Schnetter, E., Hawley, S.H., Hawke, 1.: Evolutions in
3-D numerical relativity using fixed mesh refinement.
Class. Quantum Grav. 21, 1465-1488 (2004)

Baiotti, L., Hawke, 1., Montero, P.J., Loffler, F.,
Rezzolla, L., Stergioulas, N., Font, J.A., Seidel, E.:
Three-dimensional relativistic simulations of rotating
neutron star collapse to a Kerr black hole. Phys. Rev. D
71, 024035 (2005). See also: http://einsteintoolkit.org/

https://documents.egi.eu/document/201
https://documents.egi.eu/document/201
http://arXiv.org/hep-lat/0409003
http://usqcd.jlab.org/usqcd-docs/chroma/
http://usqcd.jlab.org/usqcd-docs/chroma/
http://einsteintoolkit.org/

	HPC on the Grid: The Theophys Experience
	Abstract
	Introduction
	The INFN Theoretical Physics Community, Computational Needs and Project Motivations
	HPC Support in the Grids
	Grid Infrastructures

	The Project
	Cluster Characteristics
	Storage
	Queues Organization
	Granularity and Multicore Support
	MPI-Start
	Authentication and Authorization

	Parallel Applications
	The Chroma Library
	The Einstein Toolkit

	Conclusions and Future Works
	References

